
ORIGINAL RESEARCH
published: 13 June 2022

doi: 10.3389/fnbot.2022.928636

Frontiers in Neurorobotics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 928636

Edited by:

Zhan Li,

Swansea University, United Kingdom

Reviewed by:

Dechao Chen,

Sun Yat-sen University, China

Yinyan Zhang,

Jinan University, China

*Correspondence:

Jianfeng Li

ljf_zy@163.com

Received: 26 April 2022

Accepted: 10 May 2022

Published: 13 June 2022

Citation:

Liao B, Wang Y, Li J, Guo D and He Y

(2022) Harmonic Noise-Tolerant ZNN

for Dynamic Matrix Pseudoinversion

and Its Application to Robot

Manipulator.

Front. Neurorobot. 16:928636.

doi: 10.3389/fnbot.2022.928636

Harmonic Noise-Tolerant ZNN for
Dynamic Matrix Pseudoinversion and
Its Application to Robot Manipulator
Bolin Liao 1, Yuyan Wang 2, Jianfeng Li 1*, Dongsheng Guo 3 and Yongjun He 1

1College of Information Science and Engineering, Jishou University, Jishou, China, 2College of Mathematics and Statistics,

Jishou University, Jishou, China, 3 School of Information Science and Engineering, Huaqiao University, Xiamen, China

As we know, harmonic noises widely exist in industrial fields and have a crucial impact

on the computational accuracy of the zeroing neural network (ZNN) model. For tackling

this issue, by combining the dynamics of harmonic signals, two harmonic noise-tolerant

ZNN (HNTZNN) models are designed for the dynamic matrix pseudoinversion. In the

design of HNTZNN models, an adaptive compensation term is adopted to eliminate the

influence of harmonic noises, and a Li activation function is introduced to further improve

the convergence rate. The convergence and robustness to harmonic noises of the

proposed HNTZNN models are proved through theoretical analyses. Besides, compared

with the ZNNmodel without adaptive compensation term, the HNTZNNmodels are more

effective for tacking the problem of dynamic matrix pseudoinverse under harmonic noises

environments. Moreover, HNTZNN models are further applied to the kinematic control of

a four-link planar robot manipulator under harmonic noises. In general, the experimental

results verify the effectiveness, superiority, and broad application prospect of the models.

Keywords: zeroing neural network, harmonic noise, matrix pseudoinverse, robot manipulator, robustness

1. INTRODUCTION

The matrix pseudoinverse (i.e., Moore Penrose generalized inverse) is the generalized inverse of a
singular matrix or non-squarematrix. Similar to the inverse of thematrix, thematrix pseudoinverse
is an important subject in the fields of science and engineering. It is considered a powerful formula
and design technology for image reduction (Juang and Wu, 2010), signal processing (Van der
Veen et al., 1997), linear classifier (Skurichina and Duin, 2002), and associative memory (Zhang
et al., 2004). Due to its importance, numerous efforts have been made in the calculation of matrix
pseudoinverse in the past few decades. For instance, Perković and Stanimirović (2011) developed
an iterative algorithm to estimate the Moore Penrose generalized inverse. Zhou et al. (2002)
presented a sequential recursive formula to calculate the pseudo inverse of the matrix based on
the famous Greville formula. Courrieu (2008) proposed an algorithm based on full rank Cholesky
decomposition for fast calculation of Moore Penrose inverse matrix. However, most of these serial
processing algorithms need to be executed in a single sampling period, and when the system order
becomes large, these algorithms may fail. Therefore, these studies are neither feasible nor valid for
real-time applications (Zhang and Yi, 2011). While the real-time computing of dynamic matrix
pseudoinverse problems often exists in industrial applications. For example, the inverse kinematics
control problem of a redundant robot manipulator needs to calculate the pseudoinverse of the
dynamic matrix in real time (Liao et al., 2016).
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Due to the nature of high-speed parallel, distributed
processing and the convenience of hardware implementation,
neural networks have been used to replace the numerical
algorithm of serial processing, and widely used in the fields
of scientific and engineering (Jin et al., 2017; Xu et al., 2019;
Jafari, 2020; Liu et al., 2020). Scholars have deeply studied many
recurrent neural networks and parallel computing schemes for
computing scientific problems includingmatrix pseudoinverse in
real time (Li et al., 2021; Kornilova et al., 2022). In particular, a
special kind of recurrent neural network termed zeroing neural
network (ZNN), has achieved remarkable success in solving
dynamic problems (Zhang et al., 2002; Ding et al., 2017; Xiao
et al., 2017; Jin, 2021). Ding et al. (2017) investigated a new
neural network based on ZNN to obtain the online solution of
complex-valued systems of linear equation in a complex domain
with higher precision and higher convergence rate. Xiao et al.
(2017) presented a ZNN to solve effectively the unified QP
problem and applied it to the coordinated path tracking of dual
robot manipulators. Specifically, ZNN successfully solved the lag
error generated by traditional recurrent neural networks which
uses the indefinite error monitoring function. In addition, the
traditional ZNN does not have obvious advantages in real-time
calculation of large-scale problems due to its slow convergence
speed. Thus, based on the essential nonlinear method of ZNN
design, Liao and Zhang (2014b) proposed two finite time
convergent ZNN models to solve the real time dynamic matrix
pseudoinverse effectively.

In industrial applications, harmonic noises exist widely (Du
et al., 2017; Karsli and Dondurur, 2018). In addition, any type of
signal can be expressed as the superposition of a sinusoidal signal
based on the Fourier transform. However, most of the current
studies are aimed at constant noises or linear noises, and there is
a lack of an adaptive mechanism to suppress harmonic noises.
Furthermore, high frequency and large amplitude harmonic
noises will seriously affect the calculation accuracy of the ZNN
model. Therefore, by incorporating the dynamics of harmonic
signals, we design and use the adaptive compensation term
to learn harmonic noises and compensate for the influence of
harmonic noises adaptively. Moreover, a well-defined activation
function is helpful to accelerate the convergence rate of the
ZNN model (Xiao et al., 2018). Therefore, on the basis of
harmonic noise adaptation, we employ the Li activation function
(Li et al., 2013) to speed up the convergence rate of ZNN and
finally design two harmonic noise-tolerant ZNN (HNTZNN)
models for solving the dynamic matrix pseudoinverse problem in
the harmonic-noise environment. Furthermore, these HNTZNN
models are applied to the kinematic control of a four-link planar
robot manipulator.

The remainder of this article is organized into six sections.
Section 2 introduces the problem formulation and preliminaries.
HNTZNN models are developed and studied in Section 3.
In Section 4, the convergence and noise suppression ability
of HNTZNN are proved theoretically. In Section 5, numerical
examples are used to prove the efficacy and superiority
of HNTZNN models for calculating the dynamic matrix
pseudoinverse. Section 6 shows the application of two ZNN
models on a four-link planar robot manipulator. Finally, the

conclusion of this article is given in Section 7. The main
contributions of this article are as follows.

• In this article, two novel harmonic noise-tolerant ZNNmodels
with a fast convergence rate are first proposed and investigated
for computing dynamic matrix pseudoinversion by combining
the dynamic properties of harmonic signals and the Li
activation function.

• Theoretical analyses are conducted, which deduce the excellent
convergence and robustness of these HNTZNN models in
coping with single-harmonic and multiple-harmonic noises.

• The experiment results are illustrated, which further
substantiate the efficacy and superiority of the proposed
HNTZNN models for the dynamic matrix pseudoinversion
under low-frequency, high-frequency, periodic, and aperiodic
harmonic noises.

• The proposed HNTZNN models are applied to the kinematic
control of a four-link planar robot manipulator in the presence
of harmonic noise, thereby depicting the application prospect
of the proposed models.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Definition 1. (Wang, 1997; Liao and Zhang, 2014a) For a given
dynamic matrix B(t) ∈ R

m×n, its pseudoinverse Y(t) ∈ R
n×m

satisfies the following Penrose equations:

B(t)Y(t)B(t) = B(t), Y(t)B(t)Y(t) = Y(t),

B(t)Y(t) = (B(t)Y(t))T, Y(t)B(t) = (Y(t)B(t))T,

where (·)T denotes the transpose of a matrix, Y(t) is called the
dynamic pseudoinverse of B(t), which is often denoted by B†(t).

It is worth noting that the dynamic pseudoinverse B†(t) always
exists and is unique (Liao and Zhang, 2014a). In particular, if
the matrix B(t) is a full rank matrix at any time instant t, i.e.,
rank[B(t)] = min{m, n} ∀t ∈ [0,∞), the dynamic pseudoinverse
of B(t) is obtained by the following lemma.

Lemma 1. (Wang, 1997; Liao and Zhang, 2014a) For
any dynamic matrix B(t) ∈ R

m×n, if rank[B(t)]
= min{m, n} ∀t ∈ [0,∞), the unique dynamic pseudoinverse
B†(t) can be expressed as:

B†(t) =

{

(

BT(t)B(t)
)−1

BT(t), if m > n,

BT(t)
(

B(t)BT(t)
)−1

, if m ≤ n.

When m > n, it represents the left pseudoinverse of the matrix
B(t). When m ≤ n, it represents the right pseudoinverse of the
matrix B(t). In the case of m ≤ n, the procedure of obtaining
the dynamic pseudoinverse B†(t) is similar to that ofm > n, and
thus this paper only considers the case of the left pseudoinverse of
the matrix B(t). Therefore, the dynamic pseudoinverse problem
studied in this study is in the form of

BT(t)B(t)Y(t) = BT(t) ∈ R
m×n. (1)

Our objective in this study is to find the Y(t) of the problem (1).
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3. HARMONIC NOISE-TOLERANT ZNN
MODELS

In this section, the improved ZNN models against harmonic
noises for dynamic pseudoinverse are detailed.

3.1. ZNN Model Against Single-Harmonic
Noise
In order to monitor the calculation process of dynamic matrix
pseudoinverse (1) in real time, the error function is defined as

E(t) = BT(t)B(t)Y(t)− BT(t).

To force E(t) to converge to zero, we choose

Ė(t) =
dE(t)

dt
= −τ9

(

E(t)
)

, (2)

where τ > 0 ∈ R is a positive design parameter, and 9(·)
denotes the activation function of the neural network, which is
a monotonically increasing odd function. Then,

Ė(t) =BT(t)B(t)Ẏ(t)

+
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)− ḂT(t). (3)

In this article, we choose the Li activation function (Li et al.,
2013), and its expression is as follows:

ψ(eij) = Lipλ(eij)+ Lip1/λ(eij), (4)

where eij represents the ijth element of E(t), parameter λ ∈ (0, 1),
and the function Lipλ(·) is defined as follows:

Lipλ(eij) =











|eij|
λ, if eij > 0,

0, if eij = 0,

−|eij|
λ, if eij < 0.

(5)

In view of the noise exiting, formula (2) can be rewritten as

Ė(t) = −τ9
(

E(t)
)

+ O(t), (6)

where O(t) ∈ R
m×n represents the matrix-form harmonic noises

and each element is defined as follows:

oij(t) = Ŵ sin(ωt + ϕ) = Ŵ sin(2π ft + ϕ), (7)

where i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. It is assumed that the
frequency f in (7) is known, the amplitude Ŵ and phase ϕ
are unknown. To adaptively learn the f -frequency harmonics
noise, an additional quantity −X(t) ∈ R

m×n is introduced into
equation (6):

Ė(t) = −τ9
(

E(t)
)

− X(t)+ O(t). (8)

The purpose of this study is to design and use−X(t) to adaptively
learn O(t) and compensate for the impact of O(t). Differentiating
(7) twice with respect to time t, the following result is obtained:

öij(t) = −4π2f 2Ŵ sin(2π ft + ϕ) = −4π2f 2oij(t).

Thus, the dynamics of oij(t) can be formulated as follows:

ȯij(t) = nij(t), ṅij(t) = −4π2f 2oij(t). (9)

Rewrite formula (9) into matrix form:

Ȯ(t) = N(t), Ṅ(t) = −4π2f 2O(t), (10)

where N(t) ∈ R
m×n with nij(t) as its element. The unknown

amplitude and phase information of a harmonic signal can be
adaptively eliminated from (10) when the frequency f is known.

Therefore, combing formulas (3), (8), and (10), the following
single-harmonic noise-tolerant ZNN (HNTZNN) model is
obtained:



















BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

− X(t)+ O(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t),

(11)
where λ ≥ 1 ∈ R.

3.2. ZNN Model Against Multiple-Harmonic
Noise
In this section, the proposed HNTZNNmodel (11) is extended to
multiple-harmonic noises, and a neural network model against
multiple-harmonic noises is obtained. Let Õ(t) ∈ R

m×n be the
matrix-form multiple-harmonic noises. Each element of such
matrix is defined as

õij(t) =

l
∑

k=1

ok(t) =

l
∑

k=1

Ŵksin(2π fkt + ϕk). (12)

Similarly, in (12), it is assumed that the frequency fk (with k ∈

1, · · · , l) is known, the amplitude Ŵk and phase ϕk are unknown.
Differentiating (12) twice with respect to time t, we have the

following results:

˙̃o(t) =

l
∑

k=1

ök(t)

=

l
∑

k=1

−4π2f 2k Ŵk sin(2π fkt + ϕk)

=

l
∑

k=1

−4π2f 2k ok(t).

The dynamics of õij(t) are obtained as follows:

˙̃oij(t) =

l
∑

k=1

nk(t), ȯk(t) = nk(t), ṅk(t) = −4π2f 2k ok(t),

which is rewritten in the matrix form as:

˙̃O(t) =

l
∑

k=1

Nk(t), Ȯk(t) = Nk(t), Ṅk(t) = −4π2fk
2Nk(t), (13)
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where Nk(t) ∈ R
m×n and Ok(t) ∈ R

m×n are the matrices
composed of nk(t) and ok(t), respectively.

Combined with the dynamic analysis in Formula (13), a
multiple-harmonic noise-tolerant ZNN model is as follows:



















BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

−
∑l

k=1 Xk(t)+ Õ(t),

Ẋk(t) = Ck(t)+ 4π2f 2
k
λE(t),

Ċk(t) = −4π2f 2
k
Xk(t), k = 1, 2, · · · , l.

(14)
When l = 1, (14) can be reduced to (11).

The corresponding theoretical analysis and proof are carried
out in the next section.

4. THEORETICAL ANALYSIS

Three theorems are proposed to verify the convergence and
robustness performance of the proposed HNTZNNmodel.

Theorem 1. For any smooth dynamic full rank matrix B(t) ∈

R
m×n (m > n), the state matrix Y(t) of HNTZNN model (11)

globally converges to the dynamic theoretical pseudoinverse B†(t)
of (1) in the free-noise situation.

PROOF: In the free-noise situation, (11) can be simplified as











cĖ(t) = −τ9
(

E(t)
)

− X(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t),

(15)

where E(t) = BT(t)B(t)Y(t) − BT(t), (15) is a compact matrix
form of the following set ofmn-decoupled equations:











cėij(t) = −τψ
(

eij(t)
)

− xij(t),

ẋij(t) = cij(t)+ 4π2f 2λeij(t),

ċij(t) = −4π2f 2xij(t).

(16)

Then, we could define the Lyapunov function candidate (Xiang
et al., 2019) to analyze the ijth subsystem (16) as

vij(t) =
e2ij(t)

2
+

x2ij(t)

8π2f 2λ
+

c2ij(t)

32π4f 4λ
, (17)

which guarantees vij(t) ≥ 0, i.e., vij(t) > 0 for any e2ij(t) 6= 0 or

x2ij(t) 6= 0 or c2ij(t) 6= 0, and vij(t) = 0 if and only if e2ij(t) = 0,

x2ij(t) = 0, c2ij(t) = 0. The time derivative of (17) could be

obtained as

dvij(t)

dt
=eij(t)ėij(t)+

xij(t)ẋij(t)

4π2f 2λ
+

cij(t)ċij(t)

16π4f 4λ
,

=− τeij(t)ψ
(

eij(t)
)

− eij(t)xij(t)+
xij(t)cij(t)

4π2f 2λ

+ xij(t)eij(t)−
cij(t)xij(t)

4π2f 2λ
,

=− τeij(t)ψ
(

eij(t)
)

.

Substituting (5) into the above equation, we further have

dvij(t)

dt
=

{

−τ |eij(t)|
λ+1, if eij 6= 0,

0, if eij = 0.

Thus, when eij(t) 6= 0, v̇ij(t) < 0, when eij(t) = 0, v̇ij(t) = 0.
According to Lyapunov stability theory (Khalil, 2001), it can be
concluded that eij(t) globally to 0 for any i ∈ {1, · · · ,m}, j ∈

{1, · · · , n}, which means that

lim
t→∞

‖E(t)‖F = 0.

In view of E(t) = BT(t)B(t)Y(t)−BT(t) and the nonsingularity of

BT(t)B(t), we can deduce Y(t) →
(

BT(t)B(t)
)−1

BT(t) as t → ∞.
Therefore, the state matrix Y(t) of HNTZNNmodel (11) globally
converges to the dynamic theoretical pseudoinverse B†(t) of (1).
The proof is, thus, completed.

Theorem 2. For any smooth dynamic full rank matrix B(t) ∈

R
m×n (m > n), the state matrix Y(t) of HNTZNN model (11)

globally converges to the dynamic theoretical pseudoinverse B†(t)
of (1) when the single-harmonic noise is considered.

PROOF: Let us consider a single harmonic noise O(t) =

[oij(t)] = [Ŵ sin(2π ft + ϕ)] with known frequency, and the
unknown amplitude and phase. Model (11) is simplified and
rewritten as































cĖ(t) = −τ9
(

E(t)
)

− X(t)+ O(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t),

Ȯ(t) = N(t),

Ṅ(t) = −4π2f 2O(t).

(18)

Defining 1(t) = X(t) − O(t) and 8(t) = C(t) − N(t) yields the
following reformulation of (18):











Ė(t) = −τ9
(

E(t)
)

−1(t),

1̇(t) = 8(t)+ 4π2f 2λE(t),

8̇(t) = −4π2f 21(t).

(19)

Noting that Equations (15) and (19) have exactly the same form,
therefore, one can also obtain

lim
t→∞

eij(t) = 0 and lim
t→∞

‖E(t)‖F = 0,

for any i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. In addition, according to
(16), we have

{

cẋij(t) = cij(t)+ 4π2f 2λeij(t) → cij(t),

ċij(t) = −4π2f 2xij(t).
(20)

According to the dynamic description in (9), Equation (20) can
generate a harmonic signal xij(t) that can adaptively compensate
for the influence of noise over time. Then, Equation (18) is
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FIGURE 1 | Results synthesized by the HNTZNN model (11) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

single-harmonic noise with frequency f = 0.001 Hz. (A) State trajectory. (B) Residual error.

FIGURE 2 | Residual errors of ZNN-1 model (24) for computing the pseudoinverse of the dynamic matrix (21) under the single-harmonic noise with different

frequencies. (A) f = 0.001 Hz. (B) f = 50 Hz.

a compact matrix form of the following set of mn-decoupled
equations:











cėij(t) = −τψ
(

eij(t)
)

− xij(t)+ oij(t),

ẋij(t) = cij(t)+ 4π2f 2λeij(t),

ċij(t) = −4π2f 2xij(t).

(21)

Because of limt→∞ eij(t) = 0, the harmonic signal xij(t) is
generated based on the analysis of (20), whichmeets the following
results:

−xij(t)+ oij(t) → 0, as t → ∞.

In particular, although only the frequency of oij(t) is known, the
second and third dynamics in (21) can adaptively predict the
unknown parameters of oij(t), i.e., amplitude Ŵ and phase ϕ. The
resultant signal xij(t) can adaptively compensate the impact of
oij(t).

In summary, the state matrix Y(t) of the HNTZNN model
(11) globally converges to the dynamic theoretical pseudoinverse
B†(t) of (1) when the single-harmonic noise is considered. The
proof is, thus, completed.

Theorem 3. For any smooth dynamic full rank matrix B(t) ∈

R
m×n (m > n), the state matrix Y(t) of the HNTZNN model

(14) globally converges to the dynamic theoretical pseudoinverse
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FIGURE 3 | Results synthesized by the HNTZNN model (11) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

single-harmonic noise with frequency f = 50 Hz. (A) State trajectory. (B) Residual error.

B†(t) of (1) when the multiple-harmonic noise is considered, i.e.,

Õ(t) = [oij(t)] =
[

∑l
k=1 Ŵksin(2π fkt + ϕk)

]

, i ∈ {1, · · · ,m},

j ∈ {1, · · · , n}.

PROOF: This theorem can be obtained through the proof of the
above two theorems and the superposition principle. Therefore,
it is omitted. The proof is, thus, completed.

Remarks: Generally, for any periodic noises which can
be decomposed into a series of harmonics through Fourier
transform, the proposed model is effective. The limitation of the
current work may lie in the suppression of random noises.

5. NUMERICAL VERIFICATIONS

Previously, we analyzed the convergence and noise tolerance of
models (11) and (14). In this section, we verify the efficacy and
the superiority of the proposed models for solving the following
dynamic matrix pseudoinverse:

B(t) =





sin(2t) cos(2t)
− cos(2t) sin(2t)
sin(2t) cos(2t)



 ∈ R
3×2. (22)

To check the correctness of the presented HNTZNN models, the
theoretical dynamicmatrix pseudoinverse of (22) is directly given
as

B†(t) =

[

0.5 sin(2t) − cos(2t) 0.5 sin(2t)
0.5 cos(2t) sin(2t) 0.5 cos(2t)

]

∈ R
2×3. (23)

In order to verify the superiority of the proposed model, the
ZNN-1 model (Liao and Zhang, 2014a) for dynamic matrix
pseudoinverse is directly given in this section:

BT(t)B(t)Ẏ(t) =ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

− τ9
(

BT(t)B(t)Y(t)− BT(t)
)

. (24)

The following experiments are carried out to solve the
pseudoinverse of the dynamic matrix (22) in the case of four
kinds of harmonic noise.

1) Single-harmonic noise with a low-frequency: Figures 1, 2
present the experimental result synthesized by HNTZNN
model (11) and ZNN-1 model (24) for the dynamic matrix
(21) pseudoinverse under the single-harmonic noise with a
near-zero frequency, i.e.,

O(t) = [oij(t)] = [103 sin(0.002π t + 1)] ∈ R
2×3,

where frequency f = 0.002π/(2π) = 0.001Hz. In Figure 1A,
the red dashed-dotted line denotes the theoretical dynamic
solution, and the blue solid line denotes the neural-state
solution. In addition, we set τ = 10 and λ = 1. As
shown in Figure 1A, for a random initial value Y(0) ∈

R
2×3, state matrix Y(t) ∈ R

2×3 of the proposed HNTZNN
model (11) converges to the theoretical pseudoinverse (23)
accurately and rapidly in a short period of time. Figure 1B
shows that the residual error ‖E(t)‖F of the HNTZNN model
(11) can converge to zero within 1 s. However, with the
same parameters, the residual error ‖E(t)‖F of the ZNN-1
model (24) can not converge to zero displayed in Figure 2A.
These experimental results verify the efficacy and superiority
of model (11) for solving the dynamic matrix pseudoinverse
under the single-harmonic noise.

2) Single-harmonic noise with high-frequency: HNTZNNmodel
(11) and ZNN-1 model (24) are tested for the following
harmonic noise:

O(t) = [oij(t)] = [103 sin(100π t + 1)] ∈ R
2×3,

where frequency f = 50 Hz, which is widely encountered
in power systems (Karsli and Dondurur, 2018). The
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FIGURE 4 | Residual errors of HNTZNN model (11) using different τ for computing the pseudoinverse of the dynamic matrix (21) under the single-harmonic noise with

frequency f = 50 Hz. (A) τ = 50, λ = 1. (B) τ = 100, λ = 1.

FIGURE 5 | Results synthesized by the HNTZNN model (14) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

multiple-harmonic noise with a periodic characteristic. (A) State trajectory. (B) Residual error.

corresponding results are shown in Figures 2, 3. As shown
in Figure 3A, the state matrix Y(t) ∈ R

2×3 of the
proposed HNTZNN model (11) still can converge to
the dynamic theoretical pseudoinverse (23) accurately and
rapidly. Figure 3B shows that the residual error ‖E(t)‖F of
HNTZNN model (11) can converge to zero rapidly. On the
contrary, Figure 2B shows that the residual error ‖E(t)‖F of
ZNN-1 model (24) has a large value under harmonic noise
and cannot converge to zero.

For further investigation, let λ = 1 and vary the value of
τ (i.e., let τ = 50 and τ = 100). The experimental results
are shown in Figure 4. It can be seen from Figures 3B, 4 that
the larger value of τ , the faster convergence rate of HNTZNN
model (11).

3) Multiple-harmonic noise with a periodic characteristic:
HNTZNN model (14) is tested for the following
harmonic noise:

Õ(t) = [õij(t)]

= [sin(2π t + 1)+ 2 sin(4π t + 2)+ 5 sin(10π t + 4)] ∈ R
2×3,

where frequencies are denoted by f1 = 1, f2 = 2,
f3 = 5 Hz. As shown in Figure 5, the state matrix
Y(t) of proposed HNTZNN model (14) converges to the
dynamic theoretical pseudoinverse (23), and the residual
error ‖E(t)‖F of HNTZNN model (11) is convergent
to zero.
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FIGURE 6 | Results synthesized by the HNTZNN model (14) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

multiple-harmonic noise with an aperiodic characteristic. (A) State trajectory. (B) Residual error.

4) Multiple-harmonic noise with an aperiodic characteristic:
HNTZNN model (14) is tested for the following harmonic
noise:

Õ(t) = [õij(t)]

= [sin(1)+ 2 sin(5t + 2)+ 5 sin(10π t + 3)] ∈ R
2×3,

where frequencies are denoted by f1 = 0Hz, f2 = 2.5/πHz,
f3 = 5Hz. The corresponding results are demonstrated in
Figure 6. As shown in Figure 6, the state matrix Y(t) of
proposed HNTZNN model (14) converges to the dynamic
theoretical pseudoinverse (23), and the residual error ‖E(t)‖F
of HNTZNNmodel (11) is convergent to zero.

In summary, the experimental results verify the
effectiveness and superiority of HNTZNN models (11)
and (14) for solving the dynamic matrix pseudoinverse in the
presence of harmonic noises.

6. ROBOT MANIPULATOR APPLICATION

In this section, HNTZNNmodels (11) and (14) are applied to the
kinematic control of a four-link planar robot manipulator under
the presence of harmonic noises.

6.1. ZNN-Combined Kinematic Control
The geometry of the four-link planar robot manipulator is shown
in Guo et al. (2018a). The Jacobian matrix J(θ(t)) ∈ R

2×4 of this
robot manipulator is:

J(θ(t)) =









−
4

∑

i=1
lisi −

4
∑

i=2
lisi −

4
∑

i=3
lisi −lisi

−
4

∑

i=1
lici −

4
∑

i=2
lici −

4
∑

i=3
lici −lici









,

where θ(t) ∈ R
4 denotes the joint-angle vector, li (with i =

1, 2, 3, 4) denotes the length of the ith link, si = sin(
∑i

j=1 θj), and

ci = cos(
∑i

j=1 θj). The redundancy-resolution problem of such a

robot manipulator, which corresponds to the kinematic control,
is described as follows. Given the desired end-effector path
rd(t) ∈ R

2, we need to obtain θ(t) in real time t. In particular,
the following acceleration-level redundancy-resolution problem
is formulated by adopting the solutions presented in previous
work (Siciliano et al., 2009; Guo et al., 2018b):

J(t)θ̈(t) = r̈a(t), (25)

where θ̈(t) ∈ R
4 is the joint-acceleration vector, ra(t) ∈ R

2

denotes actual end-effector path and r̈a(t) = r̈d(t) − J̇(t)θ̇(t) +
k1(ṙd(t) − J(t)θ̇(t)) + k2(rd(t) − ψ(θ(t))) with θ̇(t) ∈ R

4 as the
joint-velocity vector and J̇(t) as the time derivative of the Jacobian
matrix J(t). In addition, k1 and k2 > 0 are the feedback gains,
ψ(·) is a differentiable nonlinear mapping (Siciliano et al., 2009;
Guo et al., 2018b), and ṙd(t) and r̈d(t) are first-order and second-
order time derivatives of rd(t), respectively. By effectively solving
the acceleration-level kinematic equation in (25), the purpose of
kinematic control for robot manipulator is achieved.

According to Siciliano et al. (2009), the following
pseudoinverse-type (P-type) scheme, which is a typical solution
to (25), is presented for the four-link planar robot manipulator:

θ̈(t) = J†(t)r̈a(t) = (JTJ(t))−1JT(t)r̈a(t). (26)

The dynamic matrix inversion is integrated into (26) to achieve
the kinematic control of the four-link planar robot manipulator.
By defining B(t) = J(t), combining (11) with (26) yields the
following the new ZNN-combined kinematic control method
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FIGURE 7 | Block diagram of the new ZNN-combined kinematic control method for the four-link planar root manipulator.

FIGURE 8 | End-effector of the four-link planar robot manipulator tracking the tricuspid path synthesized by the noise-polluted kinematic control method in (29) using

τ = 10, where single-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory.

that is tolerant to single-harmonic noise:































θ̈(t) = B†(t)r̈a(t),

BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

− X(t)+ O(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t).

(27)
Furthermore, by combining (14) with (26), the new ZNN-
combined kinematic control method for multiple-harmonic

noise can be obtained as follows:































θ̈(t) = B†(t)r̈a(t),

BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

−
∑l

k=1 Xk(t)+ Õ(t),

Ẋk(t) = Ck(t)+ 4π2f 2
k
λE(t),

Ċk(t) = −4π2f 2
k
Xk(t), k = 1, 2, · · · , l.

(28)
To provide a better understanding, we show Figure 7 to
depict the block diagram of the ZNN-combined kinematic
control method in (28) [including (27) as a special case] for
the four-link planar robot manipulator. The robot application
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FIGURE 9 | End-effector of the four-link planar robot manipulator tracking the tricuspid path synthesized by the ZNN-combined kinematic control method in (27) using

τ = 10 and λ = 1, where single-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

FIGURE 10 | End-effector of the four-link planar robot manipulator tracking the tricuspid path synthesized by the ZNN-combined kinematic control method in (28)

using τ = 10 and λ = 1, where multiple-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

in this study is clearly limited by the harmonic noise
associated with the ZNN model instead of that of the
robot manipulator.

6.2. Simulation Verification
In this subsection, the simulation results are presented to show
the effectiveness of the presented ZNN-combined kinematic
control methods in (27) and (28) for the four-link planar robot
manipulator. In the simulations, the lengths of the robot’s links
are l1 = l2 = l3 = l4 = 1 m, and the initial joint state is set to
θ(0) = [π/9,π/12,π/12,π/12]T rad.

1) Tricuspid path-tracking example: In this example, the
presented ZNN-combined kinematic control methods in
(27) and (28) are simulated for the four-link planar robot
manipulator with its end-effector tracking a tricuspid path.

⋆ Single-harmonic noise: The ZNN-combined kinematic
control method in (27) is investigated for the single-harmonic
noise of N(t) = [nij(t)] = [10 sin(2π t + 1)] ∈ R

2×3,
in which the harmonic frequency is f = 2π/(2π) = 1
Hz. For comparison, the following noise-polluted kinematic
control method based on the original ZNN design in (2) is

also simulated:











θ̈(t) = B†(t)r̈a(t),

BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

+ O(t).

(29)
Figure 8 presents the simulation results synthesized by (29)
using τ = 10. The simulated end-effector trajectory of
the robot manipulator does not match the desired tricuspid
path, which means that (29) has failed to achieve the
kinematic control of the robot manipulator due to the
existence of harmonic noise. As shown in Figures 9A,B,
the simulated end-effector trajectory is very close to the
desired tricuspid path. Figure 9C shows that the maximal
end-effector positioning error is <2 × 10−7 m, suggesting
that the kinematic control is achieved successfully via (27)
even if harmonic noise exists. These comparative results
substantiate the effectiveness and noise-suppression capability
of the ZNN-combined kinematic control method in (27) for
the four-link planar robot manipulator.

⋆ Multiple-harmonic noise: The ZNN-combined
kinematic control method in (28) is investigated for the
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FIGURE 11 | End-effector of the four-link planar robot manipulator tracking the circular path synthesized by the ZNN-combined kinematic control method in (28) using

τ = 10 and λ = 1, where single-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

FIGURE 12 | End-effector of the four-link planar robot manipulator tracking the circular path synthesized by the ZNN-combined kinematic control method in (28) using

τ = 10 and λ = 1, where multiple-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

multiple-harmonic noise:

Õ(t) = [õij(t)]

= [10 sin(2π t + 1)+ 102 sin(10π t + 2)+ 103 sin(20π t + 3)],

in which the harmonic frequencies are denoted by f1 = 1,
f2 = 5, and f3 = 10 Hz. The corresponding simulation results
synthesized by (28) are presented in Figure 10. The simulated
end-effector trajectory is close to the desired tricuspid path,
with themaximal positioning error being<5×10−6 m.Owing
to the robustness of (28), this method is tolerant of multiple-
harmonic noise, and the robot manipulator can track the
desired tricuspid path successfully. The effectiveness of the
ZNN-combined kinematic control method in (28) for the
four-link planar robot manipulator is, thus, demonstrated.

2) Circular path-tracking example: In this example, the
presented ZNN-combined kinematic control methods in
(27) and (28) are simulated for the four-link planar robot
manipulator with its end-effector tracking a circular path.
Similarly, the following two harmonic noises are considered

in the investigation of (27) and (28):











O(t) = [oij(t)] = [10 sin(136π t + 1)],

Õ(t) = [õij(t)] = [10 sin(130π t + 1)+ 102 sin(136π t + 2)

+103 sin(140π t + 3)] ∈ R
2×3.

The frequency of the single-harmonic noise approximates
the bandwidth of the robot manipulator. The corresponding
simulation results are illustrated in Figures 11, 12.

As shown in Figure 11, the simulated end-effector trajectory
of the robot manipulator matches the desired circular path,
and the maximal positioning error is less than 4 × 10−7

m. These results substantiate the successful application of the
ZNN-combined kinematic control method in (27) to the robot
manipulator. The results presented in Figure 11 also show that
(27) has achieved robustness against single-harmonic noise, even
if the noise frequency is nearly the same as the robot’s bandwidth.
Furthermore, the results presented in Figure 12 suggest that the
path-tracking task has been successfully completed even with the
presence of multiple-harmonic noise. The effectiveness of the
ZNN-combined kinematic control method in (28) for the robot
manipulator is further demonstrated.
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In summary, the simulation results (i.e., Figures 8–12) prove
that the presented ZNN-combined kinematic control methods
in (27) and (28) are more effective for the robot manipulator
under the presence of harmonic noise compared with the
noise-polluted the kinematic control method in (29). More
importantly, the results indicate the application prospect of the
proposed HNTZNNmodels in (11) and (14) via dynamic matrix
pseudoinverse.

7. CONCLUSION

In this article, by combining the harmonic signal dynamics
and the Li activation function, two harmonic noises tolerant
ZNN models with fast convergence have been proposed. The
theoretical analysis demonstrates that the proposed HNTZNN
models possess satisfactory convergence and robustness
properties. Furthermore, an example has been given to verify its
effectiveness in solving the dynamic matrix pseudoinverse under
different harmonic noises. Besides, such two HNTZNN models
have been applied to the kinematic control of the four-link
planar robot manipulator. In summary, the corresponding
experimental results substantiate the effectiveness, superiority,
and application prospect of the proposed HNTZNN models
even with the existence of harmonic noises. Future study may
lie in studying the proposed ZNN models activated by different

activation functions. Another future research direction is to
extend the proposed ZNN models to other application fields.
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Perković, M. D., and Stanimirović, P. S. (2011). Iterative method for computing

theMoore-Penrose inverse based on Penrose equations. J. Comput. Appl. Math.

235, 1604–1613. doi: 10.1016/j.cam.2010.08.042

Siciliano, B., Sciavicco, L., Luigi, V., and Oriolo, G. (2009). Robotics:

Modelling, Planning and Control. London: Springer-Verlag.

doi: 10.1007/978-1-84628-642-1

Skurichina, M., and Duin, R. P. W. (2002). Bagging, boosting and the random

subspace method for linear classifiers. Pattern Anal. Appl. 5, 121–135.

doi: 10.1007/s100440200011

Van der Veen, A. J., Talwar, S., and Paulraj, A. (1997). A subspace approach

to blind space-time signal processing for wireless communication

systems. IEEE Trans. Signal Process. 45, 173–190. doi: 10.1109/78.

552215

Wang, J., (1997). Recurrent neural networks for computing pseudoinverses

of rank-deficient matrices. SIAM J. Sci. Comput. 18, 1479–1493.

doi: 10.1137/S1064827594267161

Xiang, Q., Liao, B., Xiao, L., Lin, L., and Li, S., (2019). Discrete-time noise-tolerant

Zhang neural network for dynamic matrix pseudoinversion. Soft Comput. 23,

755–766. doi: 10.1007/s00500-018-3119-8

Xiao, L., Liao, B., Li, S., and Chen, K. (2018). Nonlinear recurrent neural

networks for finite-time solution of general time-varying linear matrix

equations. Neural Netw. 98, 102–113. doi: 10.1016/j.neunet.2017.

11.011

Xiao, L., Zhang, Y., Liao, B., Zhang, Z., Ding, L., and Jin, L. (2017). A velocity-

level bi-criteria optimization scheme for coordinated path tracking of dual

robot manipulators using recurrent neural network. Front. Neurorobot. 11, 47.

doi: 10.3389/fnbot.2017.00047

Xu, Z., Zhou, X., and Li, S. (2019). Deep recurrent neural networks based obstacle

avoidance control for redundant manipulators. Front. Neurorobot. 13, 47.

doi: 10.3389/fnbot.2019.00047

Zhang, B., Zhang, H., and Ge, S. S. (2004) Face recognition by applying wavelet

subband representation and kernel associative memory. IEEE sTrans. Neural

Netw. 15, 166–177. doi: 10.1109/TNN.2003.820673

Zhang, Y., Jiang, D., and Wang, J. (2002). A recurrent neural network for solving

Sylvester equation with time-varying coefficients. IEEE Trans. NeuralNetw. 13,

1053–1063. doi: 10.1109/TNN.2002.1031938

Zhang, Y., and Yi, C., (2011). Zhang Neural Networks and Neural-Dynamic

Method. New York, NY: Nova.

Zhou, J., Zhu, Y., Li, X., and You, Z., (2002). Variants of the Greville formula with

applications to exact recursive least squares. SIAM J. Matrix Anal. Appl. 24,

150–164. doi: 10.1137/S0895479801388194

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Liao, Wang, Li, Guo and He. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 928636

https://doi.org/10.1016/j.cam.2010.08.042
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.1007/s100440200011
https://doi.org/10.1109/78.552215
https://doi.org/10.1137/S1064827594267161
https://doi.org/10.1007/s00500-018-3119-8
https://doi.org/10.1016/j.neunet.2017.11.011
https://doi.org/10.3389/fnbot.2017.00047
https://doi.org/10.3389/fnbot.2019.00047
https://doi.org/10.1109/TNN.2003.820673
https://doi.org/10.1109/TNN.2002.1031938
https://doi.org/10.1137/S0895479801388194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Harmonic Noise-Tolerant ZNN for Dynamic Matrix Pseudoinversion and Its Application to Robot Manipulator
	1. Introduction
	2. Problem Formulation and Preliminaries
	3. Harmonic Noise-Tolerant ZNN Models
	3.1. ZNN Model Against Single-Harmonic Noise
	3.2. ZNN Model Against Multiple-Harmonic Noise

	4. Theoretical Analysis
	5. Numerical Verifications
	6. Robot Manipulator Application
	6.1. ZNN-Combined Kinematic Control
	6.2. Simulation Verification

	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


