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The prevalence of type 2 diabetes continuously increases globally. The traditional Chinese medicine (TCM) can stratify the diabetic
patients based on their different TCM syndromes and, thus, allow a personalized treatment. Metabolomics is able to provide
metabolite biomarkers for disease subtypes. In this study, we applied a metabolomics approach using an ultraperformance liquid
chromatography (UPLC) coupled with quadruple-time-of-flight (QTOF) mass spectrometry system to characterize the metabolic
alterations of different TCM syndromes including excess and deficiency in patients diagnosed with diabetes mellitus (DM). We
obtained a snapshot of the distinct metabolic changes of DM patients with different TCM syndromes. DM patients with excess
syndrome have higher serum 2-indolecarboxylic acid, hypotaurine, pipecolic acid, and progesterone in comparison to those patients
with deficiency syndrome. The excess patients have more oxidative stress as demonstrated by unique metabolite signatures than the
deficiency subjects. The results provide an improved understanding of the systemic alteration of metabolites in different syndromes
of DM. The identified serum metabolites may be of clinical relevance for subtyping of diabetic patients, leading to a personalized

DM treatment.

1. Introduction

Diabetes mellitus (DM) is a chronic disease defined with
high blood glucose levels, which may be due either to the
progressive failure of pancreatic f-cell function and conse-
quently a lack of insulin production (type 1: TIDM), or to the
development of insulin resistance and subsequently the loss
of B-cell function (type 2: T2DM). DM affects more than 230
million people worldwide and T2DM is predicted to affect
approximately 8% of the population by 2030 [1]. The chronic
hyperglycemia of diabetes is associated with significant long-
term sequelae, particularly damage and/or dysfunction and
failure of various organs, especially the kidneys, eyes, nerves,
heart, and blood vessels [2]. Both the macrovascular (coro-
nary artery disease, peripheral artery disease, and stroke) and
microvascular (retinopathy, nephropathy, and neuropathy)
complications are the major causes of morbidity and mortal-
ity of diabetes.

Traditional Chinese medicine (TCM) has a long history
and particular advantages in the diagnosis and treatment of
diabetes mellitus. Syndrome differentiation is not only the
basic unit of TCM theory, but also the bridge to associating
disease and formula. TCM can stratify the diabetic patients
based on their different TCM syndromes and, thus, allow a
personalized treatment. When people suffer from a disease,
Yin (things associated with the physical form of an object),
Yang (things associated with energetic qualities), Qi (life force
that animates the forms of the world), and Xue (dense form
of body fluids that have been acted upon and energized by
Qi) [3] are in an abnormal state. Similarly, DM could be
classified as having deficiency syndrome or excess syndrome,
which refers to the insufficiency or excess in Qi, Xue, Yin, and
Yang. However, syndromes depend on medical experience,
academic origins, and other factors so that the concept
of syndromes is vague and broad, which makes clinical
application difficult. Hence, it is more important to realize the
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syndrome objectification and standardization. Furthermore
nowadays although the diagnosis and treatment of manifest
diabetes have been thoroughly investigated, the identification
of novel pathways or biomarkers indicative of the TCM
syndrome differentiation of diabetes is still underway.

With the rapid development of the analytical technol-
ogy and advanced multivariate statistical and bioinformatic
tools, metabolomics has become a promising approach for
understanding and elucidating the etiology and mechanisms
of human diseases [4-7] and has been extensively applied
to life science [8-10]. Metabolomics is also able to provide
metabolite biomarkers for disease subtypes. The growing
research field of metabolomics has introduced new insights
into the pathology of diabetes as well as methods to predict
disease onset and has revealed new biomarkers during the last
decade. Recent epidemiological studies first used metabolism
to predict incident diabetes and revealed branched-chain
and aromatic amino acids including isoleucine, leucine,
valine, tyrosine, and phenylalanine as highly significant
predictors of future diabetes [11, 12]. Our previous work
also showed urinary carbohydrate metabolic characterization
of DM patients with different traditional Chinese medicine
syndromes, including biomarkers different from non-DM
patients [13]. Xu et al. found that three TCM syndromes
including Qi-deficiency, Qi and Yin-deficiency, and damp
heat can be separated using metabolomics technology and
such differences can be manifested by plasma fatty acids
and lipid parameters [14]. Wei et al. designed an explorative
study of 50 prediabetic males, and finally they indicated more
disturbances of carbohydrate metabolism and renal function
in subtype “Qi-Yin deficiency with stagnation” compared
with “Qi-Yin deficiency with dampness” [15]. However, it is
still far from clear about the different syndrome of diabetes
although so many investigations have been performed [16].

In this study, we applied a metabolomics approach using
ultraperformance liquid chromatography (UPLC) coupled
with quadruple-time-of-flight (QTOF) mass spectrometry
to characterize the metabolic alterations of different TCM
syndromes including excess and deficiency in patients diag-
nosed with DM and discover biomarkers using metabolomics
technology to further find the deep connotation of TCM
syndromes.

2. Methods

2.1. Study Population. DM patients were prospectively
included from the Tianlin Community health center,
Shanghai city of China, during August 2009 to May 2010.
DM is characterized by a fasting plasma glucose (FPG) of
>70mmol/L, a post-load plasma glucose (2h PG) of
>11.1mmol/L, or a history of oral hypoglycemic or insulin
use, or both, based on the standard formulated by the World
Health Organization in 1999 [17]. TCM syndromes, including
deficiency and excess syndromes, were differentiated accord-
ing to the guidelines [18]. Patients suffering from other
serious diseases involving major organs or infective diseases
were excluded from the study. Patients with deficiency
and excess syndrome simultaneously were also excluded.
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The detailed inclusion and exclusion criteria were shown
in previous work [13]. Altogether 295 subjects with T2DM
(238 deficiency and 57 excess samples) were recruited to the
study. All subjects provided their written informed consent.
The ethics committee of the hospital approved the study plan
and the study complied with the Declaration of Helsinki.

2.2. Biochemical Analysis. Body mass index (BMI) was calcu-
lated as weight (kg) divided by height (m) squared. The waist-
hip ratio (WHR) was defined as the waist circumference
(cm) divided by the hip circumference (cm). Systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were
measured using standard mercury sphygmomanometers on
the right arm of seated participants. Serum fasting glu-
cose, triglyceride (TG), high density lipoprotein (HDL-C),
very low-density lipoprotein cholesterol (VLDL-C), alanine
aminotransferase (ALT), and 2h PG were analyzed using
an automatic bioanalyzer (Hitachi7180, Tokyo, Japan). Liver
ultrasound examination was carried out on the same equip-
ment (Alokal700, Japan).

2.3. Chemicals. HPLC grade methanol, acetonitrile, and
formic acid were purchased from Merck Chemicals (Darm-
stadt, Germany). L-chlorophenylalanine was purchased from
Sigma-Aldrich (St. Louis, MO). Ultrapure water was pro-
duced by a Milli-Q water system (Millipore, Billerica, USA).

2.4. Serum Sample Preparation for UPLC-QTOFMS. Fasting
serum samples were obtained and prepared strictly according
to the previous work [19]. An aliquot of 100 4L of serum was
mixed with 400 uL of a mixture of methanol and acetonitrile
[5:3, (containing 0.1 mg/mL L-chlorophenylalanine as the
internal standard)]. The mixture was then vortexed for 2 min,
allowed to stand for 10min, and centrifuged at 14500g
for 20 min. The supernatant was used for UPLC-QTOFMS
analysis.

2.5. UPLC-QTOEMS Spectral Acquisition of Serum Samples
and Data Preprocessing. A Waters ACQUITY ultraperfor-
mance liquid chromatography (UPLC) system equipped with
a binary solvent manager and a sample manager (Waters
Corporation, Milford, MA, USA), coupled to a QTOF mass
spectrometry with an electrospray interface (Waters Cor-
poration, Milford, MA), was used throughout the study as
aforementioned [19]. All Chromatographic separations were
performed with an ACQUITY BEH CI8 column (1.7 ym,
100 x 2.1mm internal dimensions, Waters). The column
was maintained at 50°C, and the injection volume of all
samples was 5 yL. The LC elution conditions were optimized
as follows: linear gradient from 1 to 20% B (0-1min), 20 to
70% B (1-3 min), 70 to 85% B (3-8 min), 85 to 100% B (8-
9 min), and isocratic at 100% B (9-9.5 min) with a flow rate
of 0.4 mL/min. (A) Water with 0.1% formic acid and (B)
acetonitrile with 0.1% formic acid were used for positive ion
mode (ESI+), while (A) water and (B) acetonitrile for negative
ion mode (ESI-). The mass spectrometer was operated with
source and desolvation temperatures set at 120°C and 300°C,
respectively. The desolvation gas was set at a flow rate of
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600 L/hr. The capillary voltage was set of 3.2 and 3 kV and the
cone voltage of 35 and 50V, respectively, in the positive and
negative ion modes.

The UPLC-MS raw data were processed using Marker-
Lynx 4.1 (Waters, Manchester, UK) using parameters men-
tioned in the previous work [20-23]. After removing the
ion peaks generated by the internal standard, the data were
normalized by dividing the sum of all peak intensities within
the sample and then a data matrix consisted of the retention
time, m/z value, and the normalized peak area was exported
for multivariate statistical analysis using the K-OPLS package
(available at http://kopls.sourceforge.net/download.shtml)
and Statistics toolbox of the Matlab (version 7.1, Mathwork
Inc.) software. Compound annotation was carried out by
comparing the retention time, molecular weight, preferred
adducts, and in-source fragments based on our in-house
reference standard library (-800 mammalian metabolite
standards available) and web-based resources, including the
Human Metabolome Database (http://www.hmdb.ca/).

2.6. Data Analysis. Data from the common and clinical infor-
mation were expressed as mean + standard deviation (S.D.).
Differences between the means of groups were analyzed
using independent samples ¢-test for continuous variables
and Pearson chi-square tests for categorical variable using the
SPSS 17.0 software (SPSS, Chicago, Illinois, USA), with a two-
sided P value of <0.05 considered statistically significant.

By applying preprocessing methods, both a synthetic
minority oversampling technique (SMOTE) bagging rebal-
ancing method and a genetic algorithm (GA) with kernel-
based orthogonal projections to latent structures (K-OPLS),
differential metabolites between groups from the UPLC-
QTOFMS data were observed. The major protocol was
according to our previous work [13, 24] and related literatures
[25, 26], as shown in Figure S1 (see Supplementary Material
available online at http://dx.doi.org/10.1155/2015/350703).

First, for the reason of the data’s unbalance, the SMOTE
algorithm was performed to simulate small data and achieve
the equilibrium of the whole data set. According to the class
0f 50% randomly selected samples as training set, the original
sample data as test set, and GA-KOPLS algorithm with
balanced prediction errors of test set as a fitness function, the

nearest neighbor parameters “n” of SMOTE were optimized.

Secondly, under the optimized SMOTE parameter, GA-
KOPLS algorithm is applied to modeling and selects the
important variables (metabolites) at the same time with the
balanced prediction error in test set as the fitness function
(minimize error). Evaluation of classifier accuracy during
each GA run was performed using a cross-validation [27].

Thirdly, the important variables selected by the GA were
applied to a K-OPLS algorithm for classification, and the
parameters including the Gaussian kernel function param-
eter (o) and the number of Y-orthogonal components (Ao)
of the K-OPLS model were optimized with internal tenfold
cross-validation of training set. The kernel matrix K was
centered to model estimation. The samples from each training
set study were taken for classification, in turn, excluding those
being classified from the selected samples in the training

set. The prediction accuracy of the original data set, AUC,
sensitivity, and specificity were used to evaluate the K-OPLS
model performance. Details on the model were provided in
the previous work [13].

Finally, the frequency of variable significance test was
performed by GA, and the P values were calculated based on
the binomial probabilities of variables being selected in the 50
independent runs, to identify the metabolites with significant
influence in the classification. One has

1 (R WA

where n = number of runs, v = number of variables, and
m = mean number of times variables are selected, rounded
to an integer. For details, see literature [28]. In addition,
these metabolites selected from the model were validated at a
univariate level with nonparametric Wilcoxon rank sum test
with a critical P value usually set to 0.05.

3. Results

3.1. Clinical Characteristics of Patients. Subjects’ clinical char-
acteristics of the three groups were summarized in Table 1.
The clinical characteristics of this subset of subjects did not
differ significantly between the groups at baseline, except for
age, BMI, and the coincidence of fatty liver disease, which
were significantly higher in the deficiency group than in the
excess group.

3.2. UPLC-QTOFMS Analysis of Serum Metabolite Profiles.
The ESI positive ion mode was more efficient with a signif-
icantly greater number of serum metabolites detected than
the ESI negative ion mode and, therefore, was selected for
the full scan detection mode. Among a total of approximately
6680 metabolite features obtained from the UPLC-QTOFMS,
133 metabolites were identified with our in-house reference
standard library and further verified by available reference
standards. Their peak areas were integrated for further
multivariate analysis.

3.3. Classification of the K-OPLS Models. In the present study
the nearest neighbor parameter “#” of SMOTE was 3 after
optimization, from DM patients with excess or deficiency
syndrome. A K-OPLS model was fitted using the Gaussian
kernel function with the important variables selected from
GA. The parameters of GA including initiate population, K
(times of genetic algebra), selective ratio of initiate variable,
and probability of simple point crossover were 30,150, 0.1, and
0.7, respectively (Table 2). Accuracy of classification of cross-
validation (ACCV) was calculated for each combination of o
and Ao which were optimized using 10-fold cross-validation.
ACCV was the largest when ¢ = 2.5 and Ao = 3 for DM
patients with excess and deficiency syndrome (Figure 1(a)).
Table 2 showed the R2X, R2Y, Q2Y, AUC, sensitivity,
and specificity used in evaluating all the calibration models
of the two groups. R2Xcum and R2Ycum represented the
cumulative sum of squares of all the X’s (metabolic data)
and Y’s (disease category data) explained by all extracted
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TaBLE 1: Clinical characteristics of excess and deficiency syndromes in patients with DM (mean + SD).

Patients with DM (n = 295)

Total Excess Deficiency P?
Gender (n, male/female) 295 (107/188) 57 (23/34) 238 (84/154) 0.476
Age (year) 70.69 + 8.86 6711 £ 9.49 71.55 + 8.50 <0.001
BMI (kg/mz) 25.29 £2.90 24.57 +2.44 25.46 + 2.98 0.037
Waist circumference (cm) 90.79 +7.92 89.49 + 6.94 91.1+8.13 0.170
Hip circumference (cm) 101.01 + 7.39 99.38 + 6.34 101.41 + 7.58 0.063
Waist-to-hip ratio (WHR) 0.90 £ 0.06 0.90 + 0.05 0.90 + 0.06 0.795
SBP (mmHg) 138.11 + 14.66 136.53 + 14.40 138.49 +14.73 0.365
DBP (mmHg) 78.41 £ 9.47 79.72 + 9.62 78.1+9.43 0.247
Obesity (BMI > 25) 51.8% (153/142) 45.6% (26/31) 53.4% (127/111) 0.293
Fatty liver disease 74.9% (221/74) 66.7% (38/19) 76.9% (183/55) 0.045
Hypertension 91.5% (270/25) 87.7% (50/7) 92.4% (220/18) 0.251
Hyperlipidemia 41.0% (121/182) 42.1% (24/33) 39.9% (95/143) 0.762
Coronary heart disease 23.3% (69/226) 29.8% (17/40) 21.8% (52/186) 0.201
Cerebrovascular accident 0.07% (20/275) 0.07% (4/53) 0.07% (16/222) 0.937
Hyperuricemia 0.07% (22/273) 0.07% (4/53) 0.08% (18/220) 0.888
FPG (mmol/L) 7.60 £ 2.12 7.84 +2.36 7.55 £ 2.06 0.355
2h PG (mmol/L) 11.37 + 3.69 11.51 + 3.52 11.33 +3.74 0.742
TG (mmol/L) 1.55+0.93 1.51+0.84 1.57 £ 0.96 0.675
HDL cholesterol (mmol/L) 1.33 +0.36 1.29 + 0.25 1.34 + 0.38 0.322
ALT (U/L) 25.26 +13.19 26.97 £13.84 24.85 +13.02 0.276
VLDL cholesterol (mmol/L) 2.57 £0.56 2.58 +£0.59 2.57 £0.55 0.935

2P value refers to the comparison between excess versus deficiency syndromes within the DM group using independent samples ¢-test for continuous variables
and Pearson chi-square tests for categorical variable with the SPSS 17.0 software (SPSS, Chicago, Illinois, USA). P values < 0.05 were considered significant.

TABLE 2: Parameters from GA.

GA parameters Initiate population K*

Selective ratio of initiate variable

Probability of simple point crossover

Excess versus deficiency 30 150

0.1 0.7

*K means times of genetic algebra.

components. Q2Ycum is an estimate of how well the model
predicts the Y’s [28]. High coefficient values of R2Y and Q2Y
represent good prediction [29]. As displayed by the score
plots of K-OPLS (Figure 1(b)), the two sample groups can be
separated into distinct clusters to indicate the changes in the
metabolic response of serum samples from the DM patients
with excess and deficiency syndrome.

The model statistics R2X = 0.425, R2Y = 1.000, and
Q2Y = 0.944 in the model suggest a highly predictive and
general model (Table 3). Because the nonlinear method was
used in the present study, the R2X had less significant
meanings. On the contrary, the major indicator is AUC to
evaluate the models’ accuracy in nonlinear method. AUC =
0.968 (95% confidence interval = 0.950-0.987) predicted that
the models had high accuracy (Table 3).

3.4. Representative Differential Metabolites Based on Multi-
variate and Univariate Analysis. The metabolites contributed
for the separation between groups derived from UPLC-
QTOFMS analysis were selected in accordance with the
criteria of multivariate statistics (GA, P < 0.001, Figure 2(a))
and nonparametric univariate statistics (Wilcoxon rank sum

test, P < 0.05, Figure 2(b)). Four differentially expressed
metabolites including 2-indolecarboxylic acid, hypotaurine
(HTAU), pipecolic acid, and progesterone between DM
patients with excess and deficiency syndrome were found
(Figure 3). The serum levels of those four metabolites were
higher in DM patients with excess syndrome than those with
deficiency syndrome.

4. Discussion

Serum patterns of metabolites reflect the homeostasis of
the organism to some extent. Metabolomics, a discipline
dedicated to the global study of metabolites, may deepen
our understanding of human health and diseases. In the
present study, we found that four metabolites can differentiate
two different TCM syndromes in DM, which cannot be
characterized by the clinical biochemical indicators. The
clear separation between two groups by TCM symptoms
and metabolic profiles illustrated that excess and deficiency
syndrome had their own substance fundaments.

Clinical characteristics of this subset of subjects in Table 1
showed there was no significant difference between the
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TABLE 3: Parameters from KOPLS models.

AUC 95%
KOPLS Sigma Ao ACCV' R2X" R2Y’ Q2y° Total Balance  ,5cd confidence  sensitivity specificity
Parameters accuracy accuracy .

interval
Excess
versus 2.5 3 0.860  0.425 1 0.944 0.949 0.968 0.968  0.950-0.987 1 0.937
Deficency

ﬂAccuracy of classification of cross-validation (ACCV) produced from each combination of o and Ao parameters after cross-validation. "R2Xcum and R2Ycum
represent the cumulative sum of squares (SS) of all the X’s and Y’s explained by all extracted components. “Q2Ycum is an estimate of how well the model predicts
the Y’s. AUC in 0.5~0.7 has lower accuracy, AUC in 0.7~0.9 has certain accuracy (model can be accepted), and AUC in more than 0.9 has high accuracy.

When AUC = 0.5, the model has no value.
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FIGURE 1: Accuracy of classification of cross-validation (ACCV) (a) and first predictive and Y-orthogonal score components (b) by the K-

OPLS model in DM patients with excess and deficiency syndrome.

deficiency and excess groups at baseline, in terms of sex,
WC, HC, WHR, DBP, TG, ALT, VLDL, and HDL levels,
except for age, BMI, and the coincidence of fatty liver disease,
which were significantly higher in the deficiency group than
in the excess group. The higher age in deficiency group is in
accordance with clinical TCM theory that Qi, Xue, Yin, and
Yang are more insufficient in older than in younger persons.
This result shows that the clinical biochemical indicators
are difficult to differentiate the TCM syndromes. Hence
novel approaches for differentiating syndromes are urgently
needed. The nontarget metabolomics provides a global view
of the organism and also provides an opportunity to stratify
the different TCM syndromes like we performed before [13].

In the present study, we performed UPLC-QTOFMS-
based serum metabolic profiling combined with GA-KOPLS
analysis on DM patients with different syndromes and four
metabolites were eventually found between the two TCM
syndromes. In order to exclude the effect of age and BMI,
we separated two subsets with the cutoff of 70 in age, 25 in
BMI. We found that there was no significant difference of
the four differential metabolites between groups with Mann-
Whitney Test Analysis (P > 0.05, Supplementary Table S1).
Furthermore, we performed the KOPLS model based on the
same parameters. It was shown that no matter the age >70
or <70 (n = 161 versus 134), deficiency group and excess
group could be distinctly separated on the classification

(Supplementary Figure S2). Similar results were also found
in BMI >25 or <25 (n = 153 versus 142) (Supplementary
Figure S3). Those results prompt that the age and BMI with
significant difference between deficiency and excess groups
do not affect our final metabolomics results.

2-Indolecarboxylic acid similar to melatonin is a strong
inhibitor of lipid peroxidation. Stétinova et al. performed an
in vitro study with a standard lipid peroxidation assay, and
they finally found that tested drugs inhibited lipid peroxida-
tion in the order of tryptamine (59%) > 2-indolecarboxylic
acid (38%) > indomethacin (26%) > melatonin and indole-3-
carboxylic acid (13%) [30].

HTAU is a product of enzyme cysteamine dioxygenase in
taurine and hypotaurine metabolic pathway. It may function
as an antioxidant and a protective agent under physiological
conditions [31, 32], and it results in the prevention of
peroxynitrite-induced tyrosine nitration to 3-nitrotyrosine
and oxidation to dityrosine. Nitration and oxidation of
tyrosine residues in proteins have been detected in several
conditions of oxidative stress that involve the overproduc-
tion of NO™ and oxygen radicals. Hence, it is tempting to
postulate that the protection afforded by HTAU on tyrosine
modification may have important physiological significance.
Gossai and Lau-Cam compared taurine, aminomethane-
sulfonic acid, homotaurine, and HTAU for the ability to
modify indices of oxidative stress and membrane damage
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associated with T2DM. Relative to control values, taurine
and its congeners had equiproctective roles in reducing
membrane damage, the formation of intracellular malon-
dialdehyde and oxidized glutathione, and the decreases in
reduced glutathione and antioxidative enzyme activities in
diabetic erythrocytes [33].

Pipecolic acid (piperidine-2-carboxylic acid), the car-
boxylic acid of piperidine, is a small organic molecule which
accumulates in pipecolic acidemia. It is a metabolite of lysine
found in human physiological fluids such as urine and serum.
However, it is uncertain whether pipecolic acid originates
directly from food intake or from mammalian or intestinal
bacterial enzyme metabolism.

Progesterone, converted from pregnenolone, serves as an
intermediate in the biosynthesis of gonadal steroid hormones

and adrenal corticosteroids. Progesterone was observed to
have antioxidant properties, reducing the concentration of
oxygen free radicals [34]. Recently, a crosstalk between
progesterone and melatonin has been observed in various
preclinical studies. The melatonin is reported to increase
progesterone level and expression of progesterone receptors
in reproductive tissues [35].

Interestingly, the above four metabolites are all related
to oxidative stress. We suggest that diabetic patients with
excess syndrome may have more severe systemic oxidative
stress than those with deficiency syndrome. Understanding
syndromes is a core research to develop more efficient ther-
apeutic strategies, classification, and diagnostic criteria for
patients. It will contribute to TCM syndrome objectification
and standardization to the better diagnosis and therapy of
disease. Further investigations with larger sample sizes are
needed to confirm our findings.

5. Conclusion

The present study provides an improved understanding of the
systemic alteration of metabolites in different syndromes of
DM. It also presents that metabolomics method would be
helpful in establishing a suitable model for reasonably eval-
uating disease syndrome, exploring pathological mechanism
of syndrome, and clarifying the relationships between the
syndrome and related diseases. Furthermore, the identified
serum metabolites may be of clinical relevance for subtyping
of diabetic patients, leading to a personalized DM treatment.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgments

The authors are indebted to all the patients who participated
in this study. This study was supported by the National
Natural Science Foundation of China (81202979), the Lead-
ing Academic Discipline Project and Innovative Research



Evidence-Based Complementary and Alternative Medicine

Team in Universities from Shanghai Municipal Education
Commission (J50305), E-institutes of Shanghai Municipal
Education Commission China (E03008), and the Natural
Science Foundation of Shanghai (11ZR1436900).

References

(1]

(2]

[8

G. C. Farrell, “The liver and the waistline: fifty years of growth,”
Journal of Gastroenterology and Hepatology, vol. 24, supplement
3, pp. $105-S118, 2000.

B. S. Nayak and L. Roberts, “Relationship between inflamma-
tory markers, metabolic and anthropometric variables in the
Caribbean type 2 diabetic patients with and without microvas-
cular complications,” Journal of Inflammation, vol. 3, article 17,
2006.

L. M. Wang, X. Zhao, X. L. Wu, Y. Li, and D. H. Yi, “Diagnosis
analysis of 4 TCM patterns in suboptimal health status: a
structural equation modelling approach,” Evidence-Based Com-
plementary and Alternative Medicine, vol. 2012, Article ID
970985, 6 pages, 2012.

P. N. Kirke, J. L. Mills, and J. M. Scott, “Homocysteine
metabolism in pregnancies complicated by neural tube defects,”
Nutrition, vol. 13, no. 11-12, pp. 994-995, 1997.

Y. Ni, M. Su, Y. Qiu et al., “Metabolic profiling using combined
GC-MS and LC-MS provides a systems understanding of
aristolochic acid-induced nephrotoxicity in rat,” FEBS Letters,
vol. 581, no. 4, pp. 707-711, 2007.

X. Wang, X. Wang, G. Xie et al., “Urinary metabolite variation
is associated with pathological progression of the post-hepatitis
B cirrhosis patients,” Journal of Proteome Research, vol. 11, no. 7,
pp. 3838-3847, 2012.

A. Craig, J. Sidaway, E. Holmes et al., “Systems toxicology:
integrated genomic, proteomic and metabonomic analysis of
methapyrilene induced hepatotoxicity in the rat]” Journal of
Proteome Research, vol. 5, no. 7, pp. 1586-1601, 2006.

N. N. Kaderbhai, D. I. Broadhurst, D. 1. Ellis, R. Goodacre, and
D. B. Kell, “Functional genomics via metabolic footprinting:
monitoring metabolite secretion by Escherichia coli trypto-
phan metabolism mutants using FT-IR and direct injection
electrospray mass spectrometry, Comparative and Functional
Genomics, vol. 4, no. 4, pp- 376-391, 2003.

S. S. Heinzmann, C. A. Merrifield, S. Rezzi et al., “Stability
and robustness of human metabolic phenotypes in response to
sequential food challenges,” Journal of Proteome Research, vol.
11, no. 2, pp. 643-655, 2012.

K. Suhre, C. Meisinger, A. Doring et al., “Metabolic footprint of
diabetes: a multiplatform metabolomics study in an epidemio-
logical setting,” PLoS ONE, vol. 5, no. 11, Article ID €13953, 2010.
K. Suhre, “Metabolic profiling in diabetes,” Journal of Endo-
crinology, vol. 221, no. 3, pp. R75-R85, 2014.

N. Friedrich, “Metabolomics in diabetes research,” Journal of
Endocrinology, vol. 225, no. 3, pp. 29-42, 2012.

T. Wu, M. Yang, H.-E Wei, S.-H. He, S.-C. Wang, and G. Ji,
“Application of metabolomics in traditional chinese medicine
differentiation of deficiency and excess syndromes in patients
with diabetes mellitus,” Evidence-based Complementary and
Alternative Medicine, vol. 2012, Article ID 968083, 11 pages, 2012.
W. Xu, L. Zhang, Y. Huang, Q. Yang, H. Xiao, and D. Zhang,
“Discrimination of type 2 diabetes mellitus corresponding to
different traditional Chinese medicine syndromes based on
plasma fatty acid profiles and chemometric methods,” Journal
of Ethnopharmacology, vol. 143, no. 2, pp. 463-468, 2012.

[15] H. Wei, W. Pasman, C. Rubingh et al., “Urine metabolomics
combined with the personalized diagnosis guided by Chinese
medicine reveals subtypes of pre-diabetes,” Molecular BioSys-
tems, vol. 8, no. 5, pp. 1482-1491, 2012.

[16] H. L. Jiang, J. J. Niu, W. E Zhang et al., “The role of central
nervous system on hypoglycemia and the feasibility of the brain
theory in traditional Chinese medicine on treatment of diabetes
mellitus,” Journal of Integrative Medicine, vol. 12, no. 1, pp. 1-6,
2014.

“Definition, diagnosis, and classification of diabetes mellitus
and its complications,” Report of a WHO consultation , World
Health Organisation, Geneva, Switzerland, 1999.

[18] Y. Y. Zheng, Guiding Principle of Clinical Research on New
Drugs of Traditional Chinese Medicine, The Publishing House
of Chinese Medicine Science, Beijing, China, 2002.

(19] Y. Qiu, G. Cai, M. Su et al, “Serum metabolite profiling
of human colorectal cancer using GC-TOFMS and UPLC-
QTOFMS,” Journal of Proteome Research, vol. 8, no. 10, pp.
4844-4850, 2009.

[20] G.Xie, R. Plumb, M. Su et al., “Ultra-performance LC/TOF MS
analysis of medicinal Panax herbs for metabolomic research,”
Journal of Separation Science, vol. 31, no. 6-7, pp. 1015-1026,
2008.

[21] G. Xie, M. Ye, Y. Wang et al., “Characterization of pu-erh tea
using chemical and metabolic profiling approaches,” Journal of
Agricultural and Food Chemistry, vol. 57, no. 8, pp. 3046-3054,
20009.

[22] G. Xie, X. Zheng, X. Qi et al, “Metabonomic evaluation
of melamine-induced acute renal toxicity in rats,” Journal of
Proteome Research, vol. 9, no. 1, pp. 125-133, 2010.

[23] T. Chen, G. Xie, X. Wang et al., “Serum and urine metabolite
profiling reveals potential biomarkers of human hepatocellular
carcinoma,” Molecular ¢ Cellular Proteomics, vol. 10, no. 7, 2011.

[24] M. Yang, J. Chen, X. Shi, and H. Niu, “Rapid determination of
aesculin, aesculetin and fraxetin in Cortex Fraxini extract solu-
tions based on ultraviolet spectroscopy,” E-Journal of Chemistry,
vol. 8, no. 1, pp. $225-5236, 2011.

[25] P. Filzmoser, B. Liebmann, and K. Varmuza, “Repeated double
cross validation,” Journal of Chemometrics, vol. 23, no. 4, pp.
160-171, 2009.

[26] M. Rantalainen, M. Bylesjo, O. Cloarec, J. K. Nicholson, E.
Holmes, and J. Trygg, “Kernel-based orthogonal projections to
latent structures (K-OPLS),” Journal of Chemometrics, vol. 21,
no. 7-9, pp. 376-385, 2007.

[27] R. Cavill, H. C. Keun, E. Holmes, J. C. Lindon, J. K. Nicholson,
and T. M. D. Ebbels, “Genetic algorithms for simultaneous vari-
able and sample selection in metabonomics,” Bioinformatics,
vol. 25, no. 1, pp. 112-118, 2009.

[28] K. Yuan, H. Kong, Y. Guan, J. Yang, and G. Xu, “A GC-based
metabonomics investigation of type 2 diabetes by organic acids
metabolic profile;” Journal of Chromatography B: Analytical
Technologies in the Biomedical and Life Sciences, vol. 850, no. 1-2,
pp. 236-240, 2007,

[29] . Girard, “Contribution of free fatty acids to impairment of
insulin secretion and action. mechanism of beta-cell lipotoxi-
city, Medical Science, vol. 21, pp. 19-25, 2005.

V. Stétinov4, L. Smetanova, V. Grossmann, and P. Anzenbacher,
“In vitro and in vivo assessment of the antioxidant activity of
melatonin and related indole derivatives,” General Physiology
and Biophysics, vol. 21, no. 2, pp. 153-162, 2002.

(17

(30



(31]

(34]

(35]

M. Fontana, L. Pecci, S. Dupre, and D. Cavallini, “Antioxidant
properties of sulfinates: protective effect of hypotaurine on
peroxynitrite-dependent damage,” Neurochemical Research, vol.
29, no. 1, pp. 111-116, 2004.

M. Fontana, E. Giovannitti, and L. Pecci, “The protective effect
of hypotaurine and cysteine sulphinic acid on peroxynitrite-
mediated oxidative reactions,” Free Radical Research, vol. 42, no.
4, pp. 320-330, 2008.

D. Gossai and C. A. Lau-Cam, “The effects of taurine, taurine
homologs and hypotaurine on cell and membrane antioxidative
system alterations caused by type 2 diabetes in rat erythrocytes,”
Advances in Experimental Medicine and Biology, vol. 643, pp.
359-368, 2009.

D. G. Stein, “Progesterone exerts neuroprotective effects after
brain injury;” Brain Research Reviews, vol. 57, no. 2, pp. 386397,
2008.

J. Sehajpal, T. Kaur, R. Bhatti, and A. P. Singh, “Role of
progesterone in melatonin-mediated protection against acute
kidney injury;” Journal of Surgical Research, 2014.

Evidence-Based Complementary and Alternative Medicine



