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A B S T R A C T

Coronaviruses are enveloped RNA viruses from the Coronaviridae family affecting neurological, gastrointestinal,
hepatic and respiratory systems. In late 2019 a new member of this family belonging to the Betacoronavirus
genera (referred to as COVID-19) originated and spread quickly across the world calling for strict containment
plans and policies. In most countries in the world, the outbreak of the disease has been serious and the number of
confirmed COVID-19 cases has increased daily, while, fortunately the recovered COVID-19 cases have also in-
creased. Clearly, forecasting the “confirmed” and “recovered” COVID-19 cases helps planning to control the
disease and plan for utilization of health care resources. Time series models based on statistical methodology are
useful to model time-indexed data and for forecasting. Autoregressive time series models based on two-piece
scale mixture normal distributions, called TP–SMN–AR models, is a flexible family of models involving many
classical symmetric/asymmetric and light/heavy tailed autoregressive models. In this paper, we use this family
of models to analyze the real world time series data of confirmed and recovered COVID-19 cases.

1. Introduction

Coronaviridae family includes two main subfamilies Coronavirinae
and Torovirinae. The member genera include Alphacoronavirus,
Betacoronavirus, Gammacoronavirus, Torovirus, and Bafinivirus. They
are a huge family of viruses that affect neurological, gastrointestinal,
hepatic and respiratory systems and can be grown among humans, bats,
mice, livestock, birds, and others [1–3]. In the Coronaviridae family, a
well-known type of virus called SARS coronavirus (SARS-CoV) dis-
tributed from animal to animal and humans [4]. Another type of cor-
onavirus, called MERS coronavirus (MERS -CoV), significantly dis-
tributed from human to human in 2012 [4]. In 2019 many cases in
China with respiratory diseases were reported by the World Health
Organization (WHO), with evidence that these cases originated from a
seafood market in Wuhan [5]. In 2019 a new type of virus called
COVID-19 (novel coronavirus, 2019-nCoV), belonging to the Betacor-
onavirus genera of Coronaviridae family, spread from Wuhan in China
[6].

Evidence that COVID-19 is distributed from human to human has

been verified by the Centers for Disease Control and Prevention (CDC),
and also reported that COVID-19 is spreading by touching surfaces,
close contact, air, or objects that contain viral particles. The incubation
period of COVID-19 is at least 14 days [7], and it can spread to others in
the incubation period. Finally note that the incubation period and
median age of confirmed cases are respectively 3 days and 47.0 years
[8].

Preparation and controlling the outbreak of COVID-19 diseases re-
quires thorough planning and policies. Some researchers have used
statistical and mathematical modelling. In China, the number of un-
reported COVID-19 cases has been mathematically estimated in Refs.
[9]. Also based on the information of some Japanese passengers in
Wuhan [10], estimated the rate of the infection for COVID-19 in
Wuhan. The results indicated a rate of 9.5% for infection and a rate
from 0.3% to 0.6%, for death. Based on mathematical modelling in Ref.
[11], the transmission risk of COVID-19 is on average about 6.47 per-
sons and predicted the time that the peak of COVID-19 will be reached.
Estimation of a sustained human-to-human transmission equal to 0.4
for COVID-19 using the information of 47 patients has been done in Ref.
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[12]. In Ref. [13], based on two scenarios, found that the risk of death is
5.1% and 8.4%.

The modelling, estimation and prediction of the prevalence of
viruses and the epidemiological characteristics are important issues in
providing the equipment needed to cope with their consequences.
Forecasting of the cases and transmission risk of West Nile virus (WNV)
has been provided by Ref. [14]. For further modelling and forecasting
of the spread of several viruses such as the hepatitis A virus, Ebola,
SARS, influenza A and MERS, refer to Refs. [15–21]. To have a suitable
plan for COVID-19, forecasting the future confirmed cases are critical.
An optimization method, named FPASSA-ANFIS, has been proposed by
Ref. [22] to model the number of confirmed cases of COVID-19 and to
predict its future values using collected data in China. Forecasting
various data about COVID-19, by mathematical and statistical models,
is very important to a program of cutting the transmission chain of
diseases; see, e.g., Ref. [23–26].

According to credible daily reports from the World Health
Organization and other world-renowned institutions in the field of
public health, the total number of COVID-19 confirmed cases has in-
creased in different countries, especially in U.S.A, Italy, Spain and Iran.
Although the spread of COVID-19 has many dangers, fortunately re-
ports show that the total number of COVID-19 recovered cases has also
increased. Increasing the number of recovered cases, along with redu-
cing or stabilizing the number of confirmed cases is important to con-
trol the spread of the COVID-19 and leads to stability of the rate of
infections in the world. So modelling and forecasting the numbers of
confirmed and recovered COVID-19 cases has an important role to plan
the control of the spread of the COVID-19 in the world. Cumulative
numbers of the confirmed and recovered COVID-19 cases, which are
reported daily by the proposed organizations, on each day depend on
their values on the past days. So using autoregressive time series model
can be a useful tool to model, analyze and forecast the confirmed and
recovered cases of COVID-19. The SIR epidemic modelling can be done
at local (country) level but the autoregressive model can be good to
look at overall patterns. The autoregressive time series model is a
flexible tool to model dependent data and has been used to estimate and
forecast many real practical problems, see Refs. [27–34]. In fact, the
autoregressive model, determines the probabilistic behavior of the
current values Xt based on a linear combination of past values

…− − −X X X{ , , , }t t t1 2 3 , in the form of:

= + …+ + = ± ± …− −X ϕ X ϕ X Z t; 0, 1, 2, ,t t p t p t1 1 (1)

where the error terms Z{ }t are generally assumed to be uncorrelated and

identically probabilistically distributed random variables from a dis-
tribution, and denoted by X AR p{ }~ ( )t . (see e.g. Ref. [39,40].)

Because in many real world time series data, classical modelling
based on the symmetrical/light-tailed distributions are not satisfactory,
in our methodology we have used autoregressive time series model (1)
based on asymmetric/heavy-tailed TP–SMN distributions. Therefore we
assume the error terms Zt in (1) are distributed as TP–SMN distribu-
tions, denoted by νZ TP SMN μ σ γ~ – ( , , , )t and X TP SMN AR p{ }~ – – ( )t . See
details of the proposed distributions and model in Ref. [34–38].

In this paper we modeled the total number of confirmed and re-
covered COVID-19 cases in the world by the proposed autoregressive
time series model so-called TP–SMN–AR models which includes the
symmetric Gaussian and asymmetric heavy-tailed non-Gaussian auto-
regressive time series models. The various members of the proposed
autoregressive models were fitted initially to the historical numbers of
confirmed and recovered COVID-19 cases in the world. Then, the au-
toregressive time series that has the best fit to each of the dataset is
selected. Finally, the selected models are used to predict the number of
confirmed and recovered COVID-19 cases in the world from 21-Apr-
2020 up to 30-Apr-2020, and we measure the differences between the
real and predicted values to show the performance of the models.
Therefore, the main contribution points of the current study are as
follows: an improved autoregressive time series model based on the
TP–SMN distributions, and a new efficient predictive model applied to
predict and estimate the confirmed and recovered COVID-19 cases in
the world using past and current data. Note that a sample copy of the
code is available from the authors upon request.

2. Modelling the confirmed and recovered cases of the COVID-19
in the world

The coronavirus (COVID-19) is affecting about 212 countries and
territories around the world and two international conveyances. The
daily data for COVID-19 in the world are reported by the China
National Health Commission (NHC) and World Health Organization
(WHO). In this part we fit the TP–SMN–AR time series model to the
total confirmed COVID-19 cases from 22-Jan-2020 to 30-Apr-2020 and
also to the total recovered COVID-19 cases from 02-Feb-2020 to 30-Apr-
2020, in the world.

Time series plots of the total confirmed and recovered cases are
plotted in Fig. 1 and Fig. 2 respectively. The proposed time series plots
are not stationary because they are increasing and show signs of a
trend. After some suitable transformations described in Ref. [40], we

Fig. 1. Time series plot of the total confirmed COVID-19 cases in the world from 22-Jan to 30-Apr of 2020.
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obtain stationary data. Also using model selection criteria [34,39,40]
the best TP–SMN–AR models (the autoregressive models based on the
two-piece t distributions) were fitted to the stationary series of the
confirmed and recovered cases and are given by.

• The confirmed COVID-19 cases; TP SMN AR– – (7) model:

= − − − − −

− − +

− − − − −

− −

X X X X X X

X X Z

0.9399 1.0438 1.1067 0.9825 0.9364

0.8105 0.3623 ,
t t t t t t

t t t

1 2 3 4 5

6 7

where

= − = = =Z TP T μ σ γ ν~ – ( 103.3424, 4084.3481, 0.4559, 2.1000).t

• The recovered COVID-19 cases; TP SMN AR– – (2) model:

= − − +− −X X X Z0.5865 0.2020 ,t t t t1 2

where

= − = = =Z TP T μ σ γ ν~ – ( 0.0048, 0.0250, 0.4756, 3.1146).t

The histograms of the estimated errors (residuals) based on the es-
timated heavy-tailed TP–SMN densities are superimposed in Fig. 3 and
show the suitable performance of the estimated models to the sta-
tionary series of total confirmed and recovered COVID-19 cases

datasets. Also the auto–correlation function (ACF) plots of the residuals
presented in Fig. 4 show the suitability of the fitted models.

To further demonstrate the goodness of fit of the model, we elimi-
nated the last 10 days of the confirmed and recovered cases (2020-Apr-
21 to 2020-Apr-30), and then fitted the TP–SMN–AR models and pro-
vided forecasts. Table 1 contains the predictions and 98% confidence
intervals for this analysis. Also Fig. 5, Fig. 6 and Fig. 7, show the
forecasted values which are superimposed on the plots of the real values
of the confirmed and recovered COVID-19 cases in the world.

To evaluate the accuracy of the predictions, we use the mean re-
lative percentage error (MAPE), which for the confirmed COVID-19
cases is 0.22% and for the recovered COVID-19 cases is 1.6% which are
reasonably low values demonstrating the suitability of the proposed
models for prediction.

Finally note that the proposed TP–SMN–AR models include as spe-
cial or limiting cases the more standard autoregressive time series
models used in the literature. In particular, some model selection cri-
teria such as Akaike information criteria (AIC), Bayesian information
criteria (BIC), and Box–Pierce and Ljung–Box tests on the residuals,
demonstrate that the proposed fitted TP–SMN–AR models are more
reasonable than other well-known counterparts.

Fig. 2. Time series plot of the total recovered COVID-19 cases in the world from 02-Feb to 30-Apr of 2020.

Fig. 3. Histograms of the residuals of the fitted models on the confirmed COVID-19 cases (a), and the recovered COVID-19 cases (b) datasets in the world, with their
superimposed estimated densities.
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3. Conclusion

Coronaviruses are a huge family of viruses that affect neurological,
gastrointestinal, hepatic, and respiratory systems. The number of con-
firmed cases has increased daily in different countries, especially in
U.S.A, Italy, Spain, Iran, China and others. The spread of COVID-19 has
many dangers and needs strict special plans and policies. Therefore, to
consider plans and policies, predicting and forecasting the future con-
firmed and recoveries cases are critical. The autoregressive time series
models are a useful tool to model data over time. However, some of the
standard time series models are based on the assumption that the error
term or residuals are symmetric (Gaussian). There exist many situations
in the real world that the assumption of symmetric distribution of the
error terms is not satisfactory. In our methodology, we considered au-
toregressive time series models based on the two–piece scale mixture
normal (TP–SMN) distributions. The results indicated that the proposed
method performed well in forecasting confirmed and recovered COVID-
19 cases in the world. Using model selection criteria, the proposed
models were also more reasonable than the standard Gaussian auto-
regressive time series model which is the simplest member of our
proposed models. For future works, we suggest that the researchers
apply cyclostationary, almost cyclostationary and simple processes
[41–47] based on the TP–SMN distributions, instead of stationary

Fig. 4. ACF of the residuals of the fitted models on the confirmed COVID-19 cases (a), and the recovered COVID-19 cases (b).

Table 1
The real values of the total confirmed and recovered COVID-19 cases in the
world data from 2020-Apr-21 to 2020-Apr-30 with predictions and 98% con-
fidence interval.

COVID-19 Data Date Real value Prediction Lower C·I. Upper

Confirmed Cases 2020-Apr-21 2556720 2556806 2545942 2568200
2020-Apr-22 2637439 2637409 2626722 2648536
2020-Apr-23 2722857 2721410 2710914 2732294
2020-Apr-24 2828682 2808860 2798439 2819720
2020-Apr-25 2919404 2937529 2925690 2948566
2020-Apr-26 2993292 3004212 2992353 3015772
2020-Apr-27 3059944 3064943 3052694 3077488
2020-Apr-28 3136505 3129841 3117773 3143146
2020-Apr-29 3218183 3218199 3204951 3231956
2020-Apr-30 3304220 3302211 3289979 3315769

Recovered Cases 2020-Apr-21 691650 670555 638016 707815
2020-Apr-22 718761 722622 689342 761654
2020-Apr-23 746924 753685 716873 795415
2020-Apr-24 815145 775550 737065 858978
2020-Apr-25 854466 864671 818679 914842
2020-Apr-26 877411 904511 854466 957290
2020-Apr-27 921320 914058 865114 968022
2020-Apr-28 953309 954201 903560 1010487
2020-Apr-29 1000033 985264 932903 1043419
2020-Apr-30 1039028 1038689 984279 1099247

Fig. 5. Time series plot of the confirmed COVID-19 cases data and predicted data from 2020-Apr-21 to 30-Apr of 2020.
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