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Abstract: Diabetic retinopathy (DR) is a common complication of diabetes that can lead to progressive
vision loss. Regular surveillance with fundal photography, early diagnosis, and prompt intervention
are paramount to reducing the incidence of DR-induced vision loss. However, manual interpretation
of fundal photographs is subject to human error. In this study, a new method based on horizontal
and vertical patch division was proposed for the automated classification of DR images on fundal
photographs. The novel sides of this study are given as follows. We proposed a new non-fixed-
size patch division model to obtain high classification results and collected a new fundus image
dataset. Moreover, two datasets are used to test the model: a newly collected three-class (normal,
non-proliferative DR, and proliferative DR) dataset comprising 2355 DR images and the established
open-access five-class Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset comprising
3662 images. Two analysis scenarios, Case 1 and Case 2, with three (normal, non-proliferative DR,
and proliferative DR) and five classes (normal, mild DR, moderate DR, severe DR, and proliferative
DR), respectively, were derived from the APTOS 2019 dataset. These datasets and these cases have
been used to demonstrate the general classification performance of our proposal. By applying transfer
learning, the last fully connected and global average pooling layers of the DenseNet201 architecture
were used to extract deep features from input DR images and each of the eight subdivided hori-
zontal and vertical patches. The most discriminative features are then selected using neighborhood
component analysis. These were fed as input to a standard shallow cubic support vector machine
for classification. Our new DR dataset obtained 94.06% and 91.55% accuracy values for three-class
classification with 80:20 hold-out validation and 10-fold cross-validation, respectively. As can be
seen from steps of the proposed model, a new patch-based deep-feature engineering model has been
proposed. The proposed deep-feature engineering model is a cognitive model, since it uses efficient
methods in each phase. Similar excellent results were seen for three-class classification with the
Case 1 dataset. In addition, the model attained 87.43% and 84.90% five-class classification accuracy
rates using 80:20 hold-out validation and 10-fold cross-validation, respectively, on the Case 2 dataset,
which outperformed prior DR classification studies based on the five-class APTOS 2019 dataset. Our
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model attained about >2% classification results compared to others. These findings demonstrate the
accuracy and robustness of the proposed model for classification of DR images.

Keywords: diabetic retinopathy; patch division; deep feature extraction; transfer learning;
neighborhood component analysis; support vector machine

1. Introduction

Diabetes mellitus is a chronic medical condition characterized by high blood sugar
levels, which, over time, induce progressive target organ damage in the heart, kidney, brain,
nerves, and eyes [1,2]. In diabetic retinopathy (DR), blood vessels in the retina can rupture
within the retina, producing small retinal hemorrhages (non-proliferative DR), which can
leak, producing retinal edema, which reduces visual acuity, or new vessels can grow in
front of the retina (proliferative disease), which can cause major bleeding into the eye [3,4].
DR can be stratified into non-proliferative diabetic retinopathy (NPDR) and proliferative
diabetic retinopathy (PDR), the latter being a much more serious accelerated deteriorating
phase [5]. Symptoms of DR include blurred vision, difficulty seeing in the dark, progressive
and even sudden vision loss [6]. DR affects about 80% of people who have had diabetes for
20 years or more [7] and is the commonest cause of vision loss in individuals aged 20 to
74 years [8]. By 2030, the number of people with DR will reach 191 million [9]. In addition,
comorbidities, such as high blood pressure and hypercholesterolemia, common in diabetes,
can exacerbate the risk of vision loss in DR [10,11]. Fortunately, vision loss can be averted
with early diagnosis and treatment before the disease becomes too advanced [12]. For
this reason, it is recommended that patients with diabetes undergo routine annual fundal
photography, where retinal images are acquired and then interpreted by ophthalmologists.
However, manual interpretation is subject to inter- and intra-observer variability and may
be inefficient for high-throughput screening. To address this, automated machine-learning-
enabled computer-aided diagnostic systems [13,14] have been introduced to screen DR on
fundal photographs (Table 1).

Table 1. Summary of a nonsystematic review of recent studies on machine-learning-enabled auto-
mated classification of diabetic retinopathy using fundal photography.

Study Method Dataset Classes (Validation) Results (%)

Arunkumar and
Karthigaikumar 2017 [15]

DBN-based feature
extraction, SVM ARIA [16] Normal; DR, age-related

macular degeneration

Acc 96.73
Sen 79.32
Spe 97.89

Abbas et al., 2017 [17]
GLOH, principal

component analysis,
deep neural network

DIARETDB1 [18]

Normal, mild NPDR,
moderate NPDR, severe

NPDR, PDR
(10-fold CV)

AUC 92.4
Sen 92.18
Spe 94.5

Krause et al., 2018 [19] Custom CNN Own dataset,
Messidor-2 [20,21] Not available AUC 98.6

Chetoui et al., 2018 [22] LTP, LESH, and SVM Messidor [20,21] DR, non-DR
(10-fold CV)

Acc 90.04
AUC 93.1

Orlando et al., 2018 [23]
CNN and handcrafted

feature extraction,
random forest

Messidor [20,21] Lesion detection AUC 93.47
Sen 97.21

Zeng et al., 2019 [24] InceptionV3-based
CNN Kaggle [25] DR, non-DR

(80:20 hold-out)
AUC 95.1

Ali et al., 2020 [26]

Texture analysis
(histogram, wavelet,

co-occurrence,
run-length matrix),
logistic model tree

Own dataset

Normal, mild NPDR,
moderate NPDR, severe

NPDR, PDR
(10-fold CV)

Acc 99.73
Cohen’s kappa

99.67
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Table 1. Cont.

Study Method Dataset Classes (Validation) Results (%)

Gayathri et al., 2021 [27]

Multipath CNN,
ResNet-50, and

VGG-16-based feature
extraction, classifiers
(SVM, random forest,

J48)

3 datasets:
IDRiD [28],
Kaggle [25],

Messidor [20,21]

IDRiD: Normal, mild
NPDR, moderate NPDR,

severe NPDR, PDR;
Kaggle: Normal, mild

NPDR, moderate NPDR,
severe NPDR, PDR

Messidor: Normal, mild
DR, moderate DR, severe

DR
(10-fold CV)

Overall Acc 99.62
Cohen’s kappa

99.5

Mahmoud et al., 2021 [29]

HIMLA (preprocessing,
segmentation, feature

extraction, and
classification)

Chase_DB1 [30] DR, non-DR
Acc 96.62
Sen 95.31
Spe 96.88

Math and Fatima 2021 [31] Custom CNN Kaggle [25],
DIARETDB1 [18]

Normal, mild, moderate,
NPDR, PDR

AUC 96.3
Sen 96.37
Spe 96.37

Definitions in the Table 1: Acc, accuracy; AUC, area-under-curve; CNN, convolutional neural network;
CV, cross-validation; DBN, deep belief neural network; DR, diabetic retinopathy; GLOH, gradient location
orientation histogram; HIMLA, hybrid inductive machine learning algorithm; LESH, local energy-based shape
histogram; LTP, local ternary pattern; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic
retinopathy; Sen, sensitivity; Spe, specificity; SVM, support vector machine.

We aimed to develop a fast, automated machine-learning-based DR classification
that can be deployed in the clinic to assist doctors in screening for DR efficiently. This
will facilitate early diagnosis and treatment of DR and prevent vision loss among diabetic
patients. Toward this aim, a new dataset was collected for training the model, which
comprised novel patch-based image division, DenseNet201 [32] for feature extraction,
neighborhood component analysis (NCA) [33] for feature selection, and cubic support
vector machine (SVM) [34] for classification.

The novelties of our research are given as follows. (i) We collected a new fundus im-age
dataset to classify PDR, NPDR, and healthy. (ii) A new nonfixed-size patch division method
has been proposed to extract local features in the feature extraction phase. (iii) Pretrained
deep features have been generated by using our proposed patch division method and a
pretrained DenseNet201. NCA chooses the top informative features, and classification
results have been obtained by deploying an SVM classifier. In this respect, a new rectangular
patch division-based deep-feature engineering model has been presented.

The contributions of our model are:

• A new DR image dataset was collected, on which the developed model was tested.
• Novel division of the image into horizontal and vertical patches enabled downstream

multilevel deep-feature extraction.
• Feature extraction was performed at the last fully connected, and global average pool-

ing layers of DenseNet201, a deep network architecture, and the most discriminative
features were selected with NCA.

• The model was trained and tested on our new dataset and the established open-access
Asia Pacific Tele-Ophthalmology Society (APTOS) dataset [35]. As a result, the model
attained excellent 94.06% and 91.55% classification accuracy rates on our new dataset using
robust 80:20 hold-out validation and 10-fold cross-validation (CV) strategies, respectively.

2. Material and Method
2.1. Material
2.1.1. New Diabetic Retinopathy Dataset

A new dataset was retrieved from the clinical database of digitized fundal photographs
of diabetic patients who attended the Ophthalmology Department, the Firat University
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Hospital, Turkey. The hospital ethics board had approved the retrospective data collection.
This dataset comprised a total of 2355 images that had been labeled by ophthalmologists
into three classes: 366 normal (15.5%); 1022 NPDR (43.4%); and 967 PDR (41.1%). Sample
images of this dataset are given in Figure 1. 

   
(a) (b) (c) 

 
Figure 1. Sample images from the new diabetic retinopathy dataset: (a) normal, (b) NPDR, (c) PDR.

2.1.2. APTOS 2019 Diabetic Retinopathy Dataset

This is an open-access dataset [35] comprising 3662 images that had been labeled into
five classes: 1805 normal (49.3%); 370 mild DR (10.1%); 999 moderate DR (27.3%); 193 severe
DR (5.3%); and 295 PDR (8.1%). Sample images of these classes are given in Figure 2. To
ameliorate the data imbalance, an analysis scenario Case 1 was created by amalgamating mild,
moderate, and severe classes into a single NPDR class, i.e., 1805 normal (49.3%); 1562 NPDR
(42.7%); and 295 PDR (8.1%), which possessed a structure similar to our new dataset. In the
second analysis scenario, Case 2, classification was made using the existing five classes.
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Figure 2. Sample images from APTOS 2019 dataset: (a) normal, (b) mild DR, (c) moderate DR,
(d) severe DR, (e) PDR.

2.2. Method

Inspired by the success of image recognition methods, such as vision transformer [36]
and multilevel perceptron mixer [37], in which image patch division allowed multilevel
deep-feature extraction, we built a DR image classification model using a novel scheme
of horizontal and vertical patch divisions. The developed model applied transfer learning
using the pretrained DenseNet201 architecture to extract deep features from both original
images, as well as the subdivided patches. This efficient approach generated a high volume
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of features with compressed training time. Further, a simple yet effective NCA algorithm was
used to select the most discriminative features, which were then fed to a standard shallow
classifier, SVM. The block diagram of the model is shown in Figure 3, and the pseudocode in
Algorithm 1. Details of the various steps are explained in the following sections.

Algorithm 1. Pseudocode of the proposed patch-based model

Input: DR image dataset (drd).
Output: Classification results (cr)

00: Load drd.
01: for k = 1 to noi do // Herein, noi is the number of images
02: Im = drdk; // Read each image (Im) from dataset
03: Resize the image to 256 × 256.
04: f eat(k, 1 : 2920) = DenseNet201(Im); // Generate deep features from the main image
// using “fc1000” and “avg_pool” layers
05: Divide DR image into horizontal and vertical patches (P) // Herein, P is patches
06: cnt = 0 // Counter for patches
07: for i = 1 to 8 do // There are 8 patches
08: f eat(k, c× 2920 + 1 : 2920× (c + 1)) = DenseNet201(Pi);
09: c = c + 1;
10: end for i
11: end for k
12: Normalize f eat using min-max normalization
13: Apply NCA to f eat and calculate indexes (ind)
14: Select the top 500 features using ind
15: Export selected features to the cubic SVM classifier.
16: Obtain classification results (cr) with 10-fold CV and 80:20 hold-out validation

Figure 3. Block diagram of the proposed patch-based model. Each input image is first resized to
256 × 256, then divided into four equal nonoverlapping quadrants. Each quadrant is further subdivided
into horizontal or vertical patches. Pretrained DenseNet201 is used to generate 2920 features from
the main image (M1), as well as each of the horizontal (P1, P2, P7, and P8) and vertical (P3, P4, P5,
and P6) patches, which are all concatenated to form a final feature vector of length 26,280 (= 9 × 2920).
Neighborhood component analysis (NCA) is used to select the top 500 features, which are fed to a support
vector machine (SVM) for classification. APTOS, Asia Pacific Tele-Ophthalmology Society; DR, diabetic
retinopathy; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.

The key point of Algorithm 1 is Line 6. In this step, the main image is divided into
nonoverlapping quadrants, and then subdivided into horizontal and vertical patches so
that local features can be later extracted from the latter in the horizontal and vertical fields,
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respectively. The patch division is carried out in a predetermined fixed scheme: horizontal
direction in the upper left and lower right quadrants; vertical direction in the upper right
and lower left quadrants.

2.2.1. Feature Extraction

First, the fundal photograph images were resized to 256 × 256 (most of the CNNs
and patch-based model, such as vision transformers and Swin transformers, have used
resizing to obtain fixed-sized images/patches; thus, we used resizing operator), then
divided into four equal quadrants (128 × 128). Each quadrant was further subdivided
into either horizontal (128 × 64) or vertical (64 × 128) patches depending on its relative
position in the original image (Figure 4), i.e., eight patches were generated from a single
DR image. Next, feature extraction was performed using the DenseNet201 architecture via
a transfer learning approach. DenseNet201 [32] is a 201-layer open-access convolutional
neural network that has been pretrained on image classification using the >1,000,000-image
ImageNet1k dataset [38]. Specifically, the fully connected and average pooling layers of
DenseNet201 extracted 1000 and 1920 features, respectively, from the main DR image and
each of the eight patches. All the extracted features were concatenated into one final feature
vector of a length of 26,280 (= 9 × (1000 + 1920)) for each input DR image. Herein, 9 defines
the numbers of used images (1 raw image + 8 patches), and 1000 and 1920 are defined as
the number of generated features using fc1000 and avg_pool layers of the used pretrained
DenseNet201, respectively.

Figure 4. Block diagram of the feature extraction process. The resized main image (MI) is divided
into four quadrants. Depending on its relative position in the MI, the quadrants are divided into
horizontal (P1, P2, P7, and P8) and vertical (P3, P4, P5, and P6) patches.

Detailed steps of feature extraction are listed below:
Step 1: Divide the image into horizontal and vertical patches. Herein, the size of the

patches is 128 × 64 for horizontal and 64 × 128 for vertical patches.
Step 2: Extract features from the main image, and for each patch use “fc1000” and

“avg_pool” layers of pretrained DenseNet201.
Step 3: Concatenate the deep features and obtain the final feature vector of length 26,280.
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2.2.2. Feature Selection

NCA [33], a well-known effective feature selection function, was used in the feature
selection phase of our model. The optimal number of selected features was determined by
trial and error. NCA eliminated redundant features for each input image from the large
final feature vector of length 26,280 and selected the top 500 most discriminative features
with the best weights. Detailed steps of feature selection are listed below:

Step 4: Apply min–max normalization to the feature vector.
Step 5: Apply NCA to the generated feature vector with a length of 26,280 and generate

qualified indexes.
Step 6: Choose the most discriminative 500 features from feature vectors based on the

qualified indexes.

2.2.3. Classification

SVM [34], a standard shallow classifier, was used to assess the model’s classification
performance. A third-degree polynomial kernel (cubic SVM) was chosen, along with
10-fold CV and 80:20 hold-out validation strategies, to validate the model.

Step 7: Classify the selected 500 features by applying to the SVM classifier with a
10-fold CV and 80:20 hold-out technique.

3. Results
3.1. Experimental Setup

The model was implemented using MATLAB 2021b programing platform on a server
with the following specifications: Intel Xeon @2.70 GHz, 256 GB main memory, and 500 GB
external memory. The proposed model was tested on our new three-class DR dataset, as
well as the three- and five-class datasets of Case 1 and Case 2, respectively, derived from
the APTOS 2018 dataset.

Moreover, details of this architecture are given below.
Patch division: eight nonfixed-sized patches have been created.
Feature extraction: the last fully connected and global average pooling layers of

the pretrained DenseNet201. In the feature extraction phase, nine (a raw image and
nine patches) inputs have been used. Thus, our proposed feature extractor generates
26,280 (=9 × 2920) features.

Feature selection: the most informative 500 features from the generated 26,280 features
are selected by deploying NCA.

Classification: the selected/chosen top 500 features have been utilized as input of the
SVM classifier to obtain results.

To evaluate the classification performance of the model, confusion matrixes were
constructed and standard performance metrics, such as accuracy, precision, recall, F1-score,
Cohen’s kappa, and geometric mean, were computed.

3.2. Results

The results are presented stratified by the DR dataset (new dataset, Case 1, and Case 2)
and validation strategy (80:20 hold-out validation versus 10-fold CV). For our new DR
dataset, class-wise results for both validation strategies are depicted in confusion matrixes
(Figure 5), and performance metrics for overall three-class classification are summarized
in Table 2. The best class-wise accuracy was observed in the normal class with either
validation strategy. Overall three-class classification performance was numerically supe-
rior with hold-out validation across all performance metrics compared with 10-fold CV,
e.g., 94.06% versus 91.55% classification accuracy.

The salutary results were validated on the external APTOS 2019 dataset. For Case 1, the
results were similar to those obtained on our new dataset. The best class-wise accuracy was
observed in the normal class with either validation strategy (Figure 6). Again, overall three-
class classification performance was numerically superior with hold-out validation across
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all performance metrics compared with 10-fold CV, e.g., 93.85% versus 92.6% classification
accuracy as presented in Table 3.

Figure 5. Confusion matrixes for our new dataset obtained using 10-fold cross-validation (a) and
80:20 hold-out validation (b). Class names: 1, normal; 2, non-proliferative diabetic retinopathy;
3, proliferative diabetic retinopathy.

Table 2. Overall three-class classification performance on our new diabetic retinopathy dataset.

Results (%)
Performance Metric 10-Fold CV 80:20 Hold-Out Validation

Accuracy 91.55 94.06
Unweighted average recall 92.67 94.45

Unweighted average precision 92.77 94.74
Average F1 92.70 94.59

Cohen’s kappa 86.34 90.38
Geometric mean 92.61 94.45
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Figure 6. Confusion matrixes for our new dataset obtained using 10-fold cross-validation (a) and
80:20 hold-out validation (b). Class names: 1, normal; 2, non-proliferative diabetic retinopathy;
3, proliferative diabetic retinopathy.

We further tested our model on the existing five classes of the APTOS 2019 dataset.
Congruent with our new DR dataset and Case 1, the best class-wise accuracy was observed
in the normal class with either validation strategy (Figure 7). Overall five-class classification
performance was good, being numerically superior with hold-out validation across all
performance metrics compared with 10-fold CV, e.g., 87.6% versus 84.9% classification
accuracy (Table 4). The slightly lower performance compared with Case 1 and our new
dataset is not unexpected given the higher number of classes and the imbalanced dataset
(as is evident in Figure 7).
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Table 3. Overall three-class classification performance on Case 1 of the APTOS dataset.

Results (%)
Performance Metric 10-Fold CV 80:20 Hold-Out Validation

Accuracy 92.60 93.85
Unweighted average recall 79.64 80.60

Unweighted average precision 86.63 90.90
Average F1 82.06 83.78

Cohen’s kappa 86.74 88.94
Geometric mean 75.28 76.04

Figure 7. Confusion matrixes for our new dataset obtained using 10-fold cross-validation (a) and
80:20 hold-out validation (b). Class names: 1, normal; 2, mild diabetic retinopathy; 3, moderate
diabetic retinopathy; 4, severe diabetic retinopathy; 5, proliferative diabetic retinopathy.
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Table 4. Overall five-class classification performance on Case 2 of the APTOS dataset.

Results (%)
Performance Metric 10-Fold CV 80:20 Hold-Out Validation

Accuracy 84.90 85.93
Unweighted average recall 68.53 69.72

Unweighted average precision 74.32 77.11
Average F1 70.75 72.51

Cohen’s kappa 76.91 78.37
Geometric mean 65.25 66.61

3.3. Computational Complexity

In order to calculate the computational complexity of our proposal, a big O notation
has been used. Our model is a patch-based deep-feature generation model. We have used
nonfixed-size patches. Thus, the time complexity of our presented feature generation phase
is equal to O(t× l×m× d). Herein, t, l, and m define the width of the patch, the height of
the patch, and the number of patches, and d represents the time complexity coefficient of the
pretrained CNN. In the feature selection phase, NCA feature selection function was used, and
we defined the time complexity of it as O(n), and n defines the time complexity coefficient of
the NCA function. In the last phase, the SVM classifier has been used, and the time complexity
of the SVM is O(c), where c is the time complexity coefficient of the SVM. The total time burden
of our proposal using big O notation is O(t× l×m× d + n + c). This result demonstrated that
our proposal has linear time complexity. Thus, it is a lightweight model.

4. Discussion

This study proposed a new DR classification model using patch-based deep-feature
extraction. The developed model was tested on the DR images we collected and the
established APTOS 2019 dataset. Our new dataset contains three classes (PDR, NPDR,
and normal), whereas the APTOS 2019 DR dataset contains five classes (normal, mild DR,
moderate DR, severe DR, and PDR). Accordingly, two test scenarios, Case 1 and Case 2,
were constructed from the APTOS 2019 dataset. Case 1 contains three classes (normal,
NPDR, and PDR), with the NPDR class being constituted by merging the mild DR, moderate
DR, and severe DR classes of the APTOS 2019 dataset. In Case 2, the existing classes of the
APTOS 2019 dataset were used. The model attained 94.06% and 91.55% three-class accuracy
rates for 80:20 hold-out validation and 10-fold CV, respectively, on our new dataset. These
results were replicated on the Case 1 dataset, where 93.85% and 92.6% three-class accuracy
rates were observed for 80:20 hold-out validation and 10-fold CV, respectively. Finally,
the proposed method delivered lower but good five-class classification performance on
the Case 2 dataset, where 85.93% and 84.9% for 80:20 hold-out validation and 10-fold CV,
respectively, were attained despite the imbalanced dataset. The salutary results validated on
different datasets—of note, our new dataset and Case 1 dataset were qualitatively different
with predominant PDR (41.1%) and normal (49.3%) images, respectively—underline the
feasibility and robustness of the proposed model. Class-wise accuracy was highest with
the normal class across all the datasets (97% or more), which highlights the utility of the
model as a triage tool to filter out normal DR images. Not unexpectedly, misclassification
rates were higher with the five-class classification in Case 2 compared with the three-class
classification in Case 1 and our new dataset. Some examples of misclassified DR images
are shown in Figure 8.

As can be seen from misclassified fundus image samples (see Figure 8), the symptoms
of the disorders are not clear and the quality of these images are low. Thus, our proposal
cannot classify these images accurately. Quality image and visibility of the symptoms have
affected classification performance of our proposal.
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Figure 8. Misclassified samples from our new DR dataset, Case 1 and Case 2 in the top, middle, and
bottom rows, respectively.

The proposed method used the pretrained DenseNet201 architecture for feature extrac-
tion. Features were obtained via the transfer learning method on this architecture. During
model development, we tested the classification performance of various pretrained deep
learning networks and found DenseNet201 to yield the highest performance (Figure 9).
These CNNs were trained on the ImageNet1k dataset [38]. While testing the architectures
given in Figure 9, NCA was used as a feature selector, and SVM was used as a classifier. In
addition, the 1000 most significant features were selected during the testing process. As a
result, the best classification accuracy was obtained using DenseNet201. For this reason,
DenseNet201 architecture was used as the deep-feature extractor in our model.

NCA was the feature selection function used in our proposed method. The optimum
number of features, 500, had been chosen by the trial-and-error method. During the model
development phase, variable numbers of top [100, 1000] features were tested, which showed
500 as the optimum number yielding the highest classification accuracy (Figure 10).

Cubic SVM was the classifier deployed in our proposed model. During model de-
velopment, various standard classifiers in MATLAB 2021b Classification Learner Toolbox
were tested, showing cubic SVM outperforming the rest of the test dataset (Figure 11).
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Figure 9. Comparison of the performance of six pretrained deep feature extractors on the ImageNet1k
dataset [38]. Neighborhood component analysis was used for each run to select the 1000 most discrimina-
tive features, which were then fed to the support vector machine for classification. DenseNet201 yielded
the best classification accuracy and was chosen as the deep-feature extractor in our proposed model.

Figure 10. Comparison of classification accuracy by the number of top features selected by neighbor-
hood component analysis (NCA) on the new diabetic retinopathy dataset. For each run, a support
vector machine was used for classification. The top 500 NCA-selected features yielded the best
classification accuracy, and the number was chosen for our proposed model.
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Figure 11. Classification accuracies calculated extractors on our new diabetic retinopathy dataset
using six classifiers: fine tree (FT), linear discriminant (LD), Gaussian naïve Bayes (GNB), cubic
support vector machine (CSVM), fine k-nearest neighbor (FKNN), and medium neural network
(MNN). Neighborhood component analysis was used for each run to select the 500 most discrimina-
tive features, which were then fed to respective classifiers for classification. Cubic SVM yielded the
best classification accuracy and was chosen as the classifier in our proposed model.

To choose the most suitable feature selector, we tested four feature selection models,
and these feature selection functions are Chi2, ReliefF, PCA, and NCA feature selectors. The
calculated results using APTOS dataset with the SVM classifier are demonstrated in Figure 12.

Figure 12. Classification accuracies using Chi2, ReliefF, PCA, and NCA feature selectors on the
APTOS dataset.

By applying the used four feature selectors, we selected the top 500 features and we
classified these features by deploying SVM. Figure 12 depicts that the best accurate feature
selector is NCA.

Our proposed model with the chosen components was tested on different datasets,
which all produced excellent results. Of note, the salutary results for three-class classifica-
tion on our new dataset were reproduced on the Case 1 dataset derived from the APROS
2019 dataset, which shares similar DR classes (Table 5). The validation of our model on
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two different datasets underlines its robustness, which supports its adoption in real-world
clinical applications.

Table 5. Comparison of model performance model on our new DR dataset and Case 1 dataset.

Automated Diabetic Retinopathy Detection Model
Our New DR Dataset Case 1 Created Using APTOS 2019

Dataset Information 3 Class: PDR/NPDR/Normal
2355 Images

3 Class: Normal/NPDR/PDR
3662 Images

Performance Metric 10-Fold CV 80:20 Hold-Out 10-Fold CV 80:20 Hold-Out

Accuracy 91.55 94.06 92.60 93.85
Unweighted average recall 92.67 94.45 79.64 80.60

Unweighted average
precision 92.77 94.74 86.63 90.90

Average F1 92.70 94.59 82.06 83.78
Cohen’s kappa 86.34 90.38 86.74 88.94

Geometric mean 92.61 94.45 75.28 76.04

We also tested our model for five-class classification on the Case 2 dataset derived
from the APTOS 2019 dataset. This is relevant, as many studies in the literature are based
on the five-class APTOS 2019 data structure. Comparison with these studies shows that
our model has outperformed prior published models, with overall five-class classification
accuracy rates of 87.6% and 84.9% on 80:20 hold-out validation and 10-fold CV, respectively
(Table 6). In [39], the model attained 79% accuracy using a 10-fold cross-validation method,
but the results were obtained with data augmentation. In [40], the model attained 81%
accuracy with data augmentation and end-to-end learning. Of note, end-to-end training
of convolutional neural networks is computationally demanding and time-consuming,
which is an important factor to consider when implementing the model. Podapati et al. [41]
employed similar verification techniques as our model and achieved a slightly lower
80.96% accuracy with 80:20 hold-out validation. In [42], the CNN-based model attained
83.09% accuracy using only 10% of the data for testing. In [43], a proposed model based on
Inception and ResNet, which employed data augmentation and time-consuming end-to-end
training, attained 82.18% accuracy.

Table 6. Comparison of model performance on Case 2 dataset with prior studies using the APTOS
2019 dataset.

Author(s) Method Key Points Results (%)

Majumder and
Kehtarnavaz 2021 [40]

Modified
DenseNet-based
squeeze excitation
densely connected
multitasking network
(MSEDenseNet)

• 90:10 hold-out validation
• Data augmentation
• End-to-end learning

Acc 81.0
Pre 67.0
Rec 59.0
F1 61.0
Kap 84.0

Podapati et al., 2020 [41]

Feature extraction
using VGG16′s fc1
and fc2 layers and
XCeption’s global
average pooling layers,
deep neural network

• 80:20 hold-out validation
• Training using combined

features
Acc 80.96
Kap 71.1

Kassani et al., 2019 [42] Xception CNN
architecture

• 70:20:10 hold-out
validation

• Min-pooling and
normalization-based image
pre-processing

Acc 83.09
Sen 88.24
Spe 87.0

Taufiqurrahman et al.,
2020 [39]

MobileNetV2 CNN
architecture, SVM

• 10-fold cross validation
• Data augmentation

Acc 79.0
Kap 88.0

Gangwar and Ravi 2021
[43]

Inception and
ResNet-based custom
CNN

• 75:25 hold-out validation
• Data augmentation
• End-to-end learning

Acc 82.18
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Table 6. Cont.

Author(s) Method Key Points Results (%)

Our model, Case 2

Feature extraction
with DenseNet,
feature selection with
neighborhood
component analysis,
cubic SVM classifier

• 10-fold cross validation
• 80:20 hold-out validation
• No data augmentation
• Validation with three

datasets (our new dataset,
Case 1, and Case 2 derived
from APTOS 2019 dataset)

10-fold CV
Acc 84.90
UAR 68.53
UAP 74.32
F1 70.75
Kap 76.91
GM 65.25
80:20 hold-out
Acc 85.93
UAR 69.72
UAP 77.11
F1 72.51
Kap 78.37
GM 66.61

Acc, accuracy; CNN, convolutional neural network; F1, F1-score; GM, geometric mean; Kap, Cohen’s kappa;
Pre, precision; Rec, recall; Sen, sensitivity; Spe, specificity; SVM, support vector machine; UAP, unweighted
average precision; UAR, unweighted average recall.

As can be seen from Table 6, most of the models (see Majumder and Kehtarnavaz [40],
Kassani et al. [42], Taufiqurrahman et al. [39], and Gangwar and Ravi [43]) applied data
augmentation to overcome image classification on the unbalanced dataset. However, data
augmentation is not a good way to show the performance of the model. Moreover, these
models were used for end-to-end deep learning, and the time complexity of the end-to-
end deep learning is exponential in Gangwar and Ravi [43]’s method. Therefore, they
propose a hybrid CNN to obtain classification results. They used data augmentation,
and their presented deep learning model is an end-to-end. Their model has exponential
computational complexity, their results are augmented results, and they used hold-out
validation to obtain results, since they presented nonrobust results. They attained 82.18%
classification accuracy, but our model reached 84.90% with 10-fold CV without end-to-end
deep learning (we only used pretrained DenseNet201) and data augmentation. Moreover,
Kassani et al. [42] presented an Xception-Net-based model (their model is the best of
others) and they reached 83.09% classification accuracy by deploying hold-out validation
70:20:10. We deployed this validation model and our proposal reached 85.52% testing
classification accuracy. Our model extracted features efficiently with the transfer learning
approach. Discriminative features were selected with NCA, and selected features were
classified with shallow classifier cubic SVM. Of note, neither data augmentation/reduction
nor complicated preprocessing techniques were utilized.

The highlights of our work are listed below:

• A new DR image dataset collected comprised of three classes: normal, NPDR, and PDR.
• A new patch-based deep-feature extraction method was proposed that used pretrained

DenseNet201 architecture to generate many deep features.
• The optimal number of top features was selected by applying NCA, which were fed to

a shallow cubic SVM classifier.

5. Conclusions

In this paper, a new model using a novel patch-based deep-feature generator demon-
strated high classification accuracy for DR. The proposed method, inspired by vision
transformer (ViT) and multilevel perceptron-mixer (MLP-mixer) methods, divides the
image into horizontal and vertical patches. ViT and MLP-mixer uses fixed-sized square
patches for feature extraction. In this research, we have used rectangle patches that are
not fixed-size, since we used vertical and horizontal versions of these patches to gener-
ate hidden deep patterns. The raw image and the created patches generate features by
deploying pretrained DenseNet201. Using this strategy, global and local high-leveled
features were generated from a fundus image. Then, the top discriminative features were
selected using NCA, and input to shallow cubic SVM for classification using 10-fold CV
and 80:20 hold-out validation strategies. The model attained excellent accuracy results of
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more than 90% for three-class (normal, NPDR, and PDR) classification on both our new
dataset and Case 1 dataset derived from the APTOS 2019 dataset. This underscores the
reproducibility and robustness of the model. For the five-class classification on Case 2
of the APTOS 2019 dataset, the model attained slightly lower but still excellent accuracy
rates that outperformed other published studies of DR classification using the same dataset.
Of note, unlike many of these prior studies, our model is simple and employed neither
data augmentation/reduction (despite the imbalanced Case 2 dataset) nor complicated
preprocessing techniques.

The accuracy and efficiency of our model are important advantages that support
its implementation in the clinic to assist doctors in the screening of DR, as well as the
grading of its severity among diabetic patients. Moreover, our proposed patch division
model can be used with transformers to propose new-generation computer vision models.
Our proposal is a parametric image classification model, since we used eight rectangular
patches, DenseNet201, NCA, and SVM methods together. In the near future, other types of
patches, feature extraction, feature selection, and classification methods can be used for this
architecture, and new-generation image classification methods can be proposed. Moreover,
our proposal can test on the bigger datasets.
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