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Abstract: Vibrio parahaemolyticus is one of the major pathogenic Vibrio species that contaminate seafood.
Rapid and accurate detection is crucial for avoiding foodborne diseases caused by pathogens and is
important for food safety management and mariculture. In this study, we established a system that
combines chemically enhanced clustered regularly interspaced short palindromic repeats (CRISPR)
and recombinase-aided amplification (RAA) (CE–RAA–CRISPR) for detecting V. parahaemolyticus in
seafood. The method combines RAA with CRISPR-associated protein 12a (Cas12a) for rapid detection
in a one-pot reaction, effectively reducing the risk of aerosol contamination during DNA amplifier
transfer. We optimized the primers for V. parahaemolyticus, determined the optimal crRNA/Cas12a
ratio, and demonstrated that chemical additives (bovine serum albumin and L-proline) could enhance
the detection capacity of Cas12a. The limit of detection (at optimal conditions) was as low as
6.7 × 101 CFU/mL in pure cultures and 7.3× 101 CFU/g in shrimp. Moreover, this method exhibited
no cross-reactivity with other microbial pathogens. The CE–RAA–CRISPR assay was compared with
the quantitative polymerase chain reaction assay using actual food samples, and it showed 100%
diagnostic agreement.

Keywords: recombinase-aided amplification; CRISPR/Cas12a; chemical; fluorescence detection;
Vibrio parahaemolyticus

1. Introduction

Vibrio parahaemolyticus (V. parahaemolyticus) is a common Gram-negative foodborne
pathogenic bacterium. It is a halophilic marine bacterium that commensally exists in various
seafoods, including fish, shrimp, and shellfish [1], and is one of the leading causes of seafood
poisoning [2]. As a zoonotic pathogen, V. parahaemolyticus causes gastrointestinal illness
characterized by watery diarrhea, nausea, vomiting, abdominal cramps, and headache.
In severe cases, it may result in septicemia and fatal diseases [3]. Consumption of raw,
parboiled, or contaminated seafood is one of the most common causes of food poisoning
in humans [4]. In the aquaculture industry, V. parahaemolyticus can also cause acute or
severe gastroenteritis infections in aquatic animals, resulting in huge economic losses [5].
Therefore, developing technologies for the sensitive and rapid detection of this pathogen is
vital to ensure the safety of seafood.

Currently, conventional culture-based methods are considered the gold standard for
the detection of V. parahaemolyticus. However, these methods are time-consuming and
labor-intensive, usually requiring two to three days to obtain results [6], and the methods
may underestimate the microbial population size [7]. Thus, polymerase chain reaction
(PCR) methods, including quantitative PCR (qPCR) and droplet digital PCR (ddPCR), have
been widely used as alternative methods for the rapid detection of V. parahaemolyticus [8,9].
However, these methods are inconvenient for use in grassroots laboratories and on-site
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applications, as they require expensive instruments, complex detection procedures, and
skilled operators [10,11].

To overcome these limitations, some isothermal amplification techniques such as loop-
mediated isothermal amplification (LAMP) and recombinase-aided amplification (RAA)
have been developed. These techniques are suitable for environments lacking infrastructure,
expensive instruments, and technical expertise. Compared with LAMP, RAA is character-
ized by relatively fast reaction (<30 min) and operates at low temperature (37–42 ◦C) [12,13].
Although RAA is more portable than the PCR method, further improvement in sensitivity
is required for V. parahaemolyticus detection.

In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)
and CRISPR-associated (Cas) enzymes have not only revolutionized the field of genome
editing but also shown remarkable potential in the field of nucleic acid detection [14–16].
CRISPR/Cas12a exhibits trans-cleavage activity for nonspecific single-stranded DNA (ss-
DNA). Cas12a combines with crRNA to form a Cas12a-crRNA complex, which then specifi-
cally recognizes the DNA targets to form a ternary complex (Cas12a/crRNA/DNA targets).
The trans-cleavage activity of the Cas12a protein for ssDNA is triggered by the specific
recognition of the target DNA. Thus, through the fluorophore and quencher labeling of the
ssDNA, the content of the target gene can be converted into a fluorescent signal [17–19].
The CRISPR system has been combined with the RAA assay to detect various foodborne
pathogens, including Listeria monocytogenes [20], Salmonella [21], and spoilage bacteria [22].

In previous studies, researchers have focused on optimizing the composition of the
system (e.g., Cas nuclease, reporter, and Mg2+), adjusting the stoichiometry between the
Cas protein and crRNA, or modifying the crRNA to improve detection [23,24]. In addition,
several researchers have reported that the reaction efficiency can be further enhanced
through chemical addition. For example, the chemically enhanced CRISPR detection
method called CECRID was applied for detection [25]. However, its effectiveness in
the detection of V. parahaemolyticus in raw shrimp samples has rarely been investigated;
therefore, the factors affecting its sensitivity are unclear. Moreover, the method requires the
transfer of amplification products, which can cause aerosol contamination.

To improve the convenience of existing tools and overcome the limitations of
V. parahaemolyticus detection, in the present study, we designed a novel system that com-
bines chemically enhanced CRISPR detection and RAA (CE–RAA–CRISPR). In this system,
the RAA reagent is placed at the centrifuge tube bottom for amplification. After amplifica-
tion, the CRISPR reagent is placed at the top of the centrifuge tube, and the two reagents
are mixed via centrifugation, which triggers the CRISPR assay. We optimized the system
composition and evaluated the effects of the addition of several chemicals on the detection
signal. Finally, a sensitive, rapid, and accurate CE–RAA–CRISPR assay was obtained for
detecting V. parahaemolyticus in shrimp samples (Figure 1). This method provides new ideas
for the detection of foodborne pathogens while reducing amplicon contamination.
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Figure 1. Schematic illustration of the principle of CE–RAA–CRISPR.

2. Materials and Methods
2.1. Bacteria Culture and Genomic DNA Extraction

The bacterial strains used in this study are listed in Table 1. All of the Vibrio species
strains were inoculated in a sterile 3% NaCl alkaline peptone water (APW, Huankai Micro-
bial Sci. & Tech. Co., Ltd. [HM], Guangzhou, China) medium, and the rest of the strains
were incubated in a Luria-Bertani (LB, HM) broth at 37 ◦C for 7 h. Cells were serially
diluted using sterile 0.85% (w/w) NaCl to obtain 10-fold serial dilutions. Furthermore, 3%
NaCl tryptone soy agar (3% NaCl TSA, HM) was used for enumerating the viable count
of V. parahaemolyticus. DNA extraction was performed using a bacterial genomic DNA
extraction kit (Vazyme Biotech Co., Ltd., Nanjing, China) according to the manufacturer’s
protocol. The extracted genomic DNA was stored at −20 ◦C until use.

Table 1. Bacterial strains used for the evaluation of the specificity of CE–RAA–CRISPR in this study.

Serial Number Species Strain CE–RAA–CRISPR
Results

1 Vibrio parahaemolyticus ATCC 17802 +
2 Vibrio parahaemolyticus JNUFN 01 +
3 Vibrio parahaemolyticus JNUFN 02 +
4 Vibrio parahaemolyticus JNUFN 03 +
5 Vibrio parahaemolyticus JNUFN 04 +
6 Vibrio parahaemolyticus JNUFN 05 +
7 Vibrio parahaemolyticus JNUFN 06 +
8 Vibrio parahaemolyticus JNUFN 07 +
9 Vibrio parahaemolyticus JNUFN 08 +
10 Vibrio parahaemolyticus JNUFN 09 +
11 Vibrio parahaemolyticus JNUFN 10 +
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Table 1. Cont.

Serial Number Species Strain CE–RAA–CRISPR
Results

12 Escherichia coli O157:H7 ATCC 35150 −
13 Enteroinvasive Escherichia coli CICC 10662 −
14 Enterotoxigenic Escherichia coli CICC 10667 −
15 Escherichia coli O127: K63 CICC 10411 −
16 Escherichia coli EPEC O86: K61 CICC 10412 −
17 Staphylococcus aureus ATCC 25923 −
18 Cronobacter sakazakii ATCC 29544 −
19 Listeria monocytogenes ATCC 19115 −
20 Vibrio alginolyticus ATCC 33787 −
21 Pseudomonas aeruginosa ATCC 15442 −
22 Pseudomonas aeruginosa ATCC 27853

ATCC, American Type Culture Collection, USA; JNUFN, Institute of Food Safety and Nutrition of Jinan University;
CICC, China Center of Industrial Culture Collection; + and− indicate positive and negative reaction, respectively.

2.2. Primer Design

Primers and probes (Table 2) were designed according to the conserved tlh gene
sequence of V. parahaemolyticus using Primer Express 3.0.1 and synthesized by Sangon
Biotech (Shanghai, China). Before the primers were used, their specificity was evaluated
through a BLAST search using sequences in GenBank.

Table 2. Primers and probe used in this study.

Name Sequence (5′-3′)

RAA-F1 AGATTTGGCGAACGAGAACGCAGACATTACG
RAA-F2 TTAGATTTGGCGAACGAGAACGCAGACATTA
RAA-F3 TTAGATTTGGCGAACGAGAACGCAGACATTACG
RAA-R1 GTCACCGAGTGCAACCACTTTGTTGATTTGA
RAA-R2 TTGCCTGTATCAGACAAGCTGTCACCGAGTG
RAA-R3 TGTTGCCTGTATCAGACAAGCTGTCACCGAGTG

RAA-Probe TGACAATCGCTTCTCATACAAC-
CACACGA/i6FAMdT//THF//iBHQ1dT/GGAGCAACGACGCA

ssDNA-FQ reporter 6-FMA-TTATT-BHQ1
crRNA UAAUUUCUACUAAGUGUAGAUAUCUGGCUGCAUUGCUGCGU
qPCR-F GTTCATCAAGGCACAAGCGA
qPCR-R ACAGACGATGAGCGGTTGAT
qPCR-P FAM-CGTTGTTTGATACTCACGCCTTGTTCG-BHQ

The element of the crRNA underlined is nucleotide sequences complementary to the template strand.

2.3. Standard RAA System

The RAA reaction was performed using an RAA nucleic acid amplification kit (Jiangsu
Qitian Gene Biotechnology Co., Ltd., Wuxi, China) following the manufacturer’s instruc-
tions, but with slight modifications. Each 10 µL of reaction mixture contained 2 µL of
template, 0.4 µL (10 µM) of each primer, 5 µL of RAA solution, 0.6 µL (280 mM) of magne-
sium acetate, and 1.6 µL of nuclease-free water. The mixture was incubated in a metal bath
at 37 ◦C for 30 min.

2.4. Real-Time RAA and PCR

An RAA fluorescence detection kit (Jiangsu Qitian Gene Biotechnology Co., Ltd.) was
used for real-time RAA (qRAA) assay optimization. This was carried out by adding 2 µL of
genomic DNA, 0.42 µM of each primer, 0.12 µM of the probe, 14 mM of magnesium acetate,
10 µL of RAA buffer solution, and nuclease-free water up to 20 µL. The reaction tubes were
placed on DHelix-Q5 (Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou,
China) at 37 ◦C for 30 min, and the fluorescence signal was recorded every 30 s.
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qPCR was conducted following a previously published method, with modifications.
The qPCR reaction mixture contained 10 µL of AceQ®Universal U+ Probe Master Mix V2
(Vazyme Biotech, Nanjing, China), genomic DNA template (2 µL), 0.4 µL of forward primer
(10 µM), 0.4 µL of reverse primer (10 µM), 0.2 µL of probe (10 µM), and 7 µL of nuclease-
free water. The reaction tubes were placed in an ABI QuantStudio6 Q6 system (ABI, USA)
to collect fluorescence signals. The qPCR cycling conditions were as follows: 37 ◦C for
2 min to eliminate false-positive contamination, 5 min denaturation at 95 ◦C, followed by
45 cycles of 10 s denaturation at 95 ◦C, and 60 ◦C for 30 s for annealing-extension.

2.5. CE–RAA–CRISPR System

The LbaCas12a (Guangzhou Bio-Lifescsi Co., Ltd., Guangzhou, China) complex was
preassembled as follows: 2 µL of 10× reaction buffer, 200 nM of LbaCas12a protein, 100 nM
of crRNA, 500 nM of ssDNA-FQ reporter, 2 µL of bovine serum albumin (BSA, 1 mg/mL)
solution, and 2 µL of L-proline (5 M), which we added to a 10 µL reaction system. For the
CE–RAA–CRISPR assay, we first added 10 µL of liquid paraffin to the RAA reaction system
to prevent aerosol pollution. After RAA, the LbaCas12a complex was added to the PCR
tube cap and mixed via centrifugation. All primers were synthesized by Sangon Biotech
(Shanghai, China). CrRNA and ssDNA were synthesized by Guangzhou Bio-Lifescsi
Co., Ltd.

2.6. Evaluation of Limit of Detection (LOD) of qRAA, RAA–CRISPR, and CE–RAA–CRISPR in
Pure Culture

The LODs of the qRAA, RAA–CRISPR, and CE–RAA–CRISPR assays were tested
through gradient dilution of the V. parahaemolyticus suspension. The V. parahaemolyticus
suspension was diluted with sterile 0.85% (w/w) NaCl in a ten-fold gradient, and then
DNA was extracted as a template for qRAA, RAA–CRISPR, and CE–RAA–CRISPR assays.
The remaining steps were similar to the process described above.

2.7. Evaluation of CE–RAA–CRISPR in Artificially Contaminated Shrimp

Commercially available raw shrimp samples were purchased from a local supermarket
(Guangzhou, China). Prior to the start of the experiment, the absence of V. parahaemolyticus
in the sample was determined through the qPCR method. A 25 g shrimp sample was
placed in a sterile sampling bag, 225 mL of sterile 0.85% (w/w) NaCl was added, and the
sample was manually ground with a grinding rod until a sample homogenate was formed.
To evaluate the LOD of CE–RAA–CRISPR using artificially contaminated shrimp, 1 mL of
different concentrations of V. parahaemolyticus (7.3 × 105 to 7.3 × 101 CFU/mL) was mixed
with 9 mL of sample homogenate to prepare artificially contaminated shrimp samples
with V. parahaemolyticus at concentrations of 7.3 × 104 to 7.3 × 100 CFU/g (no incubation).
Then, 1 mL aliquots were collected at each gradient, and DNA was extracted according
to the method described in Section 2.1. The obtained DNA was used as the template for
the subsequent CE–RAA–CRISPR assay. Each food sample was tested twice through the
CE–RAA–CRISPR assay, and the experiment was repeated three times.

2.8. Determination of Specificity

We used 22 bacterial strains, including 11 V. parahaemolyticus strains, 1 other Vibrio species,
and 10 non-V. parahaemolyticus strains, to determine the specificity of the CE–RAA–CRISPR
method. Genomic DNA from these strains was extracted as a template.

2.9. Comparison of CE–RAA–CRISPR with qPCR Assay on Real Samples

To test actual samples, 40 aquatic food samples were obtained from local markets
(Guangdong Province, China), including 20 shrimp, 10 fish, and 10 clam samples. We
added 225 mL of sterile APW per 25 g food sample in a sterile sampling bag, which we
ground manually to form a homogenate sample, and then incubated at 37 ◦C for 3 h.
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Then, genomic DNA was extracted from 1 mL of the homogeneous solution and used as a
template for CE–RAA–CRISPR and qPCR [7].

2.10. Data Analyses

The results are expressed as mean ± standard deviation. All statistical analyses were
performed using R (Version 4.1.0, R core team). A p value of less than 0.05 was considered
statistically significant. All graphs were constructed in Origin 2022.

3. Results
3.1. Optimization of Primers for RAA

The RAA efficiency is strongly influenced by the primer sequence. Therefore, we
examined different primer combinations using the V. parahaemolyticus tlh gene as the target
gene. Three upstream primers and three downstream primers were designed for screening,
while a fluorescent probe was designed to bind to the primers for detection via qRAA. The
downstream primer R1 was used in combination with the upstream primers in sequence.
The best amplification efficiency was achieved when R1 was combined with upstream
primer F1. When 1 × 106 CFU/mL DNA was used as the template, the fluorescence signal
started to appear after ~8 min. Among all primer combinations, the F1–R1 combination
featured the earliest peak time and the highest endpoint fluorescence value. The other
primer combinations showed slightly later peak and lower endpoint fluorescence than
F1–R1 (Figure 2A). F1 was selected for screening with all reverse primers, and only R1
yielded the best results (Figure 2B). Therefore, the F1–R1 combination was considered the
optimal primer pair.
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primer (A) and downstream primer (B).

3.2. Optimization of CRISPR Reaction

The crRNA–DNA target complementarity was determined according to the RAA
amplification region (Figure 3A). The trans-cleavage activity of the Cas12a protein can
only be activated when Cas12a/crRNA and the target are present. At this point, the
ssDNA-FQ fluorescent probe in the system is cleaved, generating substantial fluorescent
signals that can be detected by fluorescent detection equipment (Figure 3B). To obtain the
best signal readout during Cas12a-mediated trans-cleavage, we optimized the optimal
range of the Cas protein-to-crRNA ratio for detection capability. Maximum fluorescence
signal values were obtained using the RAA–CRISPR assay when the Cas protein-to-rRNA
molar ratio was 2:1 (Figure 3C). Therefore, we used 200 nM Cas12a and 100 nM crRNA for
subsequent experiments.
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3.3. Effects of Chemical Additives

We further enhanced the fluorescence signal values of the RAA–CRISPR method by
adding chemical additives. BSA addition resulted in a significant increase in the end-
point fluorescence signal (Figure 4A), but there was no significant change in the negative
control group. Thus, BSA may be an ideal signal enhancer in CRISPR assays. We fur-
ther investigated whether other chemical additives had a positive synergistic effect. For
LbaCas12a-mediated DNA detection, some chemical additives such as L-proline, betaine,
and glycerol could enhance fluorescent signals. Among the additives, the addition of
L-proline resulted in the most significant enhancement in fluorescence signals. The addition
of 0.5 M betaine also enhanced the signal, but by a lesser degree than L-proline. Therefore,
L-proline was chosen as the chemical additive to enhance the CRISPR detection system.

To determine the optimal L-proline concentration, a series of concentrations was
added (Figure 4B). With increasing final L-proline concentration, the fluorescence signal
intensified. The fluorescence signal was highest when the final concentration of L-proline
was 0.5 M. Therefore, 0.5 M was the optimal final concentration of L-proline. Thus far, we
constructed a CE–RAA–CRISPR detection system by enhancing the endpoint fluorescence
signal value of the RAA–CRISPR method through chemical addition.
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3.4. LOD Comparison of qRAA, RAA–CRISPR, and CE–RAA–CRISPR Methods

We compared the LOD of the different quantitative assays. The qRAA and RAA–CRISPR
assays were applied to pure cultures with different concentrations of V. parahaemolyticus,
ranging from 6.7 × 101 to 6.7 × 108 CFU/mL. qRAA detected V. parahaemolyticus when
the bacterial solution concentration was 6.7 × 103 CFU/mL or higher (Figure 5A). A linear
relationship (R2 = 0.995) existed between the threshold time and the V. parahaemolyticus con-
centration over the range of 6.7 × 103 to 6.7 × 108 CFU/mL (Figure 5B). Thus, the detection
limit of the qRAA method was 6.7 × 103 CFU/mL. In contrast, the lower LOD exhibited by
the RAA–CRISPR method (detection limit of 6.7× 102 CFU/mL) was 10-fold lower than that
of the qRAA method (detection limit of 6.7 × 103 CFU/mL; Figure 5C).
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Chemical addition further reduced the LOD of the assay. The LOD of CE–RAA–CRISPR
was 6.7 × 101 CFU/mL, which was 10 times lower than that of RAA–CRISPR without
chemical additives (Figure 5D).

3.5. LOD of CE–RAA–CRISPR Method in Artificially Contaminated Shrimp

The developed CE–RAA–CRISPR assay was evaluated with shrimp samples spiked
with V. parahaemolyticus at concentrations of 7.3× 104 to 7.3× 100 CFU/g. When the concen-
tration of the bacterial solution in shrimp samples was 7.3 × 101 CFU/g, the fluorescence
signal values generated through the CE–RAA–CRISPR method were still significantly dif-
ferent from those for the blank group. The detection limit of the CE–RAA–CRISPR method
in artificially contaminated shrimp samples was 7.3 × 101 CFU/g (Figure 6). These results
revealed the rapid and sensitive detection advantages of the CE–RAA–CRISPR technique.
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3.6. Specificity of CE–RAA–CRISPR Assays

In the specificity test, the genome DNA extracted from 22 bacterial strains was used for
CE–RAA–CRISPR detection. The reaction was positive only for V. parahaemolyticus (both stan-
dard and isolated strains), while negative results were obtained for non-V. parahaemolyticus,
with no cross-reactivity (Table 1). The CE–RAA–CRISPR method exhibited specificity for
V. parahaemolyticus detection.

3.7. Evaluating Consistency between CE–RAA–CRISPR and qPCR Assays Using Actual Samples

To evaluate the performance of the CE–RAA–CRISPR assay, 40 actual samples, includ-
ing shrimp, fish, and clams, were analyzed using both CE–RAA–CRISPR and qPCR assays
(Figure 7). In Figure 7B, 1–20 represent the 20 raw shrimp samples, 21–30 represent the
10 fish samples, and 31–40 represent the 10 clam samples. The left side shows the results
of qPCR for each sample, and the right side shows the results of the CE–RAA–CRISPR
method for each sample. For the CE–RAA–CRISPR test results, we use a heat map to
display the results, where the color shades represent the fluorescence value from high and
low. Of the 40 samples, 18 tested positive with CE–RAA–CRISPR, which was in 100%
diagnostic agreement with the qPCR method. These data and results demonstrated the
stable performance of the CE–RAA–CRISPR method on real food matrices and substantiate
the practical application of the method for V. parahaemolyticus detection.
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4. Discussion

V. parahaemolyticus, a pathogenic bacterium, has caused huge economic losses in both
the food and mariculture industries. Therefore, the rapid, accurate, and sensitive detection
of V. parahaemolyticus is essential for the effective control and prevention of its outbreak and
spread [26]. Current molecular diagnostic techniques for V. parahaemolyticus mainly rely on
PCR-based techniques, such as qPCR and ddPCR. Although these techniques demonstrate
strong applicability, they require expensive instruments and professional expertise [27].
Therefore, strategies for the convenient and rapid detection of V. parahaemolyticus are
urgently needed.

The CRISPR/Cas12a system further enhances nucleic acid detection. Although tra-
ditional methods based on CRISPR systems, such as HOLMES [28] and DETECTR [29],
have been successfully applied in nucleic acid detection, they usually require the transfer
of recombinase polymerase amplification or PCR amplification products, which increases
operational complexity and the risk of sample cross-contamination [20,30]. In our study,
CE–RAA–CRISPR, a convenient and highly sensitive method for the rapid one-pot detec-
tion of V. parahaemolyticus, was established.

Primer and probe sequences are the main components of nucleic-acid-based detection
systems. It is necessary to screen the best primer sets to develop more rapid and effective
detection methods. In this study, all reverse primers were screened against a single forward
primer, and the best reverse primer was selected and then used to screen all of the forward
primers to find a good primer pair. This optimization approach is quicker and more
convenient for finding a primer pair. RAA primers are longer than PCR primers. The RAA
primer used in this study was 33 nucleotides in length; however, shorter qPCR primers
have also been useful in RAA. Therefore, the primers can be adjusted and optimized to
meet the specific needs of the experiment [31].

Several factors, such as the Cas/crRNA ratio and reporter groups, affect the ability of
the CRISPR system to detect nucleic acids. Optimization of the Cas/crRNA ratio revealed
that the maximum fluorescence signal was obtained through the RAA–CRISPR method
when the Cas protein-to-crRNA molar ratio was 2:1. In the experiment performed by
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Yin et al. [32], this concentration was less effective for enhancing the fluorescence signal,
presumably because the one-pot detection method introduces more amplification products.
As reported by several authors [20,30,33], the optimal Cas/crRNA ratio varies among
targets or detection systems. Li et al. [25] demonstrated the importance of the Cas/crRNA
stoichiometry, as the presence of excess crRNA reduces the fluorescence signal. This was
also demonstrated in the present study, where the presence of excess Cas protein and
crRNA reduced the fluorescence signal. Other studies have reported similar results [33].

Several strategies for improving the sensitivity of CRISPR-based nucleic acid detection
have been explored, such as reaction temperature and time optimization, crRNA modifica-
tion, reporter probe length optimization, and chemical reagent addition. In this study, BSA
and L-proline were added to the CRISPR assay reaction to lower the LOD of the method.
The method had a detection limit of 67 CFU/mL in pure culture and 73 CFU/g in shrimp.
It was more sensitive than previously reported methods, which exhibited a sensitivity of
1.35 × 103 CFU/mL for Listeria monocytogenes in grass carp [33], 5.4 × 102 CFU/mL for
Staphylococcus aureus in pure culture [34], and 2 × 103 CFU/mL for Salmonella in powered
infant formula milk [35]. It was reported that the LOD of the method using only real-time
RPA for V. parahaemolyticus detection was 1.02 × 102 copies/reaction, but for artificially
contaminated samples with different bacteria concentrations, the LODs were 4, 1, and
7 CFU/25 g in oyster sauce, codfish and sleeve-fish, respectively, after enrichment for
6 h [36]. In contrast, the method established in this study has a lower detection limit with-
out pre-enrichment, and the method not only has a lower detection limit but also a shorter
detection time. Furthermore, the other commonly detected pathogenic bacteria were all neg-
ative, and the V. parahaemolyticus reference strain and environmental isolates were detected
using the method established in this study. Therefore, the proposed CE–RAA–CRISPR
method provides sufficient sensitivity and specificity for V. parahaemolyticus detection.

Compared with traditional PCR-based methods, the proposed CRISPR-based assay ex-
hibited cleavage activity on the target DNA, indicating that it can reduce cross-contamination
in the laboratory. Moreover, the amplification condition of 37 ◦C also reduced the loss and
contamination caused by high temperatures during PCR [37]. In addition, the PCR-based
methods required more than 1.5 h to complete, while the CE–RAA–CRISPR method pro-
vided results in less than 1 h. Application of the assay to real food samples showed accurate
and consistent detection results compared with qPCR.

In summary, we developed CE–RAA–CRISPR, a convenient and sensitive method for
V. parahaemolyticus detection. The use of RAA not only reduces the inspection time but also
avoids the use of a complex thermal cycler [14]. The CRISPR detection stage is improved
by chemical additives. The results suggest that this platform can meet the demand for
V. parahaemolyticus detection and is important to food safety supervision.
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