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Abstract: Polysaccharides are a versatile class of macromolecules that are involved in many biological
interactions critical to life. They can be further modified for added functionality. Once derivatized,
these polymers can exhibit new chemical properties that can be further optimized for applications
in drug delivery, wound healing, sensor development and others. Chitosan, derived from the N-
deacetylation of chitin, is one example of a polysaccharide that has been functionalized and used as a
major component of polysaccharide biomaterials. In this brief review, we focus on one aspect of chi-
tosan’s utility, namely we discuss recent advances in dual-responsive chitosan hydrogel nanomaterials.

Keywords: chitosan; stimuli-responsive; biomaterials; nanocomposites

1. Introduction

Polysaccharides exist in various locales in microorganisms, animals and plants and
serve critical functional roles. For example, polysaccharides such as cellulose (found in
plants) and chitin (found in invertebrate exoskeletons) provide important structure to these
organisms [1,2]. Naturally occurring polysaccharides provide researchers building blocks
that can be expanded on for the development of new polysaccharide-based biomaterials [3].
Introduction of new chemical functional groups to polysaccharides can provide an addi-
tional layer of chemical diversity to these structures. This review focuses on discussion of
polysaccharides functionalized to promote stimuli-responsiveness.

Stimuli-responsive polymers, also called smart or intelligent polymers, are a new
family of polymers that respond to environmental signals or stimuli by altering their
physical and/or chemical properties. The most common stimuli are temperature, pH,
light, the electric field, and specific molecules. Promising applications of these polymers
are predicted and many have been developed recently developed [4]. Among these,
polysaccharide-based stimuli-responsive materials are of particular interest and have
potential utility due to their non- to low toxicity, biocompatibility, and biodegradability,
in addition to their abundance. These biomaterials have applications to controlled drug-
delivery, wound healing, and tissue regeneration. For the purposes of this brief review, the
focus will be on chitosan-based stimuli-responsive materials.

2. Chitosan Structure

Chitin (Figure 1), poly (β-(1→4)-N-acetyl-D-glucosamine), is the second most abun-
dant polysaccharide found in nature [5]. The polymer can be found in the exoskeleton of
crustaceans, insects, and fungi cell walls. There is a large amount of hydrogen bonding
within chitin which makes it insoluble. Partial deacetylation of chitin leads to chitosan,
a linear polysaccharide containing a random distribution of β-(1→4)-linked D-glucosamine
(missing the N-acetyl group) and N-acetyl-D-glucosamine (with the N-acetyl group). Chi-
tosan can be produced from chitin by the addition of strong base or enzymatically using
chitin deacetylases [6]. The amine groups render a pH-dependent solubility to chitosan:
it is soluble when the pH is below the pKa of ~6.5 and becomes insoluble when the pH
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is higher. This property of chitosan and derivatives has been extensively used to fabri-
cate signal-directed, on-demand hydrogel films for various applications [7–11]. Chemical
modifications of chitosan to facilitate grafting to polymers have been reviewed elsewhere
recently [12].
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Figure 1. Structure of chitin and chitosan.

In addition, recent reviews have covered individual types of stimuli-responsive chi-
tosan (redox, near infrared, electric field, magnetic, pH, temperature) for a variety of
biomedical applications [13]. Table 1 lists some recent articles with other types of stim-
uli and chitosan-based nanocomposites. This brief review focuses only on recent appli-
cations that incorporate dual stimuli responsive chitosan for controlled drug delivery
using nanocomposites.

Table 1. Recent literature references for stimuli-responsive chitosan based-nanocomposites.

Stimuli References

Redox [14–23]
Electric field [24–32]

Light [33–38]
Magnetic field [39–45]

pH See text
Temperature See text

Small molecule (Glucose) [46–55]

3. Stimuli-Responsive Chitosan
3.1. Utility of pH and Temperature as Individual Stimuli

The pH-dependent protonation and de-protonation of chitosan amines has been ex-
ploited to introduce pH-responsive properties. Protonation of amines at low pH results
in swelling of the cationic chitosan network and uptake of negatively charged species in
the hydrogel, while deprotonation at high pH leads to release of the absorbed species [56].
Extensive studies on chitosan-based, pH-responsive materials have been reported. For ex-
ample, swelling of chitosan-based hydrogels is highly pH-dependent and reversible and
depends greatly on the crosslinking [57].
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Temperature is one of the first and most widely used external stimuli, and thermo-
responsive chitosan polymers are fabricated by grafting or copolymerizing thermo-responsive
units or polymers, such as poly(N-isopropylacrylamide) or PNIPAM [58]. PNIPAM-based
hydrogels are fully hydrated at room temperature; however they undergo phase changes
when heated above the lower critical solution temperature (LCST) of 32 ◦C where they
lose most of their volume and become dehydrated. Since its LCST is close to human
physiological temperature, PNIPAM and derivatives have been widely investigated for
possible applications in controlled drug delivery and tissue engineering.

As discussed, chitosan-based hydrogels due to the chemical properties of chitosan are
inherently pH responsive. With introduction of PNIPAM-based derivatization, chitosn-
based hydrogels have added temperature responsiveness. For biomedical applications,
these two stimuli are commonly used because of their drug-release reactivity at near
physiological conditions. While physiological pH is 7.2–7.4, in certain disease states cells
are slightly more acidic. Some recent examples of pH and temperature as individual stimuli
in chitosan-based hydrogel materials are discussed below.

In recent work on pH-responsive hydrogels by Omidi et al., injectible hydrogels were
synthesized from the cross-linking of graphene, chitosan, and cellulose nanowhiskers
using Schiff base chemistry and a synthetic dialdehyde [59]. The resulting hydrogels were
independently loaded and co-loaded with the anticancer drugs doxorubicin and curcumin.
Investigation of the in vitro release of the drugs in phosphate buffer show a pH dependent
release. Decreasing the pH from 7.4 to 5.4 produced 28% more release of doxorubicin and
30.1% more release of curcumin from independently loaded hydrogels. When both drugs
are loaded within the same hydrogel, there is a 28.6% increase in release of curcumin when
the pH is decreased from 7.4 to pH 5.4. For doxorubicin, this increase is 38%. The authors
propose that in their system the cross-linking of the imine bonds becomes weaker while
repulsive electrostatic interactions among the protonated amino groups increase leading
to increased drug release with pH. To further confirm the compound’s ability to form a
hydrogel, the authors injected the compound into the skin of rats and observed rapid gel
formation. Taken together with the fact that the hydrogels exhibited antibacterial activity
against Streptococcus aureus and E. coli, the work by Omidi et al. is a promising avenue for
further optimization.

Rasool and colleagues prepared chitosan/poly(N-vinyl-2-pyrrolidone) (PVP) based
pH sensitive hydrogels for the controlled release of the wound healing drug silver sulfa-
diazine [60]. Three different configurations of the gels were synthesized each containing
a different amount of PVP (0.25, 0.50 and 0.75 g respectively). The configuration with
0.50 g PVP exhibited the most desired swelling behavior and was used to test the release of
Ag-sulfadiazine in phosphate buffer saline in vitro. These gels exhibited fast initial release
of 35% within the first 10 min followed by continuous release over a period of 1 h with
91.2% of the drug finally being released.

The pH responsive behavior of chitosan can be coupled with protein-type structures
to produce materials with expanded functionality for drug release. In a brief example, Xu
and colleagues, recently synthesized a series of stimuli responsive composite hydrogels
based on silk fibroin protein (SF) and chitosan (CS), cross-linked by EDC/NHS [61]. The
internal structures of the hydrogels included macroporous and mesoporous architecture.
The in vitro drug release rate demonstrated pH-responsive behavior which is an indication
of this material being potentially useful for controlled drug release. A recent review
expands on these types of composite materials [62].

Fang et al. developed temperature-sensitive hydrogels composed of poly(N-
isopropylacrylamide) (PNIPAAm) alone, chitosan grafted to PNIPAAm (CPN) and CPN
grafted to hyaluronic acid (CPNHA) [63]. Grafting was performed using EDC/NHS
chemistries. The transition temperature among all three gels were within the same physio-
logically compatible range as assessed by UV/Vis, differential scanning calorimetry and
viscosity (PNIPAAm, 29.9–32.0 ◦C; CPN, 31.1–32.8 ◦C; CPNHA, 30.5–32.7 ◦C). The three
hydrogels were investigated for their ability to provide controlled release of three types
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of drugs nalbuphine, indomethacin, and a nalbuphine prodrug in vitro. Each hydrogel
had different release characteristics depending on the type of drug. In all cases, the control
had the highest release percentage, indicating that grafting of the chitosan or chitosan-
hyaluronic acid decreased the release from the hydrogel over the time period observed
(60 h). For nalbuphine, excess water was removed and the release of the drug from the
hydrogel aggregates were observed. Under these conditions the trend was reversed, CPN
had greatest release followed by CPNHA then PNIPAAm. An in vivo test was performed
to determine the duration of drug release of the pain reliever nalbuphine after intravenous
injection in rats. CPNHA provided the longest pain relief for the rat (~4 h) while CPN
provided ~3–4 h. PNIPAAm provided no benefit over the control.

A drug delivery system by Zhou et al. made from chitosan (CS) and αβ-glycerophosphate
(αβ-GP) exhibited a thermoresponsiveness that was dependent on physicochemical char-
acteristics such as concentration, molecular weight, and degree of deacetylation of chi-
tosan [64]. The optimal percentage of deacetylated chitosan in the formulations was found
to be 75%; at percentages higher and lower than this there was no gel formation. Accord-
ingly, the optimal molecular weight was 1360 kDa. In terms of temperature, gel formation
was observed to occur at 37 ◦C which increases the potential for its use as an injectible.
Release rate kinetics were observed for both adriamycin (a hydrophilic model drug) and
6-mercaptopurine (a hydrophobic model drug) respectively from CS-αβ -GP hydrogels
created with optimal conditions. Adriamycin was released 70% over 24 h which was slower
than release of of 6-mercaptopurine over the time period (nearly 50%). This work suggests
this hydrogel could be ideal for sustained release of hydrophilic drugs.

3.2. Dual-Stimuli Responsive Chitosan

Strategies that introduce two or more variety of stimuli in one construct are ad-
vantageous because they offer synergistic control over the release of the compound of
interest. For the sake of this review, our focus is on recent literature examples that combine
dual stimuli.

3.2.1. pH and Temperature-Responsive Release of Bioactive Agents

Chitosan is particularly well-suited for action at low pH and cancer cells are generally
more acidic than normal cells. Nanoparticles are well suited for drug delivery as they can
be modified with molecules to allow for targeting to cancer cells [65]. When magnetic
nanoparticles (such as Fe3O4) are incorporated into chitosan-based hydrogels, the hydrogels
became responsive to the external magnetic field and could deliver therapeutic drugs with
superior targeting and prolonged retention while avoiding excretion [66]. Recent work by
Howaili et al. utilizes a nanogel of cysteine-modified chitosan grafted to PNIPAM and gold
nanoparticles (AuNPs) (Figure 2) [67]. Curcumin, a bioactive compound with anti-cancer
activity [68], was loaded within the nanogel. At physiological pH and room temperature,
there were low levels (20%) of curcumin release from the hydrogel over 72 h. At pH 5.5
and 37 ◦C, this increased to 80% over 72 h. The use of nanoparticles allows for IR induced
irradiation of the nanogels which enhances thermo-responsiveness [58]. This curcumin
loaded-nanogel entered cells and were toxic against a breast cancer cell line. In this work,
cells from an MDA-MB-231 breast cancer cell line were exposed to gold nanoparticles,
the nanogel, and the curcumin-loaded nanogel respectively in the absence or presence of
NIR laser irradiation at 808 nm (Figure 3). However, the most cell death was observed
for the curcumin loaded-nanogel exposed to laser irradiation in dose-dependent manner
indicating this combination of pH and NIR light, led to release of curcumin and induced
cell death (Figure 3).
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In another example of NIR/pH/temperature stimulating compound release, single-
walled carbon nanotube–chitosan–PNIPAM (with PEGylation) composites were investi-
gated by Qin and coworkers [69]. An oleic acid-modified chitosan copolymer (CS-OA) was
first used to surround the carbon nanotube. The lipophilic side-chains were interacting with
the carbon nanotube while the hydrophilic chitosan backbone was exposed to the aqueous
environment. This modified nanotube (CS-OA@CNT) was further modified with PNIPAM
and a polyethylene glycol (PEG) based crosslinker to create a nanogel. Doxorubicin was
loaded within the nanogel with an efficiency of 90% and loading capacity of 43.3 wt %
as determined in vitro. This nanogel delivery system exhibited increased release with
NIR irradiation (808 nm), low pH (5.0) and higher temperature (40 ◦C). Researchers also
assessed the effects of drug release in vivo as a function of doxorubicin-CS-OA@CNT cyto-
toxicity using HeLa cells with higher cell killing observed in the presence of NIR irradiation.
Confocal microscopy of the cells confirmed cellular uptake of the nanoparticles.

Jaiswal and coworkers incorporated Fe3O4 magnetic nanoparticles with PNIPAM-
modified chitosan to create nanogels which were then loaded with doxorubicin. Loading
of doxorubicin in the nanogel was estimated to be ~60% [70]. In vitro release studies with
the nanocomposite over a 1 h period in buffer showed the most release (90%) of drug at
a temperature of 42 ◦C (the LCST of the nanocomposite) and low pH compared to 43%
at 37 ◦C. The ability of the nanoparticle-gel system to induce cell death in human breast
(MCF-7) and cervical carcinoma (HeLa) cell lines after 24 h incubation and subsequent
application of a magnetic field was assessed. The system was cytotoxic to both cell lines.
It was determined that the combination of the magnetic field, low pH and high temperature
led to 85% increase of cell death in HeLa cells.

Chitosan-based hydrogels with in situ production of nanoparticles have also been
investigated for release of bioactive compounds [71]. N-Succinyl-modified chitosan was
linked to zinc oxide (ZnO) nanoparticles and curcumin as a potential drug delivery sys-
tem [72]. The in vitro kinetics of release of curcumin in PBS at pH 7.4 vs. pH 5.2 over 1 h
was 20% vs. 45% indicating more curcumin release in a shorter release amount of time at
lower pH. After 16 h, this release increased to 95% at low pH vs. 80% at higher pH. This
composite system was also able to induce more apoptosis in MDA-MB-231 cells compared
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to the same concentrations of free curcumin. An added benefit of these nanoparticles was
the increased antibacterial activity against Staphylococcus aureus and Escherichia coli. The
minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC)
were dramatically lowered compared to the free components. For example, the MIC and
MBC for free curcumin against Staph. aureus was 250 µg/mL and 500 µg/mL respectively.
With the nanocomposite the MIC value was lowered to 10 µg/mL and the MBC value was
50 µg/mL.

A novel method for in situ nanoparticle formation was put forth by Hosseinzadeh et al.
which used Reversible Addition−Fragmentation Chain Transfer (RAFT) polymerization
to create a chitosan hydrogel composite with magnetic Fe3O4 nanoparticles [73]. In their
method, the researchers first incorporated N-phthaloyl protecting groups onto the amino
groups of chitosan. A RAFT agent was added to the hydroxyl groups of chitosan and this
N-phthaloyl chitosan-RAFT was used for esterification to the hydroxyl side chains of the
magnetic nanoparticles. To synthesize the magnetic nanocomposite, copolymerization was
performed using acrylic acid and NIPAM. The nanocomposite was loaded with doxorubicin.
This nanogel exhibited a pH and temperature-controlled release of doxorubicin over 24 h.
In buffered solutions at low pH and higher temperature (45 ◦C), ~90% (pH 2) and ~78%
(pH 5.0) of drug release was observed. At this temperature, ~40% was released at pH 7.4.
These values are much higher than those observed at 25 ◦C [73].

Dual pH and temperature-responsive nano-composite double network PNIPAM/clay/
carboxymethyl chitosan (CMCTs)/genepin (GP) hydrogels with high mechanical strength
were synthesized through a one-pot reaction in which UV light induced free radical
polymerization [74]. The adsorption/desorption kinetics of the hydrogel was dependent
on the PNIPAM, clay, CMCTs, GP and hydrogel ratio. Release behaviors of the hydrogels
were investigated using acetylsalicylic acid (ASA) as a model drug. The highest release
percentage of the hydrogels decreased with an increase of CMCTs, GP or clay. This was
most likely due to increased cross-linking. With optimal ratio of components and under
optimal conditions, ~89% cumulative release of ASA was observed.

A chitosan-based hydrogel using tris(2-(2-formylphenoxy)ethyl) amine as a cross-
linking gelator was recently developed by Karimi and others [75]. Hydrogel formation was
a result of the Schiff base formation between chitosan amine groups and aldehyde groups
of the crosslinker. Optimal swelling ratios were observed at low pH and high temperature.
Release of metronidazole from the pH- and thermo-responsive hydrogels were investigated
under pH conditions to mimic the gastric juices (pH 1.8) and interstitial fluid (pH 6.8).
The different swelling behaviors at various pH values are responsible for the differences
of the drug release in the medium. As expected, drug release increased with decreased
gelator (14% vs. 10%). Under both pH extremes, at least 90% of the drug was released over
600 min.

3.2.2. Other Examples of Dual-Responsive Release of Bioactive Compounds
Redox- and pH-Responsive

Redox-responsive drug carriers have been fabricated by crosslinking chitosan-based
composites with disulfide linkages. At normal physiological pH, a high concentration of
glutathione (GSH) does not cleave the SS bond and the drug is not released; however under
acidic conditions GSH quickly cleaves the SS bond and the drug is released [76].

These conditions thus rely on pH and redox poise of the target cell. In recent work,
Ding and colleagues have created a novel hydrogel system in which a pH sensitive allyl-
modified chitosan (OAL-CS) is disulfide-linked to thermo-responsive modified NIPAM
using thiolene “click” chemistry and RAFT copolymerization [77,78]. This hydrogel system
affords precise control of the OAL-CS/NIPAM ratio. Ratios of 20:1, 10:1, and 5:1 were inves-
tigated in this study. Hydrogels with the highest ratio (20:1) gave the optimal swelling ratio
and the gels showed biocompatibility in vivo and in vitro. Ding et al.’s work provide a new
potential platform for drug delivery. Recently, Chen et al. developed high-performance
hydrogels through use of known biocompatible polysaccharide derived polymers, car-
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boxymethyl chitosan (CMC), and oxidized alginate (OSA). Combined with the crosslinking
agent, 3,3′-dithiopropionic acid dihydrazide (DTP) the resulting CMC-OSA-DTP hydrogels
were injectible, biocompatible and possessed the ability to self-heal (Figure 4) [79]. Future
development of this hydrogel could be geared towards use as a drug delivery system.
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from [80]).

Electro- and pH-Responsive

When placed in an electric field, hydrogels formed from charged polymer networks
may experience “bending” towards one of the electrodes. Chitosan-based hydrogels
have been shown to possess this electric field responsiveness which may be used as soft
electro-actuators, tissue engineering scaffolds, and controlled release drug delivery systems.
Liu et al. fabricated homogeneous polyelectrolyte complex (PEC) hydrogels from positive
chitosan and negative carboxymethylcellulose [29]. When an external DC voltage was
applied to the salt solution in which the hydrogel strip was placed, movement of the ions
caused uneven distribution of the counter ions near the hydrogel surface, resulting in
different extent of hydration/swelling of the two sides of the hydrogel strip, and bending
of the strip. The authors found that between 9 and 27 V the bending angle and response
time depended approximately linearly on the voltage. Electro-responsive release may also
be achieved by applying a current.

Kiaee and colleagues recently developed an electric field responsive and pH-controlled
hydrogel containing chitosan loaded nanoparticles enveloping a model compound (Fluo-
rescein isothiocyanate-dextran (FITC)) to mimic drug release [80]. The author’s propose
this as a potentially new avenue for control of compounds at wound sites. The system
consists of a PEG-diacrylate/laponite hydrogel containing chitosan particles, an electronic
driver, and microelectrodes on a flexible substrate. In their work, application of the electric
field increases the pH in a rapid and controllable way. The voltage when applied in an
on/off pattern of 2 s application of 4 V leads to an increase of pH from 6 to 12 in 1 s and
the pH returns to 6 after 2 s. Release studies in vitro under these conditions show that they
were able to obtain 100% of release of the FITC compound. The pH and electro-responsive
hydrogel was also found to have good biocompatibility. In an in vivo wound scratch assay,
there was no decrease in the ability of cells to heal in the presence of the wound patch and
in the absence or presence of the magnetic field (2.5 and 4 V, 5 min). In addition, there
were no differences apparent in the absence or presence of the nanogel using live/dead
cell assays. Thus this gel could be further optimized for use in release of drug compounds
at wound sites [80].

A pH and electroresponsive system consisting of a chitosan hydrogel with embedded
mesoporous silica nanoparticles (MSNs) deposited on a titanium plate was evaluated for
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drug release properties [81]. Ibuprofen was used as a model drug and its release from
MSNs/chitosan hydrogel films were studied. Release was dependent on the pH (with
neutral and basic conditions more favored than acidic) and the voltage applied to the
titanium plate. Spontaneous release of ibuprofen from the hydrogel was measured in 0.9%
NaCl solution (at 0 V) and compared to the release observed after the application of negative
voltage at the cathode (−1.0, −3.0 and −5.0 V). The fastest release kinetics was observed
at −5.0 V. These results suggest the potential interplay of complex IB-MSNs/chitosan
hydrogel films with titanium implants as a method for controlled drug delivery.

Light and Temperature as Responsive Stimuli

In a recent study, Srinivasan et al. reported on the production and characterization of
IR820-chitosan conjugates and showed its multifunctional potential: the conjugate could act
as an imaging agent as well as induce cancer cell killing upon irradiation. The conjugates
were able to generate heat upon exposure to a laser at 808 nm and the hyperthermic
conditions led to cell growth inhibition in cancer cell lines [82]. Work by Shin and colleagues
produced a thermo-responsive nanocomposite hydrogel which contained crosslinked
chitosan and PNIPAM nanogels for controlled drug delivery [83]. Wang et al. created
a novel light-and thermoresponsive composite through use of methacrylate modified
chitosan and PNIPAM. A photothermal carbon (PTC) was also embedded within the
network. In the presence of doxorubicin, UV light was used to induce crosslinking (through
the PTC and double bonds of the methacrylate groups) and doxorubicin would be loaded
into the gel. To induce drug release, a near IR laser (808 nm) would trigger an increase
in temperature leading to decreased volume of the gel and drug release. Release of
doxorubicin was observed to be 40 times higher after NIR irradiation [84]. Other light-
responsive drug delivery systems have also been reported [85,86].

Glucose and pH Responsive Hydrogels

Among literature reports of dual-responsive hydrogels in which small molecules are
one of the stimuli, glucose is the most prevalent small molecule used. To confer glucose
sensitivity phenylboronic acid can be incorporated into a system. Phenylboronic acid has
been shown to form stable covalent bonds with diols [87]. In proof-of-concept work by
Li et al., a dually responsive injectable hydrogel was used as a doxorubicin-carrier. Tumor
cells, due to their increased metabolic function, are estimated to have 3–10 fold higher
glucose levels than normal cells [48]. Therefore, a potential drug carrier targeting cancer
cells would have more interactions with glucose than a typical cell. The work of Li and
colleagues sought to capitalize on that by creating a hydrogel that combined a pH trigger
and a glucose responsive phenylboronate ester. Using a combination of phenylboronic
acid modified chitosan (CSPBA) and oxidized dextran (Oxd), the system also contained
both a pH- responsive imine bond that was stable at neutral/physiological pH and labile
at slightly acidic conditions. Using the lowest grafting ratio and least oxidized dextran, the
highest release of doxorubicin in vitro was achieved after 12 h. At pH 7.4, 52% of the drug
was released compared to 70% when the pH was decreased and 61% with adding glucose at
pH at 7.4. In higher crosslinking hydrogels, this release was less. In vitro tests of hydrogel
formation showed that the gels formed only at the site of injection. For in vivo studies, test
of cell viability were performed using L929 fibroblast cells. The cells were grown within
the hydrogel and the cell shape and morphology indicated good cell viability for three
days. In cell proliferation studies using the same type of cells, more cell proliferation was
seen with hydrogels that had a lower polymerization percentage. The authors proposed
perhaps larger pore size allows for more nutrient exchange. Compared to the hydrogels
with more crosslinking they observed the same or slightly less cell proliferation.

Glucose/pH responsive gels have also been used to target diabetes. The disease
results in typically elevated glucose levels because of not enough insulin being made
or improper function of insulin (type II) or a complete lack of insulin synthesis (type I).
Glucose responsive nanocomposites have been investigated to provide a way to modulate
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drug release based on glucose concentration. In work by Zhao and colleagues, a pH and
gluco-responsive carrier was made by use of graphene oxide (GO) as a nanocarrier for the
model drug (bovine serum albumin, BSA) [54]. Cationic chitosan (HTCC: glycidyltrimethy-
lammonium chloride-grafted chitosan) was used with GO-BSA to form a complex. This
chitosan served as the pH responsive component of the hydrogel. The glucose responsive
moiety in this system was glucose oxidase, an enzyme responsible for glucose oxidation.
The authors studied the effects different wt % of GO-BSA (0%, 0.5%, 1.0%, 1.5%, 2.0%) had
on drug release. The outcomes of the work indicated that the HTCC/BSA had good drug
release but there was a slightly more glucose specific effect for the 2.0 wt % material.

In one of the most comprehensive examples of the application of these dual stim-
uli, Gu and coworkers developed novel injectable microgels that were pH and glucose-
responsive [47]. These gels provided a targeted insulin release and were tested in mouse
models of type I diabetes. The hydrogels contained chitosan microgels inside which
nanoparticles housing glucose oxidase and catalase were present. Glucose oxidase per-
forms the reaction that oxidizes glucose to gluconic acid during which there is concomitant
production of hydrogen peroxide. Catalase acts to convert hydrogen peroxide to oxygen
and water. Both enzymes were covalently attached to the nanoparticle which was housed
within the chitosan microparticle. In vivo studies were performed to determine the ability
of these microgels to lower the higher glucose levels seen in diabetic mice. Three versions
of the microgels were tested: a microgel containing insulin with no enzymes, one con-
taining enzymes and no insulin and one containing insulin and enzymes. Remarkably
the microgel containing insulin and enzymes, lowered the glucose levels to normal levels
within in two hours and was the only formulation to keep these levels consistently low for
an additional 10 h.

3.2.3. Stimuli-Responsivity in Combination with Biomolecular Targeting

Up to this point our discussion has focused on the combination of two types of
stimuli. However, chitosan-based nanomaterials have been engineered to react or even
incorporate specific biomolecules for targeting at specific cellular sites. For example, Liu
and coworkers sought to create a responsive insulin-containing nanocomposite gel that
when delivered orally, could withstand the acidity of the gastric juices and still be able
to deliver the insulin payload [88]. A hydrogel surrounded an insulin/heparin sulfate
aggregate encased nanoparticle which was coated with chitosan. After administration to
diabetic mice, there was more bioavailable insulin in mice that received insulin orally via
the pH and amylase-responsive gel versus not indicating that this method could provide
new means to enhance stability.

Phosphorylated chitosan was found to have adjuvant properties and enhance the
immunogenicity of vaccines in a proof-of-concept study in work by Wei and others. Phos-
phorylated chitosan has enhanced water solubility compared to underivatized chitosan but
still experiences gelation at pH lower than neutral. Use of phosphorylated chitosan as a
delivery system during ovalbumin injection led to an increase in antigen specific immune
responses in mice [89].

In recent work, Yu and co-workers constructed stimuli-responsive three-dimensional
cross-linked hydrogel system containing carboxymethyl chitosan (CMC) and poloxamer
composed of a poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO–
PPO–PEO) block copolymer [90]. Using the drug nepafenac (NP) as a model drug, the
controlled drug release behavior of these hydrogels was investigated. The drug release rate
reached a maximum at 35 ◦C and pH 7.4. These conditions provide the highest swelling
ratio and correspondingly the largest microchannels. The results indicate the hydrogel
could be used as a pH-temperature-responsive drug delivery system that can be targeted
to the human eye.

A poloxamer-chitosan (PLX-CS) and carbopol-HPMC-alginate (CP-HPMC-SA) hydro-
gel systems was characterized for its potential to enter the blood brain barrier. Appropriate
gelation time, temperature, and pH were followed to induce release of vinpocetine. This
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drug is a preventative therapy for those who suffer from degenerative diseases that af-
fect the brain and nervous system. Both hydrogel formulations loaded with vinpocetine,
were administered to rats intranasally and the blood and plasma levels were compared
to levels of the drug at these sites after injection. Remarkably, the hydrogels had at least
2×more drug found in the brain compared to what was seen for the injection. Inversely,
the hydrogels had less drug present in the plasma compared to injection. This provides
proof-of-concept data that indicates these hydrogels were able to bind to the mucosal layer
and enter the brain [91].

4. Future Applications of Dual-Responsive Chitosan

Future efforts in dual responsive chitosan hydrogel technology, may be inclusion of
compounds that also add labeling functionality. Huang and co-workers used mesoporous
silica grafted with PNIPAM-chitosan and the luminescent decatungtoeuropate. This pH
and temperature sensitive composite exhibited high release of doxorubicin (73%) over a
24 h period at 42 ◦C. The red luminescence from decatungtoeuropate could be seen using
at room temperature and 42 ◦C. The composites were biocompatible with low toxicity.
Doxorubicin-loaded composites were shows to kill HeLa cells in a dose-dependent manner
(up to 50 µg/mL) [92]. These nanocomposites could open the door to new types of MRI
imaging agents.

While the focus of this review has been a description of dual-responsive chitosan
in drug-delivery, the stimuli-responsivity of chitosan could be applied tangentially to
chitosan’s well-known role in the capture of heavy metals. There have been several recent
publications in which chitosan-grafted nanoparticles and nanocomposites [93–106], gels
and resins [107–112] were used to adsorb toxic metals such as chromium, copper, lead and
cadmium from aqueous solutions. Dual-responsive polysaccharide derivatives that make
use of combined strategies of visual metal detection using turn-on metal sensing [113–115]
and stimuli-induced hydrogel formation [116] may add even more functionality to chitosan
and other novel polysaccharide structures that have recently been shown to capture heavy
metal [117]. A recent study indicates such a method could be viable as metal ions were
used as one form of stimuli for hydrogel formation [118].

5. Conclusions

In closing, we have focused on selected examples that highlight the benefits of chi-
tosan hydrogel-based multi-responsive nano-composites. These biomaterials have good
compatibility, the ability to adsorb and release drugs/model drugs in vitro and in vivo,
and offer more control over hydrogel formation. Induction of more than one mode of
responsiveness increases control over gel formation and subsequent release of the bioactive
compound. This discussion has focused on describing results of recent advances in dual-
responsive hydrogel nanocomposites including pH/temperature, pH/redox, pH/electric
field, temperature/light, and pH/glucose. The work presented in this review illustrates
the balance that must be struck between functionalization being added to chitosan or the
grafted molecule and the degree to which this grafting takes place. The physicochemical
properties of the hydrogel can be affected by these factors which in turn affects the release
of the desired drug from the designed gel.
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