5360 measured reflections

 $R_{\rm int} = 0.027$

280 parameters

 $\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

3592 independent reflections

2873 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[5,5'-Dihydroxy-2,2'-[o-phenylenebis-(nitrilomethylidyne)]diphenolato}copper(II) methanol disolvate

Meiju Niu,^a* Shumei Fan,^b Kai Liu,^a Zhiqiang Cao^a and Daqi Wang^a

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bDongchang College Liaocheng University, Shandong 252000, People's Republic of China Correspondence e-mail: niumeiju@163.com

Received 26 November 2009; accepted 14 December 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 12.8.

In the title compound, $[Cu(C_{20}H_{14}N_2O_4)] \cdot 2CH_3OH$, the Cu^{II} ion is coordinated by two N [Cu-N = 1.933(2) and 1.941(2)Å] and two O [Cu-O = 1.890(2)] and 1.9038 (19) Å] atoms from the tetradentate Schiff base ligand 5.5'-dihydroxy-2.2'-[o-phenylenebis(nitrilomethylidyne)]diphenolate (L) in a distorted square-planar geometry. In the crystal, intermolecular O-H···O hydrogen bonds link two CuL molecules and four solvent molecules into a centrosymmetric cluster. The crystal packing exhibits short intermolecular $C \cdots C$ contacts of 3.185 (4) and 3.232 (4) Å.

Related literature

For related structures, see: Amirnasr et al. (2006); Arola-Arnal et al. (2008); Sundaravel et al. (2009); Lu et al. (2006).

Experimental Crystal data

[Cu(C20H14N2O4)]·2CH4O $\gamma = 94.241 \ (3)^{\circ}$ V = 1037.6 (4) Å³ $M_r = 473.96$ Triclinic, $P\overline{1}$ Z = 2a = 7.9520 (17) ÅMo $K\alpha$ radiation b = 11.066 (2) Å $\mu = 1.10 \text{ mm}^{-1}$ c = 11.870 (2) Å T = 293 K $\alpha = 91.796(2)^{\circ}$ $0.53 \times 0.48 \times 0.21 \text{ mm}$ $\beta = 94.604 (3)^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.595, T_{\max} = 0.803$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.099$ S = 1.003592 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O5^{i}$	0.82	1.91	2.704 (3)	163
O4−H4···O6 ⁱⁱ	0.82	1.82	2.602 (4)	159
O5−H5···O4 ⁱⁱⁱ	0.82	1.97	2.788 (3)	176
O6−H6···O1	0.82	2.18	2.777 (3)	130
O6−H6···O3	0.82	2.34	3.037 (4)	144
Symmetry codes:	(i) <i>x</i> , <i>y</i> ·	+1, z; (ii)	-x + 2, -y + 2,	-z + 1; (iii)

-x + 2, -y + 1, -z + 1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20671048).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2670).

References

- Amirnasr, M., Schenk, K. J., Meghdadi, S. & Morshedi, M. (2006). Polyhedron, 25, 671-677.
- Arola-Arnal, A., Benet-Buchholz, J., Neidle, S. & Viler, R. (2008). Inorg. Chem. 47, 11910-11919.
- Lu, X. Q., Bao, F., Kang, B. S., Wu, Q., Liu, H. Q. & Zhu, F. M. (2006). J. Organomet. Chem. 691, 821-828.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sundaravel, K., Suresh, E. & Palaniandavar, M. (2009). Inorg. Chim. Acta, 362, 199-207.

supplementary materials

Acta Cryst. (2010). E66, m77 [doi:10.1107/S1600536809053720]

[5,5'-Dihydroxy-2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato}copper(II) methanol disolvate

M. Niu, S. Fan, K. Liu, Z. Cao and D. Wang

Comment

Copper complexes have attracted intensive interest in the past decade because they play important roles on the fields of coordination chemistry, bioinorganic chemistry, redox enzyme systems and others (Amirnasr *et al.*, 2006). In a continuation of a study of Schiff base ligands and their copper(II) complexes, we report here the title complex, (I).

In (I) (Fig. 1),the main plane being formed by the three phenyl and the N₂O₂. The angles O1—Cu1—N2 (178.64 (9)°) and O3—Cu1—N1 (178.39 (9)°) indicate that the coordination geometry of the copper atom is four-coordinate in an approximately square planar, which acts as a tetradentate ligand through its *o*-phenylenediamine N atoms and its deprotonated phenol O atoms. This square planar geometry is the most usual for Cu^{II} complexes (Arola-Arnal *et al.*, 2008) in the N₂O₂ donor set with Schiff base ligands. The Cu—O distances of 1.9022 (19)Å and 1.889 (2)Å are very close to the corresponding values in related structures (1.904 (2)Å and 1.884 (3) Å; Sundaravel *et al.*, 2009). The Cu—N distances of 1.932 (2)Å and 1.942 (2)Å are very close to the corresponding values in related structures (1.946 (2) Å; Lu *et al.*, 2006). Intermolecular O—H…O hydrogen bonds (Table 1) link the molecules into a centrosymmetric cluster.

Experimental

o-Phenylenediamine(1 mmol, 108.22 mg) was dissolved in hot ethanol (20 ml) and added dropwise to a ethanol solution (10 ml) of 2,4-dihydroxybenzaldehyde (2 mmol, 276.2 mg). The mixture was then stirred at 323 K for 4 h. The triethylamine solution (3 ml) of Copper (II) acetate (1.5 mmol, 299.5 mg) was then added dropwise and the mixture stirred for another 5 h, at which point a red precipitate collected by suction filtration and washed with ethanol and ether. Crystals of the title compound suitable for X-ray analysis were from the methanol and dimethylformamide solution after about two weeks.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl) and $U_{iso}(H) = 1.2 \cdot 1.5 U_{eq}$ of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound showing the atomic labels and 30% probability displacement ellipsoids.

[5,5'-Dihydroxy-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}copper(II) methanol disolvate

Crystal data

$[Cu(C_{20}H_{14}N_2O_4)] \cdot 2CH_4O$	Z = 2
$M_r = 473.96$	F(000) = 490
Triclinic, <i>P</i> T	$D_{\rm x} = 1.517 {\rm Mg} {\rm m}^{-3}$
a = 7.9520 (17) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 11.066 (2) Å	Cell parameters from 2490 reflections
c = 11.870 (2) Å	$\theta = 2.5 - 26.4^{\circ}$
$\alpha = 91.796 \ (2)^{\circ}$	$\mu = 1.10 \text{ mm}^{-1}$
$\beta = 94.604 \ (3)^{\circ}$	T = 293 K
$\gamma = 94.241 \ (3)^{\circ}$	Block, red
$V = 1037.6 (4) \text{ Å}^3$	$0.53\times0.48\times0.21~mm$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	3592 independent reflections
Radiation source: fine-focus sealed tube	2873 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.595, T_{\max} = 0.803$	$k = -12 \rightarrow 13$
5360 measured reflections	$l = -14 \rightarrow 10$

Refinement

U U	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.099$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0446P)^2 + 0.5623P]$ where $P = (F_0^2 + 2F_c^2)/3$
3592 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
280 parameters	$\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.84950 (4)	0.91865 (3)	0.07516 (3)	0.03348 (14)
N1	0.7711 (3)	0.9467 (2)	-0.07955 (19)	0.0322 (5)

N2	0.9482 (3)	0.7807 (2)	0.00880 (19)	0.0317 (5)
01	0.7530 (2)	1.05584 (16)	0.13697 (16)	0.0356 (5)
O2	0.4653 (3)	1.41526 (18)	0.14493 (19)	0.0522 (6)
H2	0.4991	1.4142	0.2120	0.078*
O3	0.9320 (3)	0.89012 (18)	0.22501 (16)	0.0433 (5)
O4	1.2805 (4)	0.7377 (2)	0.52128 (19)	0.0724 (8)
H4	1.2474	0.7960	0.5551	0.109*
O5	0.6076 (4)	0.4576 (2)	0.3584 (2)	0.0780 (8)
H5	0.6454	0.4010	0.3927	0.117*
O6	0.7454 (6)	1.0573 (3)	0.3705 (3)	0.1286 (17)
H6	0.8050	1.0433	0.3191	0.193*
C1	0.8192 (4)	0.8588 (3)	-0.1582 (2)	0.0374 (7)
C2	0.9139 (4)	0.7681 (3)	-0.1106 (3)	0.0373 (7)
C3	0.9676 (4)	0.6789 (3)	-0.1807 (3)	0.0455 (8)
Н3	1.0314	0.6191	-0.1498	0.055*
C4	0.9275 (5)	0.6780 (3)	-0.2961 (3)	0.0581 (9)
H4A	0.9624	0.6170	-0.3425	0.070*
C5	0.8358 (6)	0.7674 (3)	-0.3423 (3)	0.0670 (11)
H5A	0.8101	0.7672	-0.4201	0.080*
C6	0.7815 (5)	0.8574 (3)	-0.2742 (3)	0.0561 (9)
H6A	0.7193	0.9174	-0.3063	0.067*
C7	0.6728 (4)	1.0312 (3)	-0.1095 (2)	0.0351 (7)
H7	0.6340	1.0315	-0.1855	0.042*
C8	0.6194 (3)	1.1225 (2)	-0.0376 (2)	0.0318 (6)
С9	0.6652 (3)	1.1344 (2)	0.0815 (2)	0.0314 (6)
C10	0.6127 (4)	1.2337 (2)	0.1415 (3)	0.0366 (7)
H10	0.6430	1.2431	0.2188	0.044*
C11	0.5170 (4)	1.3183 (3)	0.0890 (3)	0.0378 (7)
C12	0.4682 (4)	1.3056 (3)	-0.0271 (3)	0.0436 (8)
H12	0.4022	1.3618	-0.0624	0.052*
C13	0.5181 (4)	1.2108 (3)	-0.0873 (3)	0.0395 (7)
H13	0.4849	1.2029	-0.1643	0.047*
C14	1.0398 (4)	0.7072 (2)	0.0662 (2)	0.0357 (7)
H14	1.0792	0.6432	0.0259	0.043*
C15	1.0849 (4)	0.7158 (2)	0.1845 (2)	0.0361 (7)
C16	1.0355 (4)	0.8091 (2)	0.2577 (2)	0.0356 (7)
C17	1.1031 (4)	0.8149 (3)	0.3713 (3)	0.0444 (8)
H17	1.0741	0.8761	0.4198	0.053*
C18	1.2108 (4)	0.7320 (3)	0.4118 (3)	0.0487 (8)
C19	1.2564 (4)	0.6381 (3)	0.3410 (3)	0.0500 (8)
H19	1.3279	0.5813	0.3690	0.060*
C20	1.1945 (4)	0.6318 (3)	0.2312 (3)	0.0438 (8)
H20	1.2253	0.5696	0.1844	0.053*
C21	0.7229 (7)	0.5589 (4)	0.3737 (5)	0.1056 (17)
H21A	0.7013	0.6045	0.4404	0.158*
H21B	0.7110	0.6087	0.3092	0.158*
H21C	0.8358	0.5332	0.3820	0.158*
C22	0.6689 (6)	0.9506 (5)	0.4033 (4)	0.0857 (14)
H22A	0.6713	0.9513	0.4843	0.129*

supplementary materials

H22B	0.7282	0.8840	0.3772	0.129*
H22C	0.5537	0.9418	0.3714	0.129*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0365 (2)	0.0294 (2)	0.0349 (2)	0.00663 (14)	0.00252 (14)	-0.00080 (14)
N1	0.0339 (13)	0.0275 (12)	0.0353 (13)	0.0012 (10)	0.0054 (10)	-0.0027 (10)
N2	0.0280 (12)	0.0304 (12)	0.0360 (13)	-0.0005 (10)	0.0034 (10)	-0.0040 (10)
01	0.0411 (11)	0.0303 (10)	0.0356 (11)	0.0106 (9)	-0.0022 (9)	0.0002 (8)
02	0.0675 (15)	0.0326 (12)	0.0578 (14)	0.0219 (11)	-0.0016 (11)	-0.0014 (10)
03	0.0554 (14)	0.0415 (12)	0.0356 (11)	0.0245 (10)	0.0028 (10)	-0.0013 (9)
O4	0.111 (2)	0.0646 (17)	0.0450 (14)	0.0490 (16)	-0.0096 (14)	0.0024 (12)
05	0.113 (2)	0.0505 (16)	0.0681 (17)	0.0266 (16)	-0.0249 (16)	-0.0026 (13)
06	0.272 (5)	0.072 (2)	0.0547 (19)	0.053 (3)	0.061 (3)	-0.0016 (16)
C1	0.0372 (16)	0.0361 (16)	0.0380 (17)	-0.0040 (13)	0.0053 (13)	-0.0033 (13)
C2	0.0354 (16)	0.0331 (15)	0.0423 (17)	-0.0042 (13)	0.0070 (13)	-0.0082 (13)
C3	0.0447 (19)	0.0407 (18)	0.050 (2)	0.0028 (14)	0.0047 (15)	-0.0109 (15)
C4	0.073 (3)	0.051 (2)	0.051 (2)	0.0060 (18)	0.0110 (18)	-0.0194 (17)
C5	0.101 (3)	0.065 (2)	0.0360 (19)	0.018 (2)	0.0022 (19)	-0.0094 (17)
C6	0.080 (3)	0.050 (2)	0.0397 (19)	0.0174 (18)	0.0036 (17)	-0.0033 (16)
C7	0.0366 (16)	0.0346 (16)	0.0330 (16)	-0.0040 (13)	0.0020 (13)	0.0027 (13)
C8	0.0290 (15)	0.0286 (14)	0.0373 (16)	-0.0023 (12)	0.0026 (12)	0.0047 (12)
C9	0.0265 (14)	0.0266 (14)	0.0402 (16)	-0.0030 (11)	0.0006 (12)	0.0020 (12)
C10	0.0374 (17)	0.0301 (15)	0.0416 (17)	0.0024 (12)	-0.0008 (13)	0.0009 (13)
C11	0.0348 (16)	0.0283 (15)	0.0498 (18)	0.0011 (12)	0.0006 (14)	0.0046 (13)
C12	0.0433 (18)	0.0337 (16)	0.055 (2)	0.0091 (14)	0.0009 (15)	0.0154 (15)
C13	0.0403 (17)	0.0387 (17)	0.0388 (16)	-0.0007 (14)	-0.0011 (13)	0.0100 (14)
C14	0.0351 (16)	0.0257 (14)	0.0468 (18)	0.0017 (12)	0.0097 (13)	-0.0053 (13)
C15	0.0395 (17)	0.0271 (15)	0.0429 (17)	0.0043 (12)	0.0090 (13)	0.0015 (13)
C16	0.0384 (17)	0.0306 (15)	0.0394 (16)	0.0071 (13)	0.0079 (13)	0.0042 (13)
C17	0.058 (2)	0.0395 (17)	0.0384 (17)	0.0193 (15)	0.0086 (15)	0.0000 (14)
C18	0.060 (2)	0.0445 (18)	0.0445 (19)	0.0187 (16)	0.0029 (16)	0.0093 (15)
C19	0.062 (2)	0.0371 (17)	0.055 (2)	0.0244 (16)	0.0060 (17)	0.0118 (15)
C20	0.052 (2)	0.0307 (16)	0.0510 (19)	0.0140 (14)	0.0117 (16)	0.0022 (14)
C21	0.113 (4)	0.073 (3)	0.125 (4)	0.007 (3)	-0.021 (3)	-0.008 (3)
C22	0.093 (3)	0.116 (4)	0.055 (3)	0.039 (3)	0.016 (2)	0.007 (3)

Geometric parameters (Å, °)

Cu1—O3	1.890 (2)	С7—С8	1.412 (4)
Cu1—O1	1.9038 (19)	С7—Н7	0.9300
Cu1—N1	1.933 (2)	C8—C13	1.425 (4)
Cu1—N2	1.941 (2)	C8—C9	1.430 (4)
N1—C7	1.303 (4)	C9—C10	1.398 (4)
N1—C1	1.421 (4)	C10-C11	1.382 (4)
N2-C14	1.303 (3)	C10—H10	0.9300
N2—C2	1.422 (4)	C11—C12	1.401 (4)
01—С9	1.315 (3)	C12—C13	1.352 (4)

O2—C11	1.351 (4)	C12—H12	0.9300
O2—H2	0.8200	С13—Н13	0.9300
O3—C16	1.308 (3)	C14—C15	1.420 (4)
O4—C18	1.368 (4)	C14—H14	0.9300
O4—H4	0.8200	C15—C20	1.416 (4)
O5—C21	1.392 (5)	C15—C16	1.426 (4)
О5—Н5	0.8200	C16—C17	1.408 (4)
O6—C22	1.369 (6)	C17—C18	1.373 (4)
О6—Н6	0.8200	C17—H17	0.9300
C1—C6	1.385 (4)	C18—C19	1.402 (4)
C1—C2	1.405 (4)	C19—C20	1.354 (5)
C2—C3	1.385 (4)	С19—Н19	0.9300
C3—C4	1.381 (5)	С20—Н20	0.9300
С3—Н3	0.9300	C21—H21A	0.9600
C4—C5	1.374 (5)	C21—H21B	0.9600
C4—H4A	0.9300	C21—H21C	0.9600
C5—C6	1.378 (5)	C22—H22A	0.9600
С5—Н5А	0.9300	C22—H22B	0.9600
С6—Н6А	0.9300	C22—H22C	0.9600
C7···C9 ⁱ	3.185 (4)	C8···C14 ⁱⁱ	3.232 (4)
O3—Cu1—O1	86.42 (8)	C11—C10—C9	121.7 (3)
O3—Cu1—N1	178.39 (9)	С11—С10—Н10	119.2
O1—Cu1—N1	94.78 (9)	С9—С10—Н10	119.2
O3—Cu1—N2	94.77 (9)	O2—C11—C10	122.8 (3)
O1—Cu1—N2	178.65 (9)	O2—C11—C12	116.9 (3)
N1—Cu1—N2	84.02 (9)	C10-C11-C12	120.3 (3)
C7—N1—C1	122.4 (2)	C13—C12—C11	119.2 (3)
C7—N1—Cu1	124.2 (2)	С13—С12—Н12	120.4
C1—N1—Cu1	113.23 (18)	С11—С12—Н12	120.4
C14—N2—C2	122.5 (2)	C12—C13—C8	122.7 (3)
C14—N2—Cu1	124.2 (2)	С12—С13—Н13	118.7
C2—N2—Cu1	113.32 (18)	C8—C13—H13	118.7
C9—O1—Cu1	127.17 (18)	N2—C14—C15	126.1 (3)
С11—О2—Н2	109.5	N2—C14—H14	117.0
C16—O3—Cu1	127.11 (18)	C15—C14—H14	117.0
C18—O4—H4	109.5	C20—C15—C14	118.0 (3)
C21—O5—H5	109.5	C20—C15—C16	118.1 (3)
С22—О6—Н6	109.5	C14—C15—C16	123.7 (3)
C6—C1—C2	119.5 (3)	O3—C16—C17	118.3 (3)
C6—C1—N1	125.5 (3)	O3—C16—C15	123.7 (3)
C2—C1—N1	115.1 (2)	C17—C16—C15	118.1 (3)
C3—C2—C1	119.2 (3)	C18—C17—C16	121.4 (3)
C3—C2—N2	126.4 (3)	С18—С17—Н17	119.3
C1—C2—N2	114.4 (2)	C16—C17—H17	119.3
C4—C3—C2	120.7 (3)	O4—C18—C17	122.2 (3)
С4—С3—Н3	119.7	O4—C18—C19	117.1 (3)
С2—С3—Н3	119.7	C17—C18—C19	120.7 (3)
C5—C4—C3	119.8 (3)	C20—C19—C18	118.8 (3)

supplementary materials

C5—C4—H4A	120.1	С20—С19—Н19	120.6
C3—C4—H4A	120.1	С18—С19—Н19	120.6
C4—C5—C6	120.5 (3)	C19—C20—C15	122.8 (3)
С4—С5—Н5А	119.7	С19—С20—Н20	118.6
С6—С5—Н5А	119.7	С15—С20—Н20	118.6
C5—C6—C1	120.3 (3)	O5-C21-H21A	109.5
С5—С6—Н6А	119.9	O5-C21-H21B	109.5
С1—С6—Н6А	119.9	H21A—C21—H21B	109.5
N1—C7—C8	126.3 (3)	O5-C21-H21C	109.5
N1—C7—H7	116.9	H21A—C21—H21C	109.5
С8—С7—Н7	116.9	H21B—C21—H21C	109.5
C7—C8—C13	118.0 (3)	O6—C22—H22A	109.5
С7—С8—С9	124.3 (3)	O6—C22—H22B	109.5
C13—C8—C9	117.7 (3)	H22A—C22—H22B	109.5
O1—C9—C10	118.7 (3)	O6—C22—H22C	109.5
01—C9—C8	123.0 (3)	H22A—C22—H22C	109.5
С10—С9—С8	118.4 (2)	H22B—C22—H22C	109.5
O3—Cu1—N1—C7	-144 (3)	Cu1—N1—C7—C8	6.1 (4)
O1—Cu1—N1—C7	-5.2 (2)	N1-C7-C8-C13	177.0 (3)
N2—Cu1—N1—C7	175.4 (2)	N1—C7—C8—C9	-0.8 (4)
O3—Cu1—N1—C1	42 (3)	Cu1—O1—C9—C10	-176.41 (18)
01—Cu1—N1—C1	-179.98 (18)	Cu1—O1—C9—C8	4.1 (4)
N2—Cu1—N1—C1	0.65 (18)	C7—C8—C9—O1	-4.7 (4)
O3—Cu1—N2—C14	-1.3 (2)	C13—C8—C9—O1	177.5 (2)
O1—Cu1—N2—C14	150 (4)	C7—C8—C9—C10	175.8 (3)
N1—Cu1—N2—C14	177.7 (2)	C13—C8—C9—C10	-2.0 (4)
O3—Cu1—N2—C2	179.91 (18)	O1—C9—C10—C11	-178.6 (2)
O1—Cu1—N2—C2	-28 (4)	C8—C9—C10—C11	0.9 (4)
N1—Cu1—N2—C2	-1.15 (18)	C9—C10—C11—O2	-179.7 (3)
O3—Cu1—O1—C9	179.2 (2)	C9—C10—C11—C12	0.7 (4)
N1—Cu1—O1—C9	0.3 (2)	O2—C11—C12—C13	179.3 (3)
N2—Cu1—O1—C9	27 (4)	C10-C11-C12-C13	-1.0 (4)
O1—Cu1—O3—C16	-172.9 (2)	C11—C12—C13—C8	-0.2 (5)
N1—Cu1—O3—C16	-34 (3)	C7—C8—C13—C12	-176.3 (3)
N_2 —Cu1—O3—C16	6.5 (2)	C9—C8—C13—C12	1.7 (4)
C7-N1-C1-C6	5.7 (5)	C_{2} N2 C_{14} C_{15}	177.7 (3)
Cu1—N1—C1—C6	-179.4(3)	Cu1 - N2 - C14 - C15	-1.1 (4)
C7-N1-C1-C2	-174.9(2)	N2-C14-C15-C20	-176.1(3)
Cu1—N1—C1—C2	0.0(3)	N_{2} C14 C15 C16	-0.5(5)
$C_{6} - C_{1} - C_{2} - C_{3}$	-0.1(4)	$C_{11} = 03 = C_{16} = C_{17}$	170.0(2)
N1-C1-C2-C3	-1795(2)	Cu1 - O3 - C16 - C15	-94(4)
C6-C1-C2-N2	178 5 (3)	C_{20} C_{15} C_{16} C_{3}	-1784(3)
N1 - C1 - C2 - N2	-0.9(4)	C_{14} C_{15} C_{16} C_{3}	60(5)
$C_{14} - N_{2} - C_{2} - C_{3}$	10(4)	C_{20} C_{15} C_{16} C_{17}	2.1.(4)
Cu1 - N2 - C2 - C3	179.9 (2)	C14-C15-C16-C17	-173.5 (3)
C14-N2-C2-C1	-177.4 (2)	O3-C16-C17-C18	179.2 (3)
Cu1-N2-C2-C1	1.4 (3)	C15-C16-C17-C18	-1.3(5)
C1 - C2 - C3 - C4	-0.7 (5)	C16-C17-C18-O4	178 6 (3)
$N_2 - C_2 - C_3 - C_4$	-1790(3)	C16-C17-C18-C19	-0.3(5)
1.2 02 03 01	1, 9.0 (3)		5.5 (5)

C2—C3—C4—C5	1.1 (5)	O4—C18—C19—C20	1	-177.8 (3)
C3—C4—C5—C6	-0.9 (6)	C17—C18—C19—C2	0	1.1 (5)
C4—C5—C6—C1	0.1 (6)	C18—C19—C20—C1	5	-0.2 (5)
C2-C1-C6-C5	0.3 (5)	C14—C15—C20—C1	9	174.4 (3)
N1-C1-C6-C5	179.7 (3)	C16—C15—C20—C1	9	-1.4 (5)
C1—N1—C7—C8	-179.6 (2)			
Symmetry codes: (i) $-x+1$, $-y+2$, -z; (ii) $-x+2, -y+2, -z.$			
Hydrogen-bond geometry (Å,	°)			
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A

	DI	11 11	DI	
O2—H2···O5 ⁱⁱⁱ	0.82	1.91	2.704 (3)	163
O4—H4···O6 ^{iv}	0.82	1.82	2.602 (4)	159
$O5$ — $H5$ ··· $O4^{v}$	0.82	1.97	2.788 (3)	176
O6—H6…O1	0.82	2.18	2.777 (3)	130
О6—Н6…О3	0.82	2.34	3.037 (4)	144

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) –*x*+2, –*y*+2, –*z*+1; (v) –*x*+2, –*y*+1, –*z*+1.

