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Genome-wide association studies (GWASs) are an important 
tool for the investigation of the epidemiology and biology 
of mental and physical health outcomes. GWASs are viewed 

as essential herein, because for most outcomes in life, individual 
differences are a consequence of a multitude of genetic and envi-
ronmental influences1. The aim of a GWAS is to estimate associa-
tions between genetic variants and complex traits2. The nature of 
the associations is generally difficult to determine, especially for 
highly polygenic traits3. Genetic effects are expressed through many 
cascades of biological processes that influence and react to environ-
mental exposures, which can give rise to gene–environment corre-
lations. Three potential sources of gene–environment correlations 
are as follows: (1) population stratification, (2) family-level gene–
environment correlations and (3) gene–environment correlations 
across geographic regions.

Population stratification affects GWASs when trait differences 
co-vary with systematic allele frequency differences between ances-
tries4,5. Genome-wide allele frequency differences between popu-
lations due to genetic drift and/or natural selection are detectable 
even within reasonably homogenous populations6–8. These older 
ancestry differences generally show strong correlations with geog-
raphy6–9 and could therefore align with regional differences in envi-
ronmental influences. Population stratification could then lead to 
biases in GWASs that are not only due to systematic genetic differ-
ences but also due to correlated environmental differences between 
(sub)populations. Bias due to population stratification in GWASs 
is commonly controlled for with principal components (PCs) that 
reflect the strongest axes of (ancestral) genetic variation10.

Differences between families in (socio-economic) environ-
mental factors can also induce gene–environment correlations. 
Outcomes can, for example, be influenced by the parental genotype 
through parental (rearing) behavior and inherited socio-economic 
environments11. These indirect genetic effects have been detected 
for genes associated with educational attainment on a variety of 
outcomes. Because parental and offspring genotypes correlate, poly-
genic effects on education could be mixed with signals of GWASs on 

physical and mental health outcomes that are influenced by these 
environmental factors. Some refer to these indirect genetic effects 
as ‘nature of nurture’ (ref. 11), implying indirect effects that arise 
by ways of parenting or nurturing a child. Others call it ‘dynastic 
effects’ (ref. 12), implying that indirect effects can arise from the 
succession of (economic) (dis)advantage accumulated across gen-
erations, improving children’s (socio-economic) positions at birth. 
As families are nested in neighborhoods, regions and other social 
structures, accounting for family can partly account for effects at 
other levels as well.

A third source of gene–environment correlations can be found 
across geographic regions, which could result from both active and 
passive processes. Active processes could occur when individuals 
with favorable genetic predispositions are more likely to improve 
their environmental circumstances through migration13. This pro-
cess can increase the geographic clustering of genes associated with 
educational attainment and decrease the geographic clustering of 
PCs that capture older ancestry differences13. Migration can improve 
rearing environments for offspring as well, making active gene–
environment correlations in one generation induce family-level 
gene–environment correlations in the next. Passive sources of 
regional gene–environment correlation could arise, for example, 
due to government policies that affect certain socioeconomic strata 
more than others. For instance, a policy change that makes insulin 
more expensive will introduce a correlation between alleles related 
to socioeconomic status (SES) (for example, education and income) 
and those related to consequences of untreated diabetes.

In this study, we investigated the effects of gene–environment 
correlations across geographic regions on polygenic signals for a 
wide range of traits. We first examined passive and active gene–envi-
ronment correlations at the family and regional level. To this end, 
we used educational attainment polygenic scores and phenotypic 
measures of 56 complex traits in 22,657 adult sibling pairs from 
UK Biobank. We then conducted GWASs on 56 complex traits in a 
dataset of up to 254,557 adult individuals of European descent from 
Great Britain (UK Biobank)14. In these GWASs, we reduced the part 
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of the signal that arises due to gene–environment correlations by 
introducing fixed effects for neighborhoods that are economically 
more homogenous than the country as a whole, effectively perform-
ing within-region GWASs for a wide range of complex traits. We 
investigated the impact of gene–environment correlations on the 
heritability of complex traits and on their genetic relationships with 
socio-economic outcomes (education and income).

Results
We first show gene–environment correlations across geographic 
regions using polygenic scores in siblings. We then reduce their 
impact on GWAS signals by controlling for geographic regions. 
For both parts, we analyzed 1,246,531 common SNPs and 56 com-
plex traits related to physical and mental health, body composition, 
and emotional, cognitive, behavioral and socioeconomic outcomes 
(see Supplementary Table 1 for a list of traits and sample sizes). In 
all analyses, we controlled for population stratification (100 PCs),  
sex and age.

Polygenic scores in siblings. In the presence of gene–environment 
correlations, polygenic scores are predictive of both genetic and 
environmental influences on the trait. Selzam et al. demonstrated in 
2,366 dizygotic twin pairs that, for educational attainment and IQ, 
polygenic scores explain 60% more variance between families than 
within families15. This study was done in children and young ado-
lescents, aged 12–21 years, where much of the gene–environment 
correlations originated from the family (shared) environment in 
which they were born and raised, that is, passive gene–environment 
correlations. We conducted similar analyses in this study in 22,675 
adult sibling pairs aged 40–70 years. We extended our analyses  

to investigate whether gene–environment correlations across geo-
graphic regions result in an increase in predictive power and to 
test whether this was influenced by active gene–environment cor-
relations. Active gene–environment correlations could occur, for 
example, when adults with a higher educational attainment poly-
genic score are more likely to move to a more favorable region 
than their siblings with a lower educational attainment polygenic  
score (Fig. 1).

SES-related signals are best captured by GWASs on educa-
tional attainment and income. We created a polygenic score for 
educational attainment rather than income because educational 
attainment had a large GWAS excluding UK Biobank participants 
(245,621 European participants excluding British cohorts)16. We 
used this polygenic score to predict educational attainment as well 
as 55 other complex traits, as we expected environmental effects 
involved in gene–environment correlations to impact a wider vari-
ety of outcomes. We tested for the presence of gene–environment 
correlations on the family level and across geographic regions by 
fitting five models: model 1 includes polygenic scores on an indi-
vidual level as a predictor; model 2 includes polygenic scores on 
the within-family and between-family level as predictors; model 3 
includes polygenic scores on the within-region and between-region 
level as predictors; model 4 includes polygenic scores on the 
within-family (within-region), between-family (within-region) and 
between-region level as predictors; in model 5, we decomposed 
the within-family polygenic score into within- and between-region 
effects to test for active gene–environment correlations. Regions are 
based on Middle Layer Super Output Area (MSOA) regions of the 
current address (Fig. 2). An important indicator for the presence 
of gene–environment correlations beyond the family level across 
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Fig. 1 | Schematic illustration of gene–environment correlations (rGE). The geographic region at the bottom is the birthplace of the sibling pair, who 
migrate as adults to two different regions at the top; the sibling with a higher polygenic score migrates to the top-left region with healthier environmental 
influences. Passive gene–environment correlations occur when the environment that parents provide (at the bottom) correlates with a heritable trait, and 
active gene–environment correlations come about when heritable behaviors (for example, migration; from bottom to top) lead to correlations between 
polygenic effects and environmental factors.
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geographic regions is a weaker within-family effect in model 4 than 
in model 2, as that would imply that a portion of the effect captured 
on the individual level, and not by the family, is due to gene–envi-
ronment correlations across geographic regions. We determined 
the significance of this difference by bootstrapping (see Methods 
for more details on the models).

We fitted the five models to the data of 56 complex traits with 
sample sizes ranging from 11,093 to 43,516 individuals. Main results 
are shown in Fig. 3 and Extended Data Fig. 1. As expected from 
ref. 15, individual-level effects became generally weaker after add-
ing between-family effects (model 1 versus model 2; Extended Data 
Fig. 1a). For ten traits, the individual-level effect of the polygenic 
score became significantly weaker after adding a between-region 
effect to a model with a between-family effect (that is, weaker in 
model 4 compared to model 2, based on the false discovery rate 
(FDR)-corrected p-values of the difference in effect sizes based 

on 1,000 bootstraps; Fig. 3a). The five most significant reductions 
were observed for body mass index (BMI) (P = 1 × 10−5), waist cir-
cumference (P = 1 × 10−4), household income (P = 1 × 10−4), time 
spent watching television (P = 3 × 10−4) and whole-body fat mass 
(P = 6 × 10−4), possibly because, of all traits considered, these are 
most likely to change once siblings migrate away from the parental 
residence (see Table 1 for full results for these traits). Adding the 
between-region effect to the between-family effect also significantly 
decreased the individual-level polygenic score effect for educational 
attainment (P = 9 × 10−4). Six traits showed an increase in R2 > 2% 
after adding the between-region effect to the between-family 
effect (Fig. 3b). When comparing fixed effect estimates within 
model 4, the majority of traits showed higher between-region than 
between-family effect (Fig. 3c), implying additional explanatory 
power of geographic regions not captured at the individual or family 
level. Part of the between-family effect in model 2 can be explained 
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Fig. 2 | Assessment centers, local authority and MSOA regions. The two bottom maps show the locations of birthplace and current address of 
participants analyzed in the GWASs. Histograms show distributions of these participants across assessment centers and geographic regions for 
birthplaces and current addresses. All maps and histograms show the same 254,577 UK Biobank participants. Maps were adapted from 2011 Census 
aggregate data (UK Data Service, February 2017 edition). Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and 
Research Agency (2017).
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by between-region effects, as reflected by a significant decrease of 
the between-family effect in the majority of traits after adding the 
between-region effect (model 4 versus model 2; Extended Data Fig. 
1b). After decomposing the within-family effect into within- and 
between-region effects (model 5), the majority of traits showed 
higher between-region than within-region effect (Fig. 3d), implying 
wide-spread active gene–environment correlations.

GWASs controlled for geography. We ran linear mixed model 
(LMM)17 GWASs on 56 complex traits in up to 254,387 participants 
of European descent. We included the geographic region of birth 
and/or current residence of the participants as dummy coded fixed 
effects to control for gene–environment correlations. Geographic 
regions were obtained by mapping latitude and longitude coordi-
nates of birthplace or current address (1-km resolution) to local 
authority areas or MSOA regions (Fig. 1). The local authority areas 
are based on the level of subnational division used for the purposes 
of local government, while MSOA regions are defined as a set of 
adjacent output areas chosen to have comparable population sizes 

and to be “as socially homogenous as possible based on tenure of 
household and dwelling type” (ref. 18). Both local authority regions 
and MSOA regions explained significant amounts of variation for 
all 56 complex traits, most for household income (~5% based on 
birthplace, ~14% based on current address; Extended Data Fig. 2). 
Current address consistently explained more variation than birth-
place, in line with richer and healthier people being more likely to 
have moved to regions inhabited by richer and healthier people13.

We only included regions with ≥ 100 UK Biobank participants 
and selected only participants with all geographic information 
available. For local authority areas, this resulted in 282 regions for 
birthplace and 147 regions for current address. For MSOA regions, 
this resulted in 816 regions for birthplace and 1,747 regions for cur-
rent address. A total of 254,557 participants with geographic regions 
were available for both birthplace and current address (Fig. 2). Of 
these participants, between 63,780 and 254,387 had phenotypes 
available (Supplementary Table 1). In addition, we compared the 
results with those obtained when controlling the GWASs for lati-
tude and longitude coordinates (also for birthplace, current address 
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and both) and assessment center. As we explain in the Methods, 
the current address measure is likely to be more precise than the 
birthplace measure. We compared GWAS results controlling for 
region with the results of conventional GWASs not corrected for 
region, obtained from the same selection of individuals. The impact 
of controlling for geographic region was investigated by computing 
the magnitude and significance of the change in SNP-based herita-
bility and the change in genetic correlation with two indicators of 
SES, namely educational attainment and household income.

SNP-based heritability. Without controlling for geographic region, 
the SNP-based heritabilities of the 56 traits ranged from 0.02 to 0.41 
(estimated using linkage disequilibrium (LD) score regression19 
based on ~1.2 million SNPs), with physical traits showing higher 
heritability estimates than behavioral traits (Fig. 4). The average 
SNP-based heritability per category was as follows: anthropomor-
phic, 0.22; cardiovascular, 0.17; cognition and SES, 0.10; depression, 
0.06; physical health, 0.07; reproduction, 0.10; sleep, 0.07; social, 
0.05; substance use, 0.05 and other behavior, 0.05. Figures 4 and 5 
show the change in SNP-based heritability after controlling for geo-
graphic region. All heritability estimates before and after controlling 
for geographic region can be found in the Supplementary Data file.

The heritability estimates most consistently affected by control-
ling for local authority or MSOA regions were those of educational 
attainment and income. Controlling for current address resulted 
in stronger heritability reductions than controlling for birthplace, 
and including both resulted in the strongest reductions. Controlling 
for the smaller MSOA regions resulted in stronger heritability 
reductions than controlling for the larger local authority regions. 
Accordingly, controlling for MSOA regions based on both birth-
place and current address resulted in significant heritability reduc-
tions for the largest number of traits (n = 6): household income 

(from 7% to 4%), educational attainment (from 14% to 9%), age at 
first birth (from 14% to 9%), time spent watching television (from 
12% to 9%), overall health (from 8% to 7%) and fluid intelligence 
(from 22% to 19%). These traits have a strong relationship with SES, 
especially income and educational attainment, which showed the 
strongest reduction and also the strongest geographic clustering 
(Extended Data Fig. 2), making it likely that their polygenic signal 
was larger because it captured effects attributable to gene–environ-
ment correlations.

Assessment center did not significantly impact any of the heri-
tability estimates, while latitude and longitude did, but for very dif-
ferent traits, namely anthropomorphic and cardiovascular traits 
(Extended Data Figs. 3 and 4). The SNP-based heritability of height 
was most strongly affected by latitude and longitude corrections, 
decreasing from ~41% to ~13% (for both birthplace and current 
address separately and combined). Other significant reductions were 
observed for hip circumference, corpuscular volume and corpuscu-
lar hemoglobin. These effects could not be explained by a reduc-
tion in population stratification, as the LD score intercept increased 
after controlling for latitude and longitude (Supplementary Table 2).  
This heritability reduction only occurred when controlling for 100 
PCs and latitude and longitude combined but not when control-
ling for only PCs or only longitude and latitude (Supplementary 
Table 2); because latitude and longitude correlate strongly with 
several PCs (Supplementary Table 3), this effect may be caused  
by multicollinearity.

Genetic correlations. Genes associated with socioeconomic success 
can influence which neighborhoods people can afford to live in, 
and thus the quality of people’s living environment. Environmental 
exposures that differ between neighborhoods and regions can affect 
a wide range of physical and mental health outcomes, which causes 
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genes associated with socioeconomic success to also become associ-
ated with these physical and mental health outcomes. We investi-
gated whether controlling for regional differences decreases genetic 
correlations with SES. Genetic correlations were computed for 56 
complex traits with educational attainment and household income 
using LD score regression20 and ∼1.2 million SNPs. The significance 
of the change in genetic correlations after controlling for geogra-
phy was tested in Genomic SEM21 accounting for the dependence 
between the various GWASs, which all rely on the same sample. 
Figure 6 and Extended Data Fig. 5 show the changes in genetic 
correlations and their significance. All uncorrected and corrected 
genetic correlations with educational attainment and household 
income can be found in Extended Data Figs. 6 and 7 and in the 
Supplementary Data file.

Controlling for local authority or MSOA region significantly 
reduced the genetic correlations between most of the 56 complex 
traits and education and income (Fig. 6). We observed the most and 
strongest reductions when controlling for birthplace and current 
address jointly and the smaller MSOA regions. When controlling for 
MSOA regions based on both birthplace and current address jointly, 
41 traits showed a significant reduction in the genetic correlation 
with educational attainment. The five most significant decreases 
were observed for height (from 0.20 to 0.11, Pchange = 9 × 10−70), body 
fat percentage (from −0.34 to −0.20, Pchange = 1 × 10−69), BMI (from 
−0.31 to −0.17, Pchange = 1 × 10−68), alcohol frequency (from −0.42  
to −0.23, Pchange = 1 × 10−65) and time spent watching television (from 
−0.69 to −0.54, Pchange = 2 × 10−63). When controlling for MSOA 
regions based on birthplace and current address, 35 traits showed 
a significant reduction of the genetic correlation with household 
income. The five most significant decreases were observed for body 
fat percentage (from −0.32 to −0.15, Pchange = 5 × 10−44), BMI (from 
−0.33 to −0.15, Pchange = 7 × 10−41), time spent watching television 
(from −0.62 to −0.41, Pchange = 2 × 10−37), whole-body fat mass (from 
−0.25 to −0.09, Pchange = 3 × 10−37) and waist circumference (from 

−0.29 to −0.13, Pchange = 5 × 10−34), which is the same top five as for 
the polygenic score analyses in siblings summarized in Table 1.

A relatively small number of traits showed significantly stronger 
genetic correlations with educational attainment after controlling 
for geographic region. When controlling for MSOA region based 
on both birthplace and current address, genetic correlations with 
education became significantly stronger for eight traits (number 
of sexual partners, corpuscular volume, corpuscular hemoglobin, 
risk-taking, age at menarche, job satisfaction, drinks per week and 
smoking initiation) and genetic correlations with income became 
significantly stronger for six traits (ever sought/received profes-
sional help for mental distress, number of sexual partners, cor-
puscular volume, corpuscular hemoglobin, happiness and family 
relationship satisfaction). This could mean that regional differences 
in SES masked genetic correlations between these traits and educa-
tional attainment, but could potentially also result from collider bias 
(Discussion and Methods).

We also computed genetic correlations between cognitive and 
noncognitive22 components of educational attainment (Extended 
Data Figs. 7 and 8). Similar changes occurred after controlling for 
MSOA region, except for a small number of traits differentially cor-
related with cognitive versus noncognitive skills, which, accord-
ingly, showed differential effects for controlling for geography. 
Interestingly, income showed a particularly strong difference, with 
little change in cognitive skills after controlling for MSOA, but a sig-
nificant decrease in its genetic correlation with noncognitive skills.

Discussion
Environmental factors that differ between economically prosperous 
and deprived regions influence a wide range of complex traits, while 
these regions can also show genetic differences. Within-family 
designs can reduce the impact of these gene–environment cor-
relations on GWASs23–25, but they do not control for active gene– 
environment correlations that occur when genetic differences 
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between family members become associated with SES-related 
neighborhood characteristics after children leave the parental resi-
dence. Furthermore, large sample sizes of genotyped families are 
harder to attain, as reflected in noisier genetic effect estimates of 
current within-family GWASs (Extended Data Fig. 9). We showed 
here that the effects of gene–environment correlations that extend 
beyond the family can be reduced in GWASs by controlling for 
geographic regions. Fully removing polygenic effects that affect the 
outcome via the social environment will be more challenging, and it 
depends on the research question of the GWAS whether it would be 
desirable to exclude this causal chain from the signal26.

We confirmed the presence of gene–environment correlations 
across geographic regions by analyzing associations between edu-
cational attainment polygenic scores and 56 complex traits in adult 
siblings. A significant part of the predictive power of the polygenic 
score could be attributed to gene–environment correlations across 
families and across geographic regions. Geographic regions capture 
a substantial part of family-level gene–environment correlation and 
a significant, but smaller, portion of independent gene–environ-
ment correlations across regions. These additional gene–environ-
ment correlations were less significant for educational attainment 
than for traits, such as BMI, income and time spent watching  
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television, even though these analyses were done with an educa-
tional attainment polygenic score. This may be explained by people 
obtaining their education before migrating to their current address, 
in which case passive gene–environment correlations would have a 
stronger impact than active gene–environment correlations on edu-
cational attainment.

Controlling GWASs for geographic region significantly reduced 
SNP-based heritability estimates for a relatively small number of 
SES-related outcomes, most significantly for income, educational 
attainment, age at first birth, time spent watching television, overall 
health and fluid intelligence. Genetic correlations with SES (educa-
tion and income) decreased significantly for most traits, more so 
when controlling for current address than for birthplace, in line 
with increased geographic clustering of complex trait variation (and 
decreased geographic clustering of ancestry-related variation)13 due 
to SES-related migration. Parents’ addresses are likely influenced 
by the same genetic variants inherited by their offspring, and there 
are multiple mechanisms that could lead to offspring increasing the 
already significant gene–environment correlation through their 
own migration in adulthood. These mechanisms could be envi-
ronmental and/or genetic, including wealth transfer from parent 
to child, or offspring potentially having higher polygenic scores 
than their parents due to assortative mating, which is especially  
strong for SES27,28.

The most significant reductions in genetic correlations with edu-
cation and income were observed for traits related to BMI and body 
fat, suggesting correlations between SES-related genes and obeso-
genic environments. This may help (partly) explain why the poly-
genic score for BMI shows the strongest geographic clustering in 
Great Britain, after educational attainment and cognition13. While 
the relationship between BMI and SES is positive in poorer coun-
tries, where food insecurity relates to food shortages, it is reversed 
in more developed countries, where food insecurity relates to a lack 
of access to healthy foods29. The number of fast-food restaurants 
and diabetes rates in British neighborhoods are significantly corre-
lated with regional differences in (polygenic scores for) educational 
attainment13. Behavioral traits related to body weight, namely time 
spent watching television and frequency of alcohol intake, are also 
among the top five traits showing these gene–environment correla-
tions in their polygenic signals. This suggests that, besides dietary 
options, behaviors that correlate with regional socio-economic fac-
tors may also affect regional differences in body weight and their 
associated polygenic signals.

There are several limitations to be kept in mind when interpret-
ing our results. Firstly, UK Biobank participants are on average 
more highly educated and healthier than the general population, 
and they are more often from regions that are better developed eco-
nomically30,31. Geographic clustering of SES is probably stronger in 
the general population than in UK Biobank13, so effects observed 
in the current study may be underestimated. Furthermore, the geo-
graphic coverage is wider for birthplace than for current address, as 
participants were sampled to live within a radius of 35 km of one of 
the 22 UK Biobank assessment centers. Controlling for assessment 
center, however, had minimal impact on the GWAS signal com-
pared to the other regional measures (Extended Data Figs. 3–5).  
The geographic locations that we use are not precise; to ensure 
anonymity, birthplace and current address have been rounded to 
1 km and the current address location is more precise than birth-
place (Methods). While boundaries of MSOA regions were chosen 
to delineate socially homogeneous regions18, the geographic loca-
tion of participants is only a relatively crude and temporally variable 
proxy for social environments that underlie the gene–environment 
correlations that we try to control for. Environmental circumstances 
start with the family environment and expand to close and extended 
social circles, likely across multiple communities throughout life. It 
will be challenging to fully understand and account for correlations 

between genes and environments, but there is room for improve-
ment by genotyping family members, social circles and collecting 
longitudinal information on the participants’ living environments. 
Furthermore, when correcting for geographic location, there is a 
risk of collider bias: if genetic variants affect current address (for 
example, through effects on cognitive ability) and the outcome of 
interest (for example, substance use) also affects current address, 
controlling for current address in the GWAS on substance use may 
induce collider bias, biasing estimates of SNP associations, heritabil-
ity and genetic correlations (Methods and Extended Data Fig. 10).  
Finally, controlling for current address only gets us closer to the 
direct genetic effect on the outcome if the relationship between 
environment and outcome arises from a causal effect of the current 
environment on the outcome. The outcomes for which we detect 
the strongest evidence for active gene–environment correlations 
(for example, BMI, time spent watching television) are plausible 
outcomes of current adult environments, while for other outcomes 
it is more plausible that they contributed to the current environ-
ment (for example, educational attainment).

Effects estimated in GWASs of many phenotypes are affected 
by gene–environment correlations, and these are not entirely 
attributable to processes that take place within a family but are 
also attributable more broadly to regional social, economic and 
political processes that correlate with individuals’ genotypes. We 
showed how to significantly reduce these effects in GWAS signals. 
It will depend on the goals of the research whether this would be 
desirable, as these effects result from dynamic social circum-
stances that are part of a true causal chain in between our DNA 
and complex mental and physical health outcomes. Statistical 
models, research designs and conclusions of GWASs need to more 
carefully reflect the reality of the social and geographic structure  
of society.
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Methods
Participants. The participants of this study come from UK Biobank14,32. UK Biobank 
has received ethical approval from the National Health Service North West Centre for 
Research Ethics Committee (reference: 11/NW/0382). A total of 273,402 females and 
229,134 males (Ntotal = 502,536) aged between 37 and 73 years were recruited between 
2006 and 2010 across 22 assessment centers throughout Great Britain. The sampling 
strategy was aimed to cover a variety of different settings providing socio-economic 
and ethnic heterogeneity and an urban–rural mix. The participants underwent 
cognitive, health and lifestyle assessments, provided blood, urine and saliva samples, 
and have their health followed longitudinally.

Genotypes and quality control (QC). A total of 488,377 participants had 
their genome-wide SNPs genotyped on UK BiLEVE array (n = 49,950) or 
UK Biobank Axiom Array (n = 438,423). Genotypes were imputed using the 
Haplotype Reference Consortium (HRC) panel as a reference set (pre-imputation 
QC and imputation are described in more detail in ref. 14). We extracted 
SNPs from HapMap3 (1,345,801 SNPs) from the imputed dataset. In the 
pre-principal-component analysis (PCA) QC on unrelated individuals, we filtered 
out SNPs with a minor allele frequency (MAF) < 0.01 and missingness > 0.05, 
leaving 1,252,123 SNPs. After filtering out individuals with non-European ancestry 
(see 'Ancestry and PCA'), we repeated the SNP QC on unrelated Europeans 
(n = 312,927), filtering out SNPs with MAF < 0.01, missingness >0.05 and Hardy–
Weinberg equilibrium P < 10 × −10, leaving 1,246,531 SNPs. We then created a 
dataset of 1,246,531 QC-ed SNPs for 456,064 UK Biobank participants of European 
ancestry. These QC steps were performed using PLINK 2.0.

Ancestry and PCA. Ancestry was estimated using PCA. We first determined 
which participants had non-European ancestry by projecting UK Biobank 
participants onto the first two PCs from the 2,504 participants of the 1000 
Genomes Project, using HapMap3 SNPs with MAF > 0.01 in both datasets. 
Participants from UK Biobank were assigned to one of five super-populations 
from the 1000 Genomes project: European, African, East Asian, South Asian, 
or admixed. Assignments for European, African, East Asian and South Asian 
ancestries were based on > 0.9 posterior probability of belonging to the 1000 
Genomes reference cluster, with the remaining participants classified as admixed. 
Posterior probabilities were calculated under a bivariate Gaussian distribution, 
where this approach generalizes the k-means method to take account of the shape 
of the reference cluster. We used a uniform prior and calculated the vectors of 
means and 2 × 2 variance–covariance matrices for each super-population. A total 
of 456,064 individuals were identified to have European ancestry. To capture 
ancestry differences within the British population, a PCA was then conducted on 
these 456,064 individuals of European ancestry. When trying to capture ancestry 
differences in homogenous populations, genotypes should be pruned for LD with 
long-range LD regions removed6. The LD pruned (r2 < 0.2) UK Biobank dataset 
without long-range LD regions consisted of 131,426 genotyped SNPs. The PCA 
to construct British ancestry-informative PCs was conducted on this SNP set for 
unrelated individuals using flashPCA v2 (ref. 33). PC SNP loadings were used to 
project the complete set of European individuals onto the PCs. PCs that reflect 
ancestry differences are expected to cluster geographically, which we investigated 
by computing their Moran’s I: out of the top 100 PCs, 78 PCs showed significant 
geographic clustering after Bonferroni correction and 94 PCs showed a P-value 
of < 0.05 (see ref. 13 for details on evaluating the geographic clustering of the PCs 
using Moran’s I).

Genetic relatedness matrix. We created genetic relatedness matrices (GRMs) 
to include in our LMM GWASs to control for cryptic relatedness. The GRMs 
contain genetic relationships between all individuals based on a slightly LD-pruned 
HapMap 3 SNP set (LD-pruning parameters used in PLINK: window size = 1,000 
variant count, step size = 100, r2 cutoff = 0.9 and MAF > 0.01, resulting in 575,293 
SNPs). The GRMs were computed using GCTA34 on individuals of European 
descent. We created a sparse GRM, containing only the relationships of related 
individuals (cutoff = 0.05, resulting in 179,609 relationships) to control for the 
presence of closely related individuals (cousins, siblings, parent–offspring pairs).

Polygenic scores. We computed polygenic scores, that is, the genome-wide sum 
of alleles weighted by their estimated effect sizes, for educational attainment. The 
allelic effect size estimates were obtained from the GWAS from ref. 35, which was 
re-computed to exclude not only UK Biobank dataset (to avoid over-estimation 
of the genetic predisposition of a trait)36, but also all British cohorts, as an extra 
measure against residual population stratification within Great Britain. The 
polygenic scores were computed with the SBLUP approach28, which maximizes the 
predictive power by creating scores with best linear unbiased predictor (BLUP) 
properties and accounts for LD between SNPs. As a reference sample for the 
LD, we used a random sample of 10,000 unrelated individuals from UK Biobank 
that were imputed using the HRC reference panel37. To control for population 
stratification, we regressed out the first 100 PCs from the polygenic scores.

Phenotypic and geographic measures. Phenotypes. Selection of phenotypic 
outcomes was based on the relevance of the metric to broad mental and physical 

health outcomes, resulting in the selection of 56 complex traits encompassing 
domains of anthropomorphic traits, cardiovascular outcomes, cognition, SES, 
depressive symptoms, sedentary behavior, reproductive behavior, risk-taking 
behavior, physical activity, self-reported overall health, sleep, social connection and 
substance use (Supplementary Table 1). All traits were analyzed as provided by UK 
Biobank, except for the substance use phenotypes, which were defined according 
to the GWAS & Sequencing Consortium of Alcohol and Nicotine (GSCAN) in 
ref. 38, and educational attainment, which was transformed to years of education 
as defined according to the International Standard Classification of Education 
(ISCED) coding as analyzed in ref. 16.

Geographic measures. Birthplace location was based on the coordinates in UK 
Biobank fields 129 (latitude) and 130 (longitude). UK Biobank verbal interview 
includes a procedure to ascertain a participant’s birthplace described as follows: 
“The interviewer is provided with a tree structure that lists place names and 
counties in England, Wales and Scotland. They were instructed to enter at least the 
first three letters of the town/village/place that the participant provides. If there 
are too many matches to the first three letters, no place names appear, and more 
letters need to be entered. If there is more than one listing of the relevant place 
name, then they were asked to choose the one with correct district or county. In 
order to narrow down the search, the interviewer may also need to type in the 
district or county to find a match. If they cannot find the place name, they were 
instructed to use the Enter Other facility to enter free text to state the town, county 
(or district) and country. If the participant does not know, there is the option to 
enter Unknown. Place of birth in the United Kingdom is then converted into North 
and East coordinates.” It is not clear whether birthplace refers to the residence at 
birth or the place of the hospital of birth. The current address location was based 
on the coordinates in UK Biobank fields 22702 (longitude) and 22703 (latitude). 
Deriving these coordinates is described by UK Biobank as follows: “Where the full 
address is present and is verified to be valid, software package DataPlus (provided 
in the QuickAddress Batch packet) is used to transform the address data into 
the grid coordinates. Where only the postcode is present, the grid coordinates 
are generated with the aid of online mapping tools: doogal (https://www.doogal.
co.uk/) and uk-postcodes (https://www.uk-postcodes.com). Further details of this 
process are available from relevant websites.” The participants’ coordinates, which 
were rounded to 1 km, were mapped to the nearest MSOA region using a shapefile 
obtained from the InFuse website, which is part of UK Data Service Census 
Support39. The R-packages sp (v1.4-4) and rgdal (v1.5-18) were used to merge the 
spatial data from the MSOA shapefile40–42.

Sibling polygenic score analyses. We extended the model from ref. 15 using the 
polygenic score in 22,675 siblings based on an educational attainment GWAS in 
245,621 European participants that excluded all British cohorts16, regressed the 
first 100 PCs out of the polygenic score to control for population stratification and 
tested for the presence of gene–environment correlations on the family level as well 
as across geographic regions by fitting the following four models (covariates of sex 
and age are included but not shown in the following equations):

Model 1: The model, with the polygenic score on an individual level as fixed 
effect:

Yij = α0 + βPRSij + γj + εij

Model 2: The model with between-family fixed effects added, as used in ref. 15:

Yij = α0 + βW
(

PRSij − PRSj
)

+ βBPRSj + γj + εij

Model 3: The model with between-region fixed effects added:

Yijk = α0 + βW
(

PRSijk − PRSk
)

+ βBPRSk + γj + γk + εij

Model 4: The model with both between-family and between-region fixed 
effects added:

Yijk = α0 + βW
(

PRSijk − PRSj − PRSk
)

+ βBF
(

PRSj − PRSk
)

+βBR
(

PRSk
)

+ γj + γk + εijk

Here Yijk denotes the phenotypic outcome, where i = [1,2] corresponds to the sibling 
(1 is the oldest sibling) from family j, who lives in MSOA region k. PRS denotes the 
polygenic score, PRSj  refers to the mean polygenic score of the family and PRSk  
refers to the mean polygenic score of the region. α0 denotes the intercept; γj denotes 
the random intercept with γj ~ N(0,σ2

γ), accounting for between-family variation 
in the intercept; γk denotes the random intercept with γk ~ N(0,σ2

γ), accounting for 
between-region variation in the intercept. The residual is represented as εijk with 
εijk ~ N(0,σ2

ε). This random intercept mixed-effects model can include multiple 
fixed effects to separate the association between the polygenic score and the 
phenotype into within-family (that is, individual-level) and between-family and 
between-region effects. The random effect term σ2

γ, which estimates the difference 
between the group intercepts γj, γk and the overall intercept α0, accounts for the 
residual structure in the data corresponding to all unaccounted familial and 
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regional factors (both genetic and environmental) that contribute to phenotypic 
similarities within families and within regions.

Next, to test for active gene–environment correlations, we decomposed the 
within-family effect into within- and between-region effects. This allowed us to 
investigate whether the between-family model captures all gene–environment 
correlations in the individual-level polygenic score or whether part of the 
within-family effect also contains between-region effects. We fitted the  
following model 5:

Yijk = α0 + βW

(

(

PRSij − PRSj
)

−

(

PRSij − PRSj
)

k

)

+βB
(

PRSij − PRSj
)

k + γj + γk + εijk

All models included sex and age as fixed covariates (not displayed in the 
formulas above).

To establish whether the individual-level genetic effect (βW) differs between 
models 2 and 4, we need to account for the fact that we rely on near perfectly 
overlapping data. We do so by way of a bootstrap procedure. We resampled, with 
replacement, a number of observations equal to the number of observations in 
the original dataset from rows of the dataset. In 1,000 bootstrap samples, we 
re-estimated models 2 and 4, computed the difference in βW between models 2 
and 4, and computed the standard deviation of this difference, which served as the 
bootstrapped standard error. Any correlation between βW2 and βW4 is reproduced 
faithfully across the bootstrap samples, meaning that the standard error of their 
differences accounts for this correlation. We then computed a bootstrap P value 
assuming the distribution of ( βW2 − βW4/s.d.( βW2 − βW4))2 is χ2 with 1 degree of 
freedom under the null.

Genetic association analyses. We performed four GWASs per trait. First, we 
performed GWASs using two regression models. Model 1 is as follows:

yi = β0 + β1 × SNP + β2 × sex + β3 × age + β4

×P1 + … + β104 × P100 + Zu + ei

Here P1 to P100 represent ancestry-informative PCs derived as described above, u is 
a vector of random effects and Z is a random effects design matrix and a random 
effects model as described in ref. 17, which is used to account for the presence of 
closely related individuals and an extra guard against population stratification. 
Model 2 is as follows:

yi = β0 + β1 × SNP + … + β4 × P1 + … + β104 × P100 + β105

×D1 + … + βk × Dk + Zu + ei

The second equation omits sex and age for brevity and includes dummy 
variables D1 through DK for all but one MSOA region of birth. The directed 
acyclic graph (DAG) in Extended Data Fig. 10a describes the suspected causal 
structure of the data we model, where P represents the previous generation 
(parental influence), BP is birthplace, SNP represents the genes carried by the 
individual and Y corresponds to the phenotypic outcome. Along similar lines, a 
GWAS was performed using dummy variables based on current address instead of 
birthplace and an analysis where dummy variables for both birthplace and current 
address were included. The plausible causal models in the GWASs that correct 
for current address are more complicated. We propose three DAGs, which we feel 
are abstractions of potential causal processes that relate confounding parental 
influences (P), genotype (SNP), current address (CA) and outcome (Y). We include 
these DAGs and their descriptions because they are useful to have in mind when 
evaluating our results. In practice, we expect that a mix of these processes,  
or more complex processes altogether, underpins the relationship between 
genotype and outcome.

The first causal process (Extended Data Fig. 10b) that may have a role is a 
process where a confounder, such as intergenerational transfer of wealth through 
inheritance or financial support during college (or lack thereof), is correlated to the 
parental genome and therefore the offspring’s genome (SNP) as well as the address 
of the adult participant (CA), and controlling for address ensures the regression 
of Y on SNP is no longer confounded by P (similar to the process that underlies 
controlling for birthplace).

The second causal process (Extended Data Fig. 10c) is one where the genotype 
(SNP) mediated by traits, such as cognitive ability and mental health, affects 
people’s ability to attain a higher education and/or be upwardly socially mobile, 
and so influences which environment people can afford to live in, which in turn 
influences the outcome (Y) of interest. Here, if we control for current address, 
we test for a more ‘direct’ effect, not mediated by environmental exposures, of 
genotype (SNP) on outcome (Y). The (probable) presence of mediation would 
mean that controlling for current address is likely to lead to qualitative changes 
in the genetic effect estimates to a different extent than when controlling for 
birthplace. However, even in the absence of mediation, we could expect differences 
herein, as current address appears to be measured more precisely.

Finally, as depicted in the causal model in Extended Data Fig. 10d, there is 
the risk that the genotype (SNP), through its effect on other traits (for example, 
cognitive ability), influences current address (CA), while the outcome (Y) (for 
example, substance use) also influences current address. In this case, conditioning 
on current address in a GWAS on, for example, substance use would potentially 
induce collider bias, which is undesirable. In practice, we do not know which of the 
causal processes, or which mix of causal processes, underlies the data. The effects 
of correcting for current address are therefore more complex to interpret.

SNP-based heritability and genetic correlation. Heritability and genetic 
correlation were estimated using LD score regression19,20 and Genomic SEM21 
version 0.0.3. The genetic correlations represent the genetic covariation between 
two traits based on all polygenic effects captured by the included SNPs, and are 
estimated with the slope from the regression of the product of the two z-scores 
from the two GWASs on the LD score20. The genome-wide LD information used 
was based on European populations from the HapMap3 reference panel19,43. All 
LD score regression analyses included the ~1.3 million genome-wide HapMap 
SNPs used in the original LD score regression studies19,20. The standard error of the 
difference between the heritability and genetic correlations based on the different 
specifications could not easily be estimated because the GWASs, for which we 
wanted to obtain the differences were based on the exact same sample and their 
standard errors were therefore highly dependent. Thus, we estimated the standard 
error of the differences in heritability and genetic correlations with Genomic 
SEM, which allowed us to account for the dependence between the estimates 
of SNP-based heritability and genetic correlations. Genomic SEM accounts for 
this dependence by explicitly considering the correlation between estimates of 
heritability and/or genetic correlations that are modeled jointly (for details see  
ref. 21). To obtain the P value of the difference, we divided the estimate of the 
difference by its standard error and performed a Z test. Significance was then 
determined after FDR correction of the P value. For geography-corrected traits, 
genetic correlations were computed with either educational attainment or income, 
and these were also corrected for the same geographic variable.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This research was conducted using data from UK Biobank resource (application 
number 40310). Individual-level UK Biobank data, both phenotypic and genetic, 
are available to bona fide researchers on request once a research project has been 
submitted and approved by UK Biobank committee. Information about registration 
for access to the data is available at http://www.ukbiobank.ac.uk/register-apply/. 
The GWAS summary statistics of all 56 complex traits before and after controlling 
for geographic region are available through Zenodo (https://doi.org/10.5281/
zenodo.6822023)44.

Code availability
Code for analysis is available through Zenodo (https://doi.org/10.5281/
zenodo.6822023)44.
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Extended Data Fig. 1 | Results of sibling educational attainment polygenic score analyses for 56 complex traits. Sample sizes range from 11,093 to 
43,516, see Supplementary Table 1 for sample size per trait. Panel a shows the comparison between the individual-level effect estimate of model 1 and the 
within-family effect estimate from model 2. Panel b shows the comparison between the between-family effect estimate of model 2 and the between-family 
effect estimate from model 4. A total of 38 traits showed a significant decrease (FDR-corrected P value of the difference based on 1000 bootstraps), 
of which the top five are: household income (p = 1.6 × 10−103), educational attainment (p = 1.6 × 10−83), time spent watching TV (p = 4 × 10−61), body fat 
(p = 7 × 10−43) and BMI (p = 5 × 10−40).
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Extended Data Fig. 2 | Variation explained by regional differences. Linear mixed model results, with phenotype as a dependent variable and region as 
random effect (N = 77,111-309,387 unrelated individuals). All FDR-corrected P values were < 0.05.
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Extended Data Fig. 3 | SNP-based heritabilities of 56 complex traits, corrected and uncorrected for geographic variables. The panels show the estimated 
SNP-based heritabilities after controlling for latitude + longitude or assessment centers based on birthplace and/or current address. Error bars in indicate 
95% confidence intervals. The trait names are shown for traits that showed a significant change in SNP-based heritability (FDR-corrected P values < 0.05). 
Sample sizes of the GWASs range from 63,780 to 254,387, see Supplementary Table 1 for sample size per trait.
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Extended Data Fig. 4 | The ratio of decrease in SNP-based heritability after controlling for geographic variables (latitude + longitude or assessment 
centers) for 56 complex traits. The ratio of the decrease is computed by dividing the corrected by the uncorrected SNP-based heritability estimate. Error 
bars in indicate 95% confidence intervals. The asteriks indicate FDR-corrected P values < 0.05, indicating significant changes in SNP-based heritability. 
Sample sizes of the GWASs range from 63,780 to 254,387, see Supplementary Table 1 for sample size per trait.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NATurE GEnETICS

Extended Data Fig. 5 | The change in absolute genetic correlations with educational attainment (EA, top) and household income (HI, bottom) after 
controlling for geographic variables (latitude + longitude or assessment centers). The genetic correlations were computed with LDSC regression. We 
display the change in absolute genetic correlation to visualize the change in the strength of the genetic relationships with EA/HI (the directions of the 
genetic correlations vary between traits and are displayed in Extended Data Fig. 6). Error bars in indicate 95% confidence intervals. The asteriks indicate 
FDR-corrected P values < 0.05, indicating significant changes in genetic correlation. Sample sizes of the GWASs range from 63,780 to 254,387, see 
Supplementary Table 1 for sample size per trait.
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Extended Data Fig. 6 | Genetic correlations (rg) with educational attainment (EA) and household income (HI) as computed with LDSC regression, 
before and after controlling for Local Authority or MSOA region, based on birthplace, current address, or birthplace + current address. Error bars in 
indicate 95% confidence intervals. Sample sizes of the GWASs range from 63,780 to 254,387, see Supplementary Table 1 for sample size per trait.
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Extended Data Fig. 7 | Genetic correlations (rg), as computed with LDSC regression, with cognitive and non-cognitive skills as extracted from 
educational attainment GWAS by Demange et al (2019)22, before and after controlling for MSOA region, based on birthplace + current address. Error 
bars in indicate 95% confidence intervals. Sample sizes of the GWASs range from 63,780 to 254,387, see Supplementary Table 1 for sample size per trait.
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Extended Data Fig. 8 | The change in absolute genetic correlations with cognitive and non-cognitive skills as extracted from educational attainment 
GWAS by Demange et al (2019)22 after controlling for MSOA region, based on birthplace+ current address. The genetic correlations were computed 
with LDSC regression. We display the change in absolute genetic correlation to visualize the change in the strength of the genetic relationships (the 
directions of the genetic correlations vary between traits and are displayed in Extended Data Fig. 7). Error bars in indicate 95% confidence intervals. The 
asteriks indicate FDR-corrected P values < 0.05, indicating significant changes in genetic correlation. Sample sizes of the GWASs range from 63,780 to 
254,387, see Supplementary Table 1 for sample size per trait.
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Extended Data Fig. 9 | SNP-based heritability estimates of educational attainment (EA) under different GWAS designs. Error bars indicate 95% 
confidence intervals. The sample sizes are: Lee et al 16: N = 1,131,881; Abdellaoui et al (2022): N = 252,521; Wu et al (2020): N = 24,434; Young et al 
(2020)/Wu et al (2020): N = 22,207; Howe et al (2022): N = 128,777. The results from Abdellaoui et al 44 show SNP-based heritability estimates after 
controlling for MSOA regions.
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Extended Data Fig. 10 | Directed acyclic graphs (DAGs) of the possible causal processes underlying the gene–environment correlations. P = parental 
influence, BP = birthplace, CA = current address, SNP = single nucleotide polymorphism, Y = phenotypic outcome.
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