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Objective: An inflammation-driven model of PD has been proposed based on

the endotoxin lipopolysaccaride (LPS), a potential source of inflammation in the

gastrointestinal system linked to neurotoxicity. Systemic exposure to bacterial endotoxin

(LPS) can be determined by measuring plasma LPS binding protein (LBP). We aimed

to evaluate whether lipopolysaccharide binding protein (LBP) can be used to distinguish

PD subjects from control subjects and to assess whether LBP levels correlate with PD

disease severity.

Methods: We measured plasma LBP (ng/ml) using an ELISA kit in 94 PD subjects of

various stages and 97 control subjects. Disease severity was assessed using the UPDRS

and Hoehn and Yahr staging. The LBP level between the PD and control groups was

compared using analysis of covariance. Spearman correlation was used to explore the

relationship between LBP level and disease severity.

Results: The mean LBP level in PD subjects (n = 94) was significantly different from

control subjects (n = 95, p = 0.018). In PD subjects, we did not find a correlation

between mean LBP level and disease severity.

Conclusions: Our data suggests that LBP is one GI biomarker related to LPS induced

neurotoxicity. However, there was significant variability in LBP levels within the PD and

control groups, limiting its utility as a stand-alone biomarker. This study supports the role

of LPS induced neurotoxicity in PD and further exploration of this pathway may be useful

in developing sensitive and specific biomarkers for PD.
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Introduction

The cause of Parkinson’s disease (PD) is currently unknown. Both environmental and genetic
factors have been identified that contribute to PD pathogenesis. The pathology of PD has been
found throughout the entire nervous system including the central, peripheral, and enteric nervous
system (Braak and Del Tredici, 2008).

Environmental factors can trigger an inflammatory cascade in genetically susceptible individuals
resulting in neurodegeneration. In fact, activated microglia and increased proinflammatory
cytokines (TNF, IL-1B, IL-6, iNOS) have been reported in the CSF (Mogi et al., 1994;
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McGeer et al., 2001) of PD subjects. There is a growing body
of evidence that inflammation results in neurodegeneration in
PD, rather than inflammation being a consequence of the disease
(Côté et al., 2011, 2015). An inflammation-driven animal model
of PD has been proposed based on lipopolysaccharide (LPS)
induced neurotoxicity (Mogi et al., 1994). LPS is an endotoxin
found on the outer membrane of gram negative bacteria and
humans are exposed to LPS through the intestinal tract (Sharma
and Nehru, 2015). The intestinal tract and thus the enteric
nervous system may serve as a conduit to the central nervous
system. It has been posited that the inflammatory process could
gain access to the lower brainstem via the vagal nerve and then
ascend through the basal mid- and forebrain until it reaches
the cerebral cortex, producing various pre-motor and motor
symptoms of PD along the way (Braak and Del Tredici, 2008).
LPS may be one of the inflammatory triggers involved in this
process.

Systemic exposure to bacterial endotoxin can be determined
by measuring plasma LPS binding protein (LBP). Low levels of
plasma LBP have been associated with increased gram negative
bacterial exposure. LBP is an acute phase protein that binds
to LPS to induce immune responses by presenting LPS to cell
surface markers including CD14 and TLR4 (Muta and Takeshige,
2001). Ultimately, this may trigger monocyte responses resulting
in secretion of inflammatory markers such as IL-6 (Thomas
et al., 2002). A study of 9 patients with early PD (median
Hoehn and Yahr stage 2) and age matched controls found
that the PD subjects had a significantly lower mean level
of plasma LBP compared to control subjects (Forsyth et al.,
2011). Lower levels of plasma LBP, as shown in these PD
subjects, have been associated with increased exposure to gram
negative bacteria (Gutsmann et al., 2001; Minter et al., 2009)
which supports the hypothesis that PD subjects have increased
intestinal permeability to gram negative bacteria and bacterial
products.

The aim of the research plan was to evaluate LBP as a potential
biomarker for PD across a spectrum of disease severity. We
examined whether reductions in LBP correlate with measures of
PD severity.

Materials

Blood (6 cc) was collected using normal aseptic techniques and
samples were initially kept on ice. Plasma was separated from
the blood within 20min after blood sampling by centrifugation
(1500 × g at 4◦C for 15min). The plasma was subsequently
transferred to a fresh polypropylene tube and stored at −70◦C.
Samples were collected over a 6 month period. Once all of
the required samples were collected, they were thawed and
used within 24 h of thawing. LBP levels were measured using
the Hycult biotech Human LBP Elisa kit (HK315) (Hycult
Biotech, 2013). and all samples were processed concurrently
to maintain consistency of the measurements. All plates were
processed simultaneously to limit batch effects. Samples were run
in duplicate. Briefly, samples and standards were incubated in
microtiter wells coated with antibodies recognizing human LBP.
Biotinylated tracer antibody was bound to captured human LBP.
Streptavidin-peroxidase conjugate was bound to the biotinylated

tracer antibody. Streptavidin-peroxidase conjugate react with the
substrate, tetramethylbenzidine (TMB). The enzyme reaction
was stopped by the addition of oxalic acid. The absorbance at
450 nm was measured with a spectrophotometer. A standard
curve was obtained by plotting the absorbance (linear) vs.
the corresponding concentrations of the human LBP standards
(log). The human LBP concentration of samples, which were
run concurrently with the standards, was determined from the
standard curve.

Methods

This observational study was cross-sectional in design and
subjects were enrolled from the Rush Movement Disorders
clinic. The study proposal and consent were approved by the
Institutional Review Board of Rush University. All participants
(or their legal representatives) provided written, informed
consent to participation. One-hundred PD subjects and 100
controls were enrolled from June 2013 to January 2014. All
PD patients met the UK Parkinson’s disease society brain bank
clinical diagnostic criteria (Hughes et al., 1992) and the diagnosis
of PD was confirmed by G.P. after personal interview, medical
history, physical examination, and chart review. Clinical and
demographic data included age at time of enrollment, gender,
ethnicity, disease severity, gastrointestinal symptom severity,
and LBP level. Exclusion criteria for control groups: history
of GI malignancy, undergoing treatment with medications that
may induce parkinsonism (metoclopramide, typical, or atypical
antipsychotic agents), known diagnosis of inflammatory bowel
disease, presence of symptomatic functional GI disease that
significantly impairs intestinal motility such as scleroderma
or use of GI motility drugs, presence of an acute illness
requiring immediate hospitalization, prior diagnosis of short
bowel syndrome or severe malnutrition. Subjects were not
excluded for laxative use.

Disease severity was assessed by G.P. for each patient at the
time of data and blood collection. Disease severity was assessed
with the Unified Parkinson’s Disease Rating Scale (UPDRS),
Hoehn and Yahr (H&Y) staging, and Schwab and England scale
(S&E) in the “ON” medication state.

The current status of gastrointestinal symptoms was
determined using a self-report survey with a bowel habits
questionnaire, Gastrointestinal Symptom and Severity Rating
Checklist (GISSC), administered to the patient at the routine
visit. This questionnaire includes a validated structured
questionnaire that is used to assess bowel habits (Forsyth et al.,
2011) and the Bristol stool consistency score card (Basseri et al.,
2011). Higher questionnaire scores indicate more prominent
gastrointestinal symptoms.

G∗Power version 3.1 was used determine the power based
on the difference between two independent means derived from
the data by Forsyth et al. (2011) We assumed a mean of
84291 ng/ml ± 31380 for the control group and a detectable
difference of at least 15% (12644 ng/ml).With an a priori analysis,
and a two tailed test (α = 0.05, power of 80%) the required
sample size was 97 subjects per group. We planned to recruit 100
subjects per group which would provide >80% power and likely
even higher given the large standard deviation.
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TABLE 1 | Demographics.

PD (n = 94) Control (n = 99) P

Age, mean 67.7±10.5 62.6± 10.7 0.001

GENDER, n (%)

F

M

37 (39.4%)

57 (60.6%)

70 (70.7%)

29 (29.3%)

<0.001

Total UPDRS 42.8±14.1 −

HY stage 2.3±0.64 −

Schwab and England 81.0±12.3 −

Values are mean ±SD. PD, Parkinson’s disease; GI, Gastrointestinal; LBP,

lipopolysaccharide binding protein; UPDRS, Unified Parkinson’s disease Rating

Scale.

SPSS version 16.0 was used for additional statistical analysis.
Descriptive analysis was performed on all variables and their
distribution assessed. LBP levels were not normally distributed.
Nonparametric analyses with the Mann-Whitney test was used
to compare mean LBP levels in the PD and control groups.
LBP levels were transformed to z-scores and outliers that
were ≥3 standard deviations were excluded and repeat analyses
were performed. An analysis of covariance (ANCOVA) was
conducted adjusting for covariates. Correlations were calculated
using Spearman’s rho (r), where the accuracy of the analysis
was assessed by the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve. Cutoff values
of LBP were calculated using sensitivity and specificity values
of 80%.

Results

Of the 100 PD subjects enrolled, samples were successfully
processed in 94 subjects. Ninety-nine of the 100 control samples
were adequately processed. Demographic data are listed in
Table 1. PD subjects were significantly older than controls
subjects (p = 0.001). Also, there was a significant difference
between the numbers of men and women in the two groups (p <

0.001). Mean LBP level was significantly lower in the PD group
(n = 94) compared with the control group (n = 99) (9344 ±

6694 vs. 12330 ± 8912 respectively, U = 3573.5, p = 0.005)
(Table 1).

To determine possible outliers, z-scores were obtained and
values that were ≥3 standard deviations were removed. Four
outliers were excluded in this fashion (all in the control group)
and additional analyses were performed. There remained a
significant difference in LBP levels between the PD group (n =

94, LBP 9344 ± 6694 ng/ml) and the control group (n = 95,
11280 ± 7422 ng/ml) (U = 3573.5, p = 0.018) (Figure 1). There
was also a significant difference between GISSC scores and bowel
movements per week in the PD group compared with the control
group (Table 2).

Given that age and gender were significantly different between
the PD and control groups, these variables were used as covariates
in an ANCOVA model. The difference in LBP levels between
PD and control groups remained significant (p = 0.03). The

FIGURE 1 | LBP levels in PD and control subjects. Plasma LBP is

significantly lower in PD patients. However, there remains significant overlap

between the two groups and wide variability regarding the assay in both

groups. Data are presented as means (ng/ml).

TABLE 2 | Comparison of LBP level, GISSC scores, bowel movements per

week.

PD (n = 94) Control (n = 95) U p

LBP level (ng/ml) 9344± 6694 11280±7422 3573.5 0.018

GISSC, Mean 35.9± 38.5 15.1±20.4 2879.0 <0.001

Bowel movements

per week, mean

6.8± 5.0 8.6±4.6 3190.5 <0.001

Values are mean ±SD. PD, Parkinson’s disease; GI, Gastrointestinal; LBP,

lipopolysaccharide binding protein; UPDRS, Unified Parkinson’s disease Rating

Scale. U, Mann-Whitney U-score.

covariates age (p = 0.196) and gender (p = 0.704) were not
significant predictors of LBP level.

In the PD group, there was no correlation between mean
LBP level and UDPRS score (r = −0.022, p = 0.830), HY
stage (r = −0.037, p = 0.727), or GISSC score (r = −0.087,
p = 0.404). There was no correlation between LBP level and SE
score (r = −0.038, p = 0.716) or bowel movements per week
(r = −0.101, p = 0.332). When both PD groups and control
groups were taken together, there was no correlation between
mean LBP level and GISSC score (r = 0.048, p = 0.508) or bowel
movements per week (r = −0.014, p = 0.849).

We performed a sensitivity analysis and constructed an ROC
curve to determine the utility of this test. With the sample of 94
PD subjects and 95 control subjects, an AUC of 0.60 (95% CI =
0.518–0.681) was obtained (Figure 2).

Discussion

Our data suggests that lipopolysaccharide binding protein (LBP)
is one GI biomarker related to LPS induced neurotoxicity that is
significantly different between PD and control subjects. However,
there was significant variability in LBP levels within each group
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FIGURE 2 | ROC curve for PD vs. control group. Receiver operating curve

(ROC) for LBP levels between 94 PD subjects and 95 control subjects.

and significant overlap between the PD and control groups
that was much greater than our previous report (Forsyth et al.,
2011). This is likely because we recruited a broader spectrum
of PD subjects, whereas the report by Forsyth et al. (2011)
only recruited subjects with early PD. Our results also show
that LBP has a poor predictive value with an AUC of 0.62.
This limits the utility of LBP as a stand-alone biomarker.
Ultimately LBP seems to be a marker of immune dysfunction and
inflammation (Froon et al., 1995), though it has been linked to
other systemic disorders including obesity (Huang et al., 2015)
and atherosclerosis (Serrano et al., 2013), which may further
account for its wide variability. However, additional markers
related to LPS induced neurotoxicity may warrant exploration.
These GI markers include: (1) zonulin and intestinal fatty acid
binding protein (IFABP): markers of intestinal permeability and
integrity; (2) endotoxin and serum CD14 (sCD14): markers
of gram negative bacterial inflammation; (3) lipoteichoic acid
(LTA): a marker of gram positive bacteria (Forsyth et al., 2011). If
LPS truly is involved in PD pathogenesis, zonulin, IFABP, LPS,
and sCD14 would be expected to be abnormal in PD subjects
compared with controls. Further, there would be no difference
in LTA levels between PD and control groups since gram positive
bacteria are not involved in LPS inflammatory response. Thus,
understanding the pathologic effects of LPS may be useful in
developing a panel of biomarkers which are both sensitive and
specific to PD subjects.

We did not find a correlation between LBP level and disease
severity. PD is a heterogenous disease and GI inflammation
may not be the pathologic culprit in all subjects afflicted
by the disease. Thus, additional studies are needed to parse
out subjects who may have GI pathology as the underlying
cause which may further increase the utility of GI biomarker
testing. Another explanation for the lack of LBP correlation
with disease severity may relate to the role of LPS as an
inflammatory trigger. Since LPS is considered an acute phase
reactant (Froon et al., 1995), it may be abnormal only in the

early stages of PD and may subsequently normalize as the
disease progresses. Additional studies are needed to explore this
possibility.

Study limitations include a small representation of non-
Caucasians and a significantly higher number of women
recruited to the control group. This is not surprising since PD
is more common in men (Wooten et al., 2004) and the control
subjects were often spouses of PD subjects who were recruited
to participate in the study. Using ANCOVA, when we adjusted
for gender, our results remained statistically significant. Also,
our control subjects did not have a neurological examination
performed to exclude Parkinsonism. Since PD is associated with
a potentially long pre-motor phase (Pont-Sunyer et al., 2015)
it is possible that some of the control subjects may have had
early or pre-motor Parkinsonism. Lastly, it is unknown whether
LBP is specific to PD or whether LBP plays a role in atypical
Parkinsonism as well (ex. MSA). This is an area where further
research is needed.

Our PD subjects were also significantly older than controls
and the male predominance of PD with younger spouses acting
as controls may play a role in this as well. LBP levels in young,
healthy controls have been found to be lower than in the older
healthy population (Stehle et al., 2012). However, our analyses
remained statistically significant when we controlled for age.
Furthermore, our control population was younger than the PD
population so they would be expected to have lower levels of LBP
compared with age matched controls, which would potentially
make the difference between the PD and controls groups even
larger had we used age matched controls.

In conclusion, LPS is an endotoxin that has been suggested to
play a role in the pathogenesis of PD. Further studies of LPS, LBP,
and othermarkers of GI inflammation are needed to develop a set
of reliable biomarkers that are useful in distinguishing between
PD and control subjects.
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