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Abstract
Ovarian carcinoma is one of the most common causes for cancer death in women; lack of early diagnosis and 
acquired resistance to platinum-based chemotherapy account for its poor prognosis and high mortality rate. As 
with other cancer types, ovarian cancer is characterized by dysregulated signaling pathways and protein synthesis, 
which together contribute to rapid cellular growth and invasiveness. The mechanistic/mammalian target of 
rapamycin (mTOR) pathway represents the core of different signaling pathways regulating a number of essential 
steps in the cell, among which protein synthesis and the eukaryotic initiation factor 4E (eIF4E), the mRNA cap 
binding protein, is one of its downstream effectors. eIF4E is a limiting factor in translation initiation and its 
overexpression is a hallmark in many cancers. Because its action is regulated by a number of factors that compete 
for the same binding site, eIF4E is an ideal target for developing novel antineoplastic drugs. Several inhibitors 
targeting the mTOR signaling pathway have been designed thus far, however most of these molecules show poor 
stability and high toxicity in vivo. This minireview explores the possibility of targeting mTOR and eIF4E proteins, 
thus impacting on translation initiation in ovarian cancer, describing the most promising experimental strategies 
and specific inhibitors that have been shown to have an effect on other kinds of cancers.
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INTRODUCTION
Ovarian cancer ranks 5th among the most common causes of cancer death in women worldwide[1]. The 
American Cancer Society estimates that in 2021 about 21,410 new cases of ovarian cancer will be diagnosed 
and about 13,770 women will die from ovarian cancer in the United States[2]. With its overall 5-year survival 
rate of 30% for the advanced stage disease[3,4], ovarian cancer has the worst prognosis and the highest 
mortality rate among gynecologic cancers[5,6]. This is due to lack of early diagnosis tools and to the fact that 
the earliest symptoms are easy to overlook, as they can be confused with other common illnesses. Symptoms 
usually become more severe by the time the tumor has spread to the surface of the peritoneal cavity, making 
it much harder to remove by surgical intervention. Indeed, the standard approach in ovarian cancer therapy 
is surgery, followed by platinum-based chemotherapy, in which cisplatin or carboplatin is combined with 
taxanes[7-9].

Despite the initial efficacy of treatment, more than 65% of patients relapse and develop acquired resistance 
to platinum-based chemotherapy[10,11]. Platinum-based drugs, such as cisplatin, interact with DNA and form 
intra- or inter-strand DNA cross-links, thereby activating cell death but also DNA repair pathways[12-14]. 
Despite the large number of studies[15,16] and the evidence of the multiple mechanisms of sensitivity and 
resistance to platinum agents[17], there is an urgent need to target additional mechanisms underlying ovarian 
cancer platinum-resistance.

Drug resistance is the outcome of the deregulation of several molecular mechanisms, such as drug 
inactivation, apoptotic stimulation, expression of pro-survival or anti-survival proteins, and alteration of the 
expression of growth factor receptors[18-21]. For the treatment of cisplatin-resistant ovarian cancer, a few 
options are available with the need to improve treatment efficacy and reduce toxicity[10,22,23].

To overcome these limitations, new analogs of conventional drugs and new therapeutic options are being 
developed, among which several are currently being tested in clinical trials and others have recently been 
approved[24,25]; however, overcoming drug resistance constantly requires new molecular targets that may 
provide, in addition to conventional treatment, a more selective therapeutic approach to fight ovarian 
cancer. To overcome drug resistance and formulate customized individual therapies to improve early 
diagnosis, research needs to focus on the molecular background of ovarian cancer[11]. Translation and 
signaling pathways represent ideal molecular targets for the development of novel therapeutic strategies. 
Protein synthesis regulates every aspect of cell phenotype, growth, and metabolism and is tightly controlled 
by several signaling pathways in response to different external stimuli[26]. In human cancer, the 
dysregulation of these processes has an impact in overall protein synthesis, leading to cancer development 
and growth[27].

This minireview focuses on the recent research reporting the use of inhibitors of the 
mechanistic/mammalian target of rapamycin (mTOR) and the eukaryotic translation initiation factor 4E 
(eIF4E) as adjuvants in cancer treatment; despite the limited number of studies performed on ovarian 
cancer cell models, the encouraging results obtained in vitro and in pre-clinical studies with some inhibitors 
might establish the use in ovarian cancer therapy.

THE MTOR PATHWAY: A POTENTIAL THERAPEUTIC TARGET
The AKT/mTOR pathway is crucial for the regulation of transcription, translation, cell growth, motility, 
survival, proliferation, autophagy, and angiogenesis[28,29]. Not surprisingly, this pathway is largely 
deregulated in cancer, where several genes coding for proteins of this axis are frequently mutated, leading to 
pathway hyperactivation in disease. The majority of the cancer-associated mutations occur in the 
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mechanistic/mammalian target of rapamycin (mTOR) gene[30]. Because it is found to also be upregulated in 
ovarian carcinoma[31,32], and its deregulation has been associated with platinum-drug resistance[33,34], mTOR 
represents an attractive biological target for ovarian cancer therapy.

mTOR is a 289-kDa serine/threonine kinase of the phosphatidylinositol 3-kinase related kinase (PIKK) 
family. In mammals, mTOR is the core component of two functionally different multi-proteins complexes: 
mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2). mTORC1, or rapamycin-sensitive 
complex, includes the proteins mTOR, mLST8 (or GβL), and Raptor (regulatory-associated protein of 
mTOR) and plays a key role in the regulation of mRNA translation and cell growth[31,35]. mTORC2 
(rapamycin-insensitive complex), consisting of mTOR, mLST8, Rictor (rapamycin-independent companion 
of mTOR), and mSin1 (or mitogen-activated protein-kinase-associated protein 1), is mainly involved in 
actin cytoskeleton dynamics [Figure 1A][31,35]. mTOR is a downstream mediator in the phosphatidylinositol-
3-kinase (PI3K)/AKT pathway; in fact, as a consequence of extracellular stimuli, PIP2 is phosphorylated to 
produce PIP3 by PI3K. This leads to the activation of the protein kinase B (AKT) via phosphorylation by 
phosphatidylinositol-dependent kinase 1 and 2 (PDK1 and PDK2)[36]. Activated AKT phosphorylates mTOR 
on Ser2448, or indirectly by phosphorylation of tuberin protein or tuberous sclerosis complex 2 (TSC2). 
TSC2 is complexed to TSC1, and, when active, its function is to convert Rheb (Ras homolog enriched in 
brain)-GTP to Rheb-GDP, inactivating mTORC1. Once phosphorylated, TSC2 loses its affinity for TSC1, 
leading to activation of mTORC1[29,36]. Activated mTORC1 phosphorylates the translation regulating factor 
ribosomal S6 kinase-1 (S6K-1) and the eukaryotic translation initiation factor 4E (eIF4E) binding family of 
proteins (4E-BPs) [Figure 1A]. The phosphorylation of S6K-1 leads to the translation of ribosomal proteins, 
elongation factors, and other proteins involved in the cell cycle, while phosphorylation of 4E-BPs causes the 
release of eIF4E [Figure 1B][37,38]. eIF4E is a crucial translation initiation factor, also involved in the onset of a 
number of cancer types (see discussion below)[39,40].

Contrary to mTORC1, the mechanism by which mTORC2 is activated remains elusive. PI3K stimulates 
mTORC2 by responding to growth factors. Activated mTORC2 is found to be associated to ribosomes[41], 
and it directly activates AKT, through phosphorylation of Ser473. This, in turn, activates mTOR, protein 
kinase C-α, and serum- and glucocorticoid-induced protein kinase 1, acting on actin regulation, as well as 
on metabolism and cell survival[29,36].

It is clear that the mTOR signaling pathway has an important role in malignancy, as it is frequently 
hyperactivated in a wide range of tumors, including ovarian cancer[11,42]. As a consequence, it represents an 
attractive candidate for drug design. To date, several inhibitors developed against different proteins of 
AKT/mTOR pathway are already available at different stages in clinical research, as shown in Table 1[39,43]. 
The best characterized mTOR inhibitor is rapamycin (or sirolimus), a macrolide produced by the bacterium 
Streptomyces hygroscopicus. Rapamycin binds selectively to mTORC1 interacting with a specific binding 
domain present in mTORC1, but not in mTORC2. Rapamycin inhibits the serine/threonine kinase activity 
of mTORC1 with an allosteric mechanism[43]. Despite the activity shown by rapamycin in many tumor 
types[29,44], its clinical use is unsuccessful because of its poor water solubility[29]. To overcome this limitation, 
several analogs of rapamycin, called rapalogs, have been formulated, some of which show encouraging 
pharmacological features on several cancers. Among rapalogs, there are CCI-779 (temsirolimus), RAD001 
(everolimus), and AP23573 (deforolimus)[43,45-49]. Some rapalogs are FDA-approved, while others are still in 
clinical trials[40,43]. However, the therapeutic efficacy of rapalogs is hindered by the appearance of negative 
feedback loops that trigger the activation of AKT in the mTOR pathway[29,39]. Second-generation inhibitors 
are thus being developed, and many of them are already under clinical trial. These compounds have shown 
promising preliminary results, as dual-specificity inhibitors (targeting both mTOR and PI3K) and inhibitors 
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Table 1. Main inhibitors of mTOR and eIF4E

Target Category Compound Clinical trials in ovarian cancer Ref.

Antibiotic Rapamycin [54]

Temsirolimus Completed [45,46]

Everolimus Phase I/II [47,48]

mTORC1

Rapalogs

Deferolimus [49]

Torin1 [55]

INK128 [56]

AZD8055 [57]

mTORC1 and mTORC2 Second generations inhibitors

AZD2014 Phase I/II [58]

PI-103 [59]

NVP-BEZ235 Completed [60]

SF1126 [61]

GNE-477 [62]

PI3K and mTOR Dual inhibitors

XL765 [63]

ISIS 183750 [64]Antisense oligonucleotides

LY2275796 [65]

eIF4E expression

miRNA miR-768-3p [66]

MEK inhibitor U0126 [67]

Small molecule CGP57380 [68]

eIF4E phosphorylation

Natural product cercosporamide [69]

Nucleoside analog Ribavirin [70-78]

4Ei-1 [79,80]

4EGI-1 [81,82]

Small molecules

4E1RCat [83]

GnRH-4EBP fusion peptide [84]

eIF4E-partners interactions

Oligopeptides

4E-BP mimetics peptides [85-87]

targeting directly mTOR, inhibiting both mTORC1 and mTORC2[37,39,43] [Table 1]. Among the downstream 
effectors of mTOR, the p70S6 kinase is also implicated in fundamental cellular processes, such as cell 
growth and proliferation[38]. p70S6k, together with 4E-BPs and eIF4E, is frequently activated in a wide range 
of cancer types and could be a driver or malignancy, also for ovarian cancer[50-52]. Thus, targeting p70S6K 
using specific inhibitors already developed represents another alternative strategy against rapamycin-
resistant tumors[53].

TARGETING MTOR PROTEIN IN OVARIAN CANCER
On the basis of the promising activity of these compounds on other cancer types, mTOR inhibitors have 
been tested on ovarian cancer[35,36,88]. Rapamycin treatment of several ovarian cancer cell lines resulted in a 
decrease in the phosphorylation levels of mTOR and 4E-BPs, together with an increase of p-AKT[42]. These 
effects lead to an accumulation of eIF4E-4E-BPs complexes, which blocks protein translation and inhibits 
ovarian cancer cells proliferation[42]. Despite the above-mentioned promising results, rapamycin’s clinical 
use is currently restricted due to adverse bioavailability[36]. The rapalogs Temsirolimus and Everolimus have 
been tested in clinical trials, showing anti-proliferative and antiangiogenic actions on ovarian cancer, 
especially when administrated in combination with carboplatin and paclitaxel[35,36]. However, as found in 
other cancers, the critical limitation of these inhibitors is the occurrence of resistance during the treatment, 
with a molecular mechanism that remains elusive. Loss of the negative feedback loops associated to 
PI3K/AKT/mTOR might trigger drug resistance mechanisms, one of which concerns the activation of 
mTORC2 that in turn activates AKT in response to mTORC1 inhibition[35]. In addition, differences in AKT 
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Figure 1. PI3K/mTOR pathway and regulation of eIF4F complex. (A) PI3K and its downstream effectors AKT and mTOR are activated by 
many extracellular stimuli. The serine/threonine protein kinase mTOR forms, by association with several binding partners (mLST8, 
Raptor/Rictor, and mSIN1), 2 distinct complexes mTORC1 and mTORC2. mTORC2 activation leads to actin regulation and cytoskeleton 
organization, while mTORC1 allows the cap-dependent translation through the 4E-BPs phosphorylation, resulting in the dissociation of 
these proteins from eIF4E. PI3K pathway dysregulation results in an altered proliferation, carcinogenesis, and angiogenesis. (B) The cap-
binding protein eIF4E is released by 4E-BPs as a result of its phosphorylation by mTORC1, allowing eIF4F complex formation and thus 
permitting translation of eIF4E-sensitive mRNAs.

activity observed in different ovarian cancer cell lines contribute to the cell-specific sensitivity to 
pharmacological treatment by rapamycin and, more in general, by mTOR inhibitors[16]. In fact, as 
mentioned above, AKT signaling is the central hub of cellular proliferation and growth as well as activates 
alternative pathways[29]. Besides molecules able to target both mTORC1 and mTORC2 complexes, AZD2014 
and AZD8055 have been tested in different ovarian cancer models, showing antitumor activities in 
combination with others drugs[57,58].

Testing the effects of natural products in ovarian cancer therapy is of clinical interest. Resveratrol (3,4’,5-
trihydroxy-trans-stilbene) is a polyphenol found in several plants and wines and thus naturally present in 
the human diet[89]. It has been shown to have anti-neoplastic effects on several types of carcinomas[90], likely 
via inhibition of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor[91], both of 
which are expressed at higher levels in many human cancers, including ovarian cancer[11,92]. The mechanisms 
of inhibition by resveratrol are multiple; among them, its interference in the AKT/mTOR pathway, leading 
to a phosphorylation of S6K1 and 4E-BPs. Resveratrol also increases apoptosis and autophagy and decreases 
proliferation and invasiveness of ovarian cancer cells[93,94].

Further strategies in the development of anti-cancer compounds targeting ovarian malignancies include the 
suppression of proteins that affect the mTOR cascade, using siRNA[95], or the inactivation of AKT, PI3K, or 
simultaneous block of mTOR and PI3K, designing dual mTOR/PI3K inhibitors. Simultaneously targeting 2 
kinases belonging to the same signaling pathway should lead to a more efficient inhibition of the 
PI3K/AKT/mTOR cascade and lower the probability of developing drug resistance. In addition, these 
compounds are developed to prevent AKT hyperactivation due to rapamycin or rapalog treatment[88]. The 
most clinically relevant dual drugs are PI-103, SF1126, GNE-477, XL765, and NVP-BEZ235, the latter being 
the only one that has been tested in a clinical trial[35,36,60,88]. In vitro and in vivo studies in ovarian cancer 
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models have shown that these inhibitors decrease tumor cell growth and proliferation, also in combination 
with paclitaxel[96-98]. Interestingly, all these findings show that platinum resistance of ovarian cancer cells can 
be reversed by inhibiting mTOR (mTORC1/mTORC2), as specific mRNAs encoding survival, cell cycle, 
and other functions are inhibited[57,99].

However, despite the promising results obtained targeting the mTOR pathway, there is a constant need to 
hunt for new molecular targets and therapeutic approaches. Therefore, the downstream mediator of mTOR 
pathway, the cap-dependent translation factor eIF4E, represents a valid candidate, being also a confluence 
point of multiple pathways.

EIF4E INHIBITION: THE FUTURE OF OVARIAN CANCER THERAPY?
Translation of proteins promoting cancer progression and invasiveness, such as kinases, transcription 
factors, and vascular growth factors, is mediated by the mRNA 5’-cap-binding complex, a heterotrimeric 
protein complex consisting of eIF4E, eIF4G, and eIF4A, which recruits the translation apparatus to the 
mRNA [Figure 1B][37]. eIF4G acts as a scaffold protein, binding both the mRNA helicase eIF4A and eIF4E, 
while the function of eIF4E is to bind the 5’ 7-methylguansine (m7G) mRNA cap, thereby selecting the 
mRNAs to be translated. Under normal conditions, eIF4E is expressed at low levels and is therefore the 
limiting factor in the formation of the cap-binding complex. Overexpression of eIF4E is, however, a 
signature of several aggressive cancer types, including triple-negative breast cancer and ovarian 
cancer[100-106]. eIF4E undergoes phosphorylation at Ser209 by the mitogen-activated protein kinase-
interacting kinases 1 and 2 (MNK1/2), which target the eIF4F complex[107,108]. Phosphorylation of eIF4E 
seems to have no functional role under physiological conditions[43,109] but is an independent prognostic 
factor in several types of cancer[110]. The activity of eIF4E is modulated by a heterogeneous group of 4E-BPs, 
phosphoproteins that compete with eIF4G for the same binding site on eIF4E. When phosphorylated by the 
mTORC1 pathway, the affinity of 4E-BPs for eIF4E decreases, facilitating translational initiation [Figure 1B
][37]. Because of its tight control, a 2.5-fold increased expression of eIF4E is enough to induce 
transformation, metastatic progression, and suppression of apoptosis[102,111]. Conversely, more and more 
studies have shown that decreasing eIF4E levels in the cell reduces cell growth and invasiveness in several 
models of cancers[112-116]. It is therefore of utmost importance to develop drugs that hamper the activity of 
eIF4E by either reducing its expression and phosphorylation levels or competing with its biological partners, 
namely the m7G cap, eIF4G, and the 4E-BPs [Table 1].

Because the activity of eIF4E is strictly dependent on its interaction with the mRNA cap, m7G analogs 
represent attractive drug candidates. By mimicking the mRNA cap structure, m7G analogs compete for 
eIF4E binding, thereby decreasing the rate of translation initiation. Ribavirin, an anti-viral drug commonly 
used to treat hepatitis C, is a guanosine ribonucleoside analogue, initially characterized as cap-mimetic[76], 
but this is controversial[77,78].  It was tested against acute myeloid leukemia[71,72], ribavirin showed promising 
results in several cancer models, including breast and ovarian cancer[74,75,117]. Notably, even though eIF4E 
levels are not homogeneous among ovarian cancer cell lines and tissues, ribavirin treatment reduced the 
growth and survival of ovarian cancer cell lines and increased the efficacy of cisplatin treatment both in 
vitro and in vivo[74], an observation that raises the possibility of combining it with other drugs for ovarian 
cancer therapy. Following the encouraging results obtained with ribavirin, several molecules extracted from 
m7G analog libraries have been selected for further studies. Among them, 7-benzyl guanosine 
monophosphate (Bn7GMP)[118] and 4Ei-1[119] are currently being studied in vitro and in vivo and might 
represent ideal adjuvants in ovarian cancer therapy[79,80,118,119].
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The balance between active and inactive eIF4E is controlled by the relative abundance of 4E-BPs and eIF4G 
in the cell. Thus, to reduce the levels of eIF4E, drug design should focus on finding potential ligands able to 
outcompete cellular eIF4G and/or mimic the 4E-BPs. 4EGI-1, a small molecule discovered through high-
throughput screening of compound libraries[81], is an allosteric eIF4E inhibitor which binds eIF4E in a 
different region with respect to eIF4G[82], inhibiting eIF4G-eIF4E complex formation and facilitating the 
binding of 4E-BP1[120]. Furthermore, several short peptides have been designed, based on the sequence of 
eIF4E binding partners, to specifically destabilize the eIF4E-eIF4G complex in the cell, representing a 
valuable approach to target eIF4E-mediated translation in cancer models[86,87,121,122]. The increasing evidence 
that eIF4E targeting slows down cancer progression is having a prompt response in ovarian cancer research. 
Recently, a novel strategy to specifically target eIF4E activity in ovarian cancer models has been reported, 
where 4E-BP1 peptides were fused to an agonist of the gonadotropin-releasing hormone (GnRH)[84], thereby 
mediating the uptake and showing a marked decrease in tumor cells growth.

Taken together, these studies suggest that eIF4E represents a promising candidate for the research on 
ovarian tumors, whereas downregulating eIF4E expression might be a useful and feasible approach to 
improve the therapeutic responsiveness of ovarian cancer. Future research effort must be employed in 
designing and testing potential drugs against eIF4E, to evaluate the possibility of a cancer-specific drug.

CONCLUSION
Patients diagnosed with ovarian cancer have poor prognosis, owing to the advanced status of malignancy at 
the time of diagnosis and the development of resistance to the standard therapy treatment. Thereby, new 
therapeutic strategies are urgently needed. The mTOR signaling pathway is frequently overactivated in 
ovarian cancer and converge to the increased levels of cap-dependent translation, being eIF4E the focal 
point of this pathway. Thus, specific inhibitors targeting mTOR and eIF4E represent promising and valid 
adjuvants for clinical management of ovarian cancer.
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