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Photodetection Characteristics of 
Gold Coated AFM Tips and n-Silicon 
Substrate nano-Schottky Interfaces
Yawar Abbas1, Ayman Rezk1, Irfan Saadat2, Ammar Nayfeh2 & Moh’d Rezeq1,2

Silicon (Si)-based photodetectors are appealing candidates due to their low cost and compatibility 
with the complementary metal oxide semiconductor (CMOS) technology. The nanoscale devices 
based on Si can contribute efficiently in the field of photodetectors. In this report, we investigate 
the photodetection capability of nano-Schottky junctions using gold (Au) coated conductive atomic 
force microscope (C-AFM) tips, and highly cleaned n-Si substrate interface. The Au nanotip/n-Si 
interface forms the proposed structure of a nano Schottky diode based photodetector. The electrical 
characteristics measured at the nanoscale junction with different Au nanotip radii show that the 
tunneling current increases with decreasing the tip radius. Moreover, the tunneling process and 
photodetection effects are discussed in terms of barrier width/height decrease at the tip-semiconductor 
interface due to the applied electric field as well as the generation of plasmon-induced hot-electron 
at the nanoparticle (i.e. C-AFM tip)/n-Si interface. Furthermore, the photodetection sensitivity is 
investigated and it is found to be higher for C-AFM tips with smaller radii. Moreover, this research 
will open a new path for the miniaturization of photodetectors with high sensitivity based on nano-
Schottky interfaces.

The optoelectronic characteristics of nanostructures (e.g. nanowires, quantum dots and nanosheets), have been 
investigated1–5, and these in turn revealed the fascinating features of nanomaterials. Owing to their excellent 
response for the light radiations, in terms of dynamic range and sensitivity, these nanostructures placed them-
selves as outstanding candidates for the building blocks of new generation of photodetectors6–9. The effect of 
light irradiation on the electrical characteristics of nanostructure based photo-sensors have been investigated 
extensively. These are powered by either external power source, which is utilized to spur photogenerated carriers 
to generate photocurrent, or by novel self-powered photodetectors that work without external power source10–14. 
Irrespective of the detection techniques, generally the fundamental operation of the photodetector depends on 
the transition of electron from lower energy to higher energy states as a result of absorption of photon. This pro-
cess, in turn, manifests as an increase in the magnitude of electric current during the electrical measurements of 
these devices.

Due to their compatibility with complementary metal oxide semiconductor (CMOS) processing, germanium 
(Ge) or Si based photodetectors have been reported15–19. To reduce reflectance and enhance absorption, laser 
etched micro-structured Si-based photodetectors have been developed20. Most of the conventional photodetec-
tors are investigated based on the photo absorption of the materials that are fabricated for the purpose of photo-
sensors21–24. For scaling down of the semiconducting devices, with lower power consumption, the investigation of 
photodetection at the nano-scale metal-semiconductor (MS) interface is of great significance25–27.

The conductive-probe atomic force microscopy (C-AFM) has been used as a powerful tool to investigate the 
photodetection at the nano-scale MS junctions28–30. The main advantage of C-AFM electrical measurement is its 
ability to gather local conductivity information31–33. Due to the very small size of the nanotip, one can detect the 
effect of light on the tunneling current from the nanotip to substrate due to narrowing of the energy band gap 
width by the enhancement of local electric field at the nanotip-substrate interface34.

Studies revealed that for nanoscale Schottky diodes, the Schottky barrier height (SBH) becomes a func-
tion of the diode size. Consequently, the contribution of the tunneling current to the total conductance 
greatly enhances35. The effect of Au NPs at Pd/SiC interface is also studied and it is concluded that the effect 
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of SBH increases with the mean size of Au-NPs36. The CAFM measurements further reassured that the size of 
nano-Schottky contacts at nanoscale prominently affects the behavior of semiconductor devices37–39. The electri-
cal transport characteristics of Schottky diodes are extensively investigated for different materials. The Schottky 
diode on gallium nitride (GaN) and silicon carbide (SiC) are fabricated using uniform contact of platinum (Pt) 
and discontinuous contact of self-assembled Au nanocrystals respectively, and demonstrated the effect of inter-
face on SBH40. The nanoscale inhomogeneity of exfoliated molybdenum disulfide MoS2 based Schottky diode 
provided the information on the local resistivity of MoS2

41.
In this paper, unlike conventional photodetectors, we demonstrate the effect of light irradiation on the tun-

neling current of gold (Au) nanotip and n-Si interface by using C-AFM. Additionally, we compare the electrical 
characteristics from C-AFM with the data obtained from the standard probe-station. By adapting the nanometer 
scale sharp AFM tip and systematically approaching the tip to the surface of n-Si we observe the prominent dif-
ferences of tunneling current magnitude, in the reverse biased state of nano-Schottky diode, under the light and 
dark conditions. This research will pave the way for a new direction in the field of ultra-sensitive photodetectors 
focusing on photoresponse induced tunneling current in the nano scale Schottky junctions.

Results and Discussions
For the revelation of electrical properties of nano-scale MS Schottky photodetector the electrical characteristics 
are measured by using C-AFM with different gold (Au) coated AFM tips and conventional semiconductor ana-
lyzer, KEYSIGHT B1505A. During all electrical measurements the n-Si substrate is biased, whereas the nanoscale 
and micron scale tips of C-AFM and probe station are kept grounded respectively, as schematically shown in 
Fig. 1(a,b). In order to insure the MS interface is clean and passivated the n-Si substrate is cleaned using diluted 
hydrofluoric acid (HF) in class 100 clean room, and then the electrical characteristics were investigated immedi-
ately, without time delay.

The quality of the surface of n-Si substrate and the radii of the tips are explored by C-AFM topography in tap-
ping mode and scanning electron microscope (SEM) respectively, as shown in Fig. 2. Figure 2(a) shows the highly 
cleaned surface of an n-Si substrate with the root-mean square (RMS) roughness of around 981 pm. This very low 
RMS roughness of the surface ensures the high-quality tip-semiconductor interface during the landing of the tip 
at the surface in the soft approach technique. Figure 2(b,c) shows the SEM micrographs of two Au coated tips with 
tip apex radii of 15 nm and 30 nm respectively. These different AFM tips are employed to extract the size depend-
ent electrical characteristics of nano-scale Schottky diode and their photodetection capabilities.

To assess the electrical characteristics of M-S Schottky diodes in the dark and light condition, we perform 
the (I-V) measurements in an AFM system, which is placed in a closed chamber as shown in Fig. 1(a). The 
sweep voltages (−1.5 V~0 ~ +1.5 V) are always applied on the substrate while the AFM tip is kept grounded. 
Figure 3(a,b) shows the electrical characteristics of nano Schottky diodes using Au coated tips with apex radii of 
15 and 30 nm respectively. The inset of Fig. 3 shows the semilog scale plot of the electrical characteristics for better 
visualization of the nano-Schottky diode behavior and the photo effect.

To insure the lateral homogeneity of tip/n-Si contact and reproducibility of the photo detection effect, we 
carried out the electrical characteristics at five different points on the surface of the substrate for both tips, in 
dark and light conditions. Figure 4 shows the electrical characteristics carried out at randomly chosen points. The 
results of Fig. 4(a,b) depict that the photo detection phenomenon is reproducible and irrespective of the location 
of tip/n-Si contact.

Figure 3(a,b) shows a totally opposite trend in (I-V) characteristics to conventional Schottky diodes, as we 
will see next in Fig. 5. When the substrate is analyzed by means of C-AFM, for the positive (reverse bias) sweep 
the magnitude of the tunneling current is higher than that of the negative (forward bias) sweep voltage. For com-
parison between the electrical characteristics of Schottky diodes and the photodetection effect at nano and micro 
scales, the same (I-V) measurements are conducted in a conventional Schottky diodes using normal probe station 
with a tip apex of ~20 µm, as shown in Fig. 5, using with the same bias conditions of C-AFM measurements. We 

Figure 1.  The Schematic illustration of the electrical measurement carried out by (a) conductive atomic force 
microscope and (b) conventional probe station.
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Figure 2.  The physical characterization showing (a) the AFM topography of a cleaned n-Si substrate, (b) an 
SEM image of 15 nm radius tip, and (c) an SEM image of 30 nm tip radius. The inset in (b,c) show the SEM 
image of both tips in 100 µm × 100 µm frame.

Figure 3.  The typical electrical characteristics of the tip/n-Si Schottky diode by using (a) C-AFM with tip 
radius of 15 nm and (b) C-AFM with tip radius of 30 nm.
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can readily see there is a prominent difference in the electrical characteristics with light and dark conditions in the 
forward bias state. The magnitude of higher current for the light irradiation on the device is due to the excitation 
of electrons from the valence band to the conduction band of bulk n-Si.

The unconventional behavior of nano-Schottky (I-V) characteristics can be understood in the light of the 
fundamental electromagnetic theory, as the strength of electric field depends directly on the curvature of the 
conductor i.e. for the smaller curvature (smaller tip radius) the electric field generated has higher intensity and 
vice versa42,43. By considering this effect, the totally reverse trend of the I-V characteristics of the device for the 
conventional probe station vs. C-AFM can be well explained. When the positive voltage is applied on the substrate 
with respect to the AFM tip, a stronger electric field is generated at the tip-substrate interface. Due to this high 
intensity of electric field at the interface, the energy band bending occurs more prominently, which results in the 
thinning of the tunneling barrier. Thus, the smaller energy band width facilitates higher tunneling probability 
for electrons from the tip into n-Si substrate, leading to higher magnitude of the reverse tunneling current, for 
the positive sweep voltage at the substrate. This basic nano-Schottky model is detailed elsewhere28,34. For further 
understanding of the electric field enhancement at the nano-tip/Semiconductor interface, models for two probes 
with 15 nm and 5 µm radii are constructed using physics-based TCAD simulation to map the interface electric 
field.

The developed physical models in TCAD simulation uses Fermi statistics at T = 300 K, Shockley-Read-Hall 
(SRH) and Auger recombination models. Field enhancement reduces SRH recombination lifetimes in regions of 
strong electric fields44, which couldn’t be ignored at the case of the AFM tip. Therefore, the Schenk trap-assisted 
tunneling model45 was used to account for the field enhancement. Fowler–Nordheim model is included as it is 
assumed to occur for nonlocal tunneling at Au/Si Interfaces.

The Philips unified mobility model46 is used as it’s a well-calibrated model that accounts for both impurity 
and carrier–carrier scattering. In addition to describing the temperature dependence of the mobility, the model 

Figure 4.  The lateral homogeneity of tip/n-Si contact and reproducibility of photo-detection phenomenon 
using (a) 15 nm tip radius and (b) 30 nm tip radius.

Figure 5.  The typical electrical characteristics of the tip/n-Si Schottky diode by using conventional probe 
station with tip size of 20 um.
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takes into account electron-hole scattering, screening of ionized impurities by charge carriers, and clustering 
of impurities. Mobility degradation due to coulomb scattering especially ionized impurities near the interface 
and the scattering with the surface roughness were also accounted for. Finally, the Lucent Model47 is used to 
describe mobility degradation for high electric field saturation with a charge driving force set by the gradient of 
a quasi-Fermi potential. Mathiessen’s rule is used to combine the doping-dependent mobility with all previously 
mentioned contributions.

The doping of the substrate was identical to the one used in our experimental method. The Schottky contact is 
defined at Au/Si material interface with barrier lowering accounted for, while the back contact defined as ohmic.

Both models assumed +1 V bias on the substrate and ground on the probe. In both models the electric field 
distribution is calculated and displayed as shown in Fig. 6(a,b). The electric field color bar scale shows the maxi-
mum electric field at the MS interface. We notice that for nano MS interface the maximum electric field is in the 
order of 107 V/cm, which is around three orders of magnitude higher than that of the micro MS interface (in the 
order of 104 V/cm). This extremely high electric field at the nano MS interface is responsible for the enhanced 
tunneling current at reverse bias for nano-probe MS measurements. We also notice that the electric field reduces 
at a higher rate inside the bulk than that of the micro probe case.

To investigate the photodetection of the device, the electrical characteristics are measured in the light and dark 
conditions as shown in the Fig. 3. Figure 3(a,b) exhibits the higher magnitude of reverse current for the light-ON 
condition. In fact, the light irradiation at the interface excites the free electrons at energy level higher than the 
Fermi energy level at the tip apex, as shown in Fig. 7(a). Due the externally applied field at the apex these excited 
electrons encounter an even narrower tunneling barrier at the interface, and thus higher tunneling probability 
through to the conduction band in the semiconductor side. Additionally, the nanoscale metallic tip of C-AFM can 
be considered as a plasmonic nano-structure48–50, where the excited electrons due to light absorption are referred 
to as hot electrons. When a hot electron51,52 of sufficient momentum is generated by the irradiation of white light 
at the Schottky barrier, the high electric field stress allows the hot electron to traverse the reduced barrier leading 
to higher intensity photocurrent at the reverse bias.

Figure 7 quantitatively supports the tunneling phenomenon and its mechanism. As the electrical character-
istics of Figs 2 and 3 revealed that the device in nanoscale regime exhibits the quantum mechanical behavior. 
Therefore, to quantitatively visualize the hot electron tunneling the relation between ln(I/V2) and 1/V are plotted 
for both devices dark and light conditions as shown in Fig. 7(b,c). The linear graph of ln(I/V2) versus 1/V indi-
cates that the tunneling of electron in the positive sweep bias fits the field emission equation53. The modified 
nano-Schottky model that accounts for the electric photoeffect is depicted in Fig. 7(a). In conclusion, the hot 
electrons generated in the nanostructure i.e. nano sized tips by the incident of white light at the nano-Schottky 
diode interface, contribute to the photocurrent and this effect can be readily measured when the device is part 
of an electrical circuit, turning it to an efficient photodetector. There are several parameters that characterize 
the performance of the photodetectors, one of them is called sensitivity and is defined as (Ilight − Idark)/Idark

21
. 

Interestingly, the sensitivity at the reading voltage of +1 V is calculated to be 3.1 and 4.9 for the 30 nm and 15 nm 
tips respectively. The higher value of the sensitivity for the smaller tip radius indicates the higher performance of 
detection in the smaller device size.

For the industrial and practical applications of the device, the characteristics exhibited by the photo devices 
must be reproducible and repeatable. To assess the repeatability and reproducibility of such devices the electrical 
characteristics are investigated by applying a constant reading voltage of +1 V with and without the light source, 
as shown in Fig. 8. Figure 8(a,b) shows the temporal repeatability of the photodetection process in the devices 
with 15 nm and 30 nm tips respectively, in which the current is extracted in the light and dark in the intervals of 
10 seconds at the reading voltage of +1 V. In this case, a constant voltage of +1 V is applied on the substrate and 

Figure 6.  The finite element simulation of the enhanced electric distribution at (a) the nano probe and (b) the 
micro probe at the Si interface, at a reversed bias of +1 V and ground probe.
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electric current is measured during the consecutive light pulses of 10 s width. Moreover, Fig. 8(c,d) elaborates 
the repeatability of the (I-V) sweeps. To confirm the repeatability of the electrical characteristics, we measure 
the (I-V) curves for several voltage sweeps, with and without light, and then the current values are extracted at 
the reading voltage of +1 V for that particular cycle. These measurements were repeated up to a 100 consecutive 
voltage sweeps as shown in Fig. 8 for both tips (15 and 30 nm radii). From Fig. 8 we can conclude that the pro-
cess of tunneling and the photo effect is repeatable and reproducible for the nano Schottky diode with different 
C-AFM tips radii at sub-50 nm range. This work will attract attention for further research on nano-Schottky 
based photo-devices using well defined nanotips54.

Conclusion
In summary we have demonstrated the photo detection effect of nanoscale Schottky diode based photodetector 
by using different nanotip radii of C-AFM. To insure the excellent metal/n-Si interface, the native oxide from the 
surface of n-Si substrate is etched out by wet etching method using diluted HF solution. The RMS roughness of 
981 pm of the n-Si surface indicates a clean interface between the tip and n-Si interface. From the electrical char-
acteristics it is observed that the tunneling current as well as the sensitivity of photodetection is higher for tips of 
smaller radii. The higher tunneling current for the tip of a smaller radius is attributed to the higher field intensity 
generated by the smaller tip radius, which in turn reduces the barrier width of tip/n-Si interface. This is tunneling 
current augmented by the photo effect due to generation of plasmon-induced hot-electron at the nanoparticle 
(i.e. C-AFM tip)/n-Si interface. Finally, the reproducibility and temporal stability of such photodetection devices 
have also been demonstrated.

Experimental Approach and simulation
The n-type silicon (n-Si) wafer of resistivity 5 Ω.cm is chosen initially to study the nano-Schottky photo detection 
effect, using conductive atomic force microscope (C-AFM) tip on n-Si surface. The native silicon oxide from the 
top surface of n-Si is removed by soaking the substrate in hydrofluoric acid (HF) solution for 3 minutes. After 
removing the substrate from HF solution, it is rinsed in running de-ionized (DI) water. The clean surface from 
native silicon oxide is evident from the hydrophobic nature of the n-Si during the rinsing process. This clean 

Figure 7.  The I-V data plots according to Fowler-Nordheim theory of (a) A Schematic model of the energy 
band diagram and a photo-effect on nano-Schottky interface at a reverse bias condition. (b) 15 nm tip radius,  
(c) 30 nm tip radius.
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surface was confirmed with the AFM topographic images. For the electrical measurements and topography of 
the n-Si substrate gold (Au) coated AFM tips of 146 kHz resonance frequency and force constant of 1.2–29 N/m 
are chosen.

For the Asylum Research MFP-3D and ORCA C-AFM systems probe holder (908.036) is capable of measur-
ing currents from ~1 pA to 20 nA, with sensitivity of 2 nA/V and a pre-amplifier output gain resistance R of 500 M 
Ω. The topographic image of n-Si substrate is carried out in the AC mode imaging of AFM, with the scan length 
of 1 µm × 1 µm and scan frequency of 0.5 Hz. The bias was applied on the back of the n-Si substrate. To make an 
ohmic contact, the scratched back of the n-Si substrate is attached to a stainless steel (alloy 430) using silver paint.

The JEOL Scanning Electron Microscope (SEM) is used in order to obtained the SEM micrographs of the 
gold (Au) coated AFM tips. For the conventional electrical characteristics, SEYSIGHT B1505A, semiconductor 
analyzer is used. During the all electrical measurements the tips were grounded and a bias was applied on the n-Si 
substrate. Furthermore, a physics-based TCAD Sentaurus device simulation has been used to map the electric 
field enhancement under a nano and micro tip. Two models were constructed using TCAD simulations. The first 
MS model considers a nano probe of a 15 nm radius, whereas the second model considers a micro probe of a 5 µm 
radius. For both models an n-type silicon (Si) substrate with a resistivity of 5 Ω.cm is considered. In the simula-
tions, a ground contact is selected on the metal probe and the substrate is biased at +1 V.
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