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Rosaceae is one of the important families possessing a variety of diversified plant species. It includes many economically valuable
crops that provide nutritional and health benefits for the human. Whole genome sequences of valuable crop plants were released in
recent years. Understanding of genomics helps to decipher the plant physiology and developmental process. With the information
of cultivating species and its wild relative genomes, genome sequence-based molecular markers and mapping loci for economically
important traits can be used to accelerate the genome assisted breeding. Identification and characterization of disease resistant
capacities and abiotic stress tolerance related genes are feasible to study across species with genome information. Further breeding
studies based on the identification of gene loci for aesthetic values, flowering molecular circuit controls, fruit firmness, nonacid
fruits, etc. is required for producing new cultivars with valuable traits. This review discusses the whole genome sequencing reports
of Malus, Pyrus, Fragaria, Prunus, and Rosa and status of functional genomics of representative traits in individual crops.

1. Introduction

Rosaceae consists of 100 genera and 3,000 species. It is one
of the most economically important families which com-
prised the fruit, nut, ornamental, aroma, herb, and woody
plants. Edible crops domesticated for human consumption
in Rosaceae include apple, strawberry, pear, peach, plum,
almond, raspberry, sour cherry, and sweet cherry. Though
most of the choices are dietary based, some of the vital
phytochemicals and antioxidants in fruits of Rosaceae have
potential to inhibit cancer. For instance, ellagic acid abundant
in strawberry, red raspberry, and arctic bramble was shown to
prevent cell proliferation and induce apoptosis of cancer cells
(1, 2].

Rosaceae consist of highly distinctive fruit types such as
drupe, pome, drupelet, and achene. Conventionally, Rosaceae
has been divided into four subfamilies based on the fruit types
such as Rosoideae (several apocarpous pistils mature into
achenes), Amygdaloideae/Prunoideae (single monocarpel-
late pistil mature into a drupe), Spiraecaoideae, (gynoecium
consists of two or more apocarpous pistils mature into
follicles), and Maloideae/Pomoideae (ovary is compound and

inferior where floral receptacle is fleshy edible tissues) [3].
Recently, the phylogeny of Rosaceae has been divided into
three basal groups based on nuclear and chloroplast loci,
namely, Amygdaloideae, Rosoideae, and Dryadoideae [1].
Amygdaloideae has included the other subfamilies such as
former Amygdaloideae (n=8) (plum, cherry, apricot peach,
almond, etc.), Spiracaoideae (n=9) (Spiraea, Aruncus, Sor-
baria, etc.), and Maloideae (n=17) (apple, pear, cotoneaster,
etc.). Rosoideae (n=7) includes Fragaria, Potentilla, Rosa, and
Rubus. Dryadoideae (n=9) includes Cercocarpus, Chamaeba-
tia, Dryas, and Purshia.

Exhaustive breeding on fruit trees offered different types
of variety with variant alleles of genes controlling the key
traits. To produce the sustainable cultivars we need to
extend functional genomics studies in Rosaceae. As Rosaceae
consists of highly distinctive types of fruits and diversified
growth patterns, multiple genome models are required to
improve the agronomic practices, produce high-yield and
disease resistance varieties, overcome self-incompatibility,
and reduce juvenile period, long-lasting postharvest self-life,
tolerant to chilling (storage), firmness against transportation
damage, and higher nutritional content and health benefit
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values. An emergence of next-generation sequencing (NGS)
technologies revolutionize biological field with its feasibility
to assemble and annotate any size and number of the
genome(s) [4]. High-throughput genome sequencing offers
the substantial advantages for the explicit understanding
of genetics and genomics [5]. Recent breakthrough in the
sequencing technologies and the availability of tools improve
the accuracy of de novo genome sequencing. Unveiling the
genome information gives us an invaluable insight into the
epigenetic characteristics [6]. Genes responsible for traits
of agronomic importance are rapidly identified and char-
acterized with the forward and reverse genetics studies on
many plants [4]. Genome-wide association studies (GWAS)
characterize the functional role(s) of gene [5]. Genotyping-
by-sequencing (GBS) and marker assisted selection (MAS)
helps the precise breeding program [4]. Genomics provides
huge amount of information in convenient manner for evo-
lutional studies. Comparative analysis among diverse plant
families helps to know about the evolutionary details of the
gene(s)/plant(s) [7]. Candidate gene mapping in one species
serves as a substrate for comparative analysis of other related
species [5].

Therefore, this review will cover the progress of NGS of
important commercial and model plants in Rosaceae such
as apple, pear, strawberry, peach, sweet cherry, apricot, and
rose. Brief information about the functional genomics studies
conducted on critical key traits of the above-mentioned
plants are also covered in this review.

2. Genome Assembly and Annotation

Genome-scale study gives rich candidate genetic resource
to deciphering the functional and regulatory networks for
growth and development. NGS is the perfect platform
to know about the genomic information which has wide
application in crop improvement and evolutionary studies.
Genome sequencing details of apple, pear, strawberry, peach,
and rose have been given in Table 1. Desirable key traits will
be discussed in functional genomics section.

2.1. Apple. Apple fruit has higher nutritional values. For
several centuries, humans consumed apple-based beverages
such as ciders [8]. Malus x domestica or M. pumila is the
widely growing apple tree. Ancestor of domesticated M.
domestica is M. sieversii. It is originated in Central Asia
(Southern China). Wild M. pumila tree bearing smaller
sized fruits is still covered 80% of Tian Shan Mountains.
Microsatellite markers study showed that M. domestica is
genetically similar to European crabapple M. sylvestris than
to the Asian wild apple M. sieversii [9, 10].

So far three genomes have been released in apple. Firstly,
Velasco et al. (2010) covered 81.3% (603.9Mb) of M x
domestica Borkh “Golden Delicious” genome. In that, 57,386
genes were identified. Almost 67.4% of M x domestica genome
consists of repetitive sequences [11]. Secondly, Li et al. (2016)
covered about 90% (632.4Mb) of M. x domestica Borkh
“Golden Delicious” genome. A total number of identified
protein-coding and noncoding genes were 53,922 and 2,765,
respectively [12]. Thirdly, Daccord et al. (2017) assembled
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genome of M x domestica Borkh “Golden Delicious doubled-
haploid” line (GDDHI13). Estimated genome size of GDDHI3
is 651 Mb, from which 649.7 Mb (99.8%) was assembled.
However, only 42,140 protein-coding genes and 1,965 non-
protein coding genes were identified in GDDHI3 genome
[6]. Major burst of transposable elements (TEs) happening
around 21 MYA was correlated with the uplift of the Tian Shan
mountains as well as the diversification of apple and pear
[11]. Study on structural and functional evolution of genome
cannot be completed without characterizing the TEs. Around
59.5% of the GDDHI3 genome was covered with the TE
elements. Most interestingly, HODOR (High-Copy Golden
Delicious repeat), TE consensus sequences are present at
about 22.3 Mb (3.6% of genome) [6].

2.2. Pear. Pear is one of the most important temperate fruit.
It is originated in Western China. In spite of thousands of
cultivars, based on the habituation, Pyrus species are divided
into two major groups such as Occidental pears or European
pears (P communis) and Oriental pears or Asiatic pears
(P, bretschneideri) [13]. Nevertheless commercially important
cultivars were domesticated from the wide range of wild
species; still pear cultivation faces challenges such as suscepti-
bility to the pear scab, black spot disease, self-incompatibility,
early ripening, short shelf life, firmness, sucrose content,
grit/stone cells, color and odor of fruit, and inbreeding
depression [14].

Recently 971% of P. bretschneideri Rehd. (Chinese pear)
genome, ie., 512.0 Mb (42,812 genes), has been annotated
by Wu et al. [15]. Following it, 577.3Mb of P. communis
(European pear) was sequenced. It covered around 98.4% of
genome containing 43,419 genes [16]. Pear is phylogenetically
closer towards the apple [1]. Hence higher collinearity was
existed between the chromosomes of pear and apple. Pear
and apple divergence could have happened only 5.4-21.5
MYA [15]. Presence of repetitive sequence about 53.1% in P.
bretschneideri [15] and 34.5% in P. communis [16] hampered
the investigation of uncharacterized regions.

2.3. Strawberry. Strawberry comes under the category of
soft fruit. It is widely attracted for its aroma, bright red
color, texture, and taste. Preserved/processed strawberries are
largely used for ice creams, milkshakes, chocolates, etc. It is
considered to be difficult to propagate.

2.3.1.  Fragaria vesca. Fragaria vesca is a diploid species
generally called woodland strawberry. It has unique char-
acteristics such as day neutrality, nonrunning, and yellow
colored fruits. It is self-compatible and has short generation
time. It is indigenous to northern Eurasia and North America
(17].

Small genome (240.0 Mb) of strawberry (Fragaria vesca
“Hawaai4”) showed the absence of whole genome duplica-
tions. Though all members of rosids shared the ancient tripli-
cation, no evidence of whole genome duplication was found
in E vesca. About 99.8% (239.5Mb) of genome was covered
with identification of 33,264 genes [17]. Later, Darwish et al.
done the reference based reannotation and assembly of wood-
land strawberry E vesca “YW5AF7” genome [18]. Similar
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to the macrosyntenic relationships between pear and apple,
Fragaria shared the synteny with Prunus. Lesser genome size
of E vesca could be mainly due to the lack of highly abundant
LTR retrotransposons (< 2,100 copies). Based on the obtained
genome sequences, 389 rosaceous conserved orthologous set
(RosCOS) markers were developed in Rosaceae [19].

2.3.2. Fragaria x ananassa. F. X ananassa is commonly
cultivated species that play an important role in the straw-
berry production worldwide. Interestingly, F x ananassa was
reported as an accidental hybrid rose in France during mid-
1700 between E chiloensis (Chile) and E virginiana (North
American cultivar) [17].

Genome size of this octoploid species E x ananassa
was estimated between 708 Mb and 720 Mb. E x ananassa
shared the genome information with wild diploids such as
E iinumae, E nipponica, F. nubicola, and E orientalis and
their genome size is 221 Mb, 208 Mb, 202 Mb, and 349.3 Mb,
respectively. The octaploid genome, F. x ananassa, was assem-
bled about 697.7 Mb, and its wild relatives are as follows: E
iinumae 199.6 Mb (90.3%), E. nipponica 206.4 Mb (99.2%), E
nubicola 203.6 Mb, and E orientalis 214.2 Mb (61.3%) [20].
In total, the number of genes identified from F x ananassa
was 230,838. Protein-coding genes identified in wild relatives
are 76,760 in F iinumae, 87,803 in E nipponica, 85,062 in
FE. nubicola, and 99674 in E orientalis. About 47.1% (328.2
Mb) of E x ananassa genome consists of repeats. In case of
wild relatives, 31.7% (63.3 Mb) in F. iinumae, 25.5% (52.6 Mb)
in E nipponica, 24.5% (49.9Mb) in E nubicola, and 26.3%
(56.2Mb) in E orientalis are repeat regions in genome [20].

2.4. Prunus. Prunus fruit has attractive bright shiny skin
color, subtle flavor, and sweetness. It has long generation time
and bigger plant size. It needs 3-5 years for flowering/fruit
production from planting. Processed cherry product is sold
worldwide.

2.4.1. Chinese Plum and Japanese Apricot (Prunus mume).
Prunus mume is the first plant in Prunoideae subfamily
to be sequenced. Domestication of P. mume could have
started 3,000 years ago in China [21]. This woody perennial
is considered as the first tree to be bloomed during the
transition from winter to spring at lesser than 0°C [22].

Out of 280 Mb of the genome size, 237.0 Mb (84.6%)
was sequenced. Totally 31,390 protein-coding genes were
characterized in the P mume. Genome of P. mume pro-
vides information about the 1,154 candidate genes involved
in flower aroma, flowering time, and disease resistance.
Assembled genome contains 106.8 Mb (45.0%) of repetitive
sequences. Investigation of P. mume genome with the Vitis
vinifera, paleohexaploid ancestor showed that 27,819 gene
models aligned with its seven ancestral chromosomes. It is
noteworthy that 2,772 orthologs’ (78.1%) collinearity blocks
were present in the P mume genome (Table 1). Comparative
analysis of P. mume chromosome with the Rosaceae ancestral
chromosome showed that 4, 5, and 7 chromosomes of P
mume does not undergo any changes and they are direct
Rosaceae ancient chromosomes such as III, VII, and VI,
respectively [23].
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2.4.2. Peach (Prunus persica). Peach is one of great fruit
that provides vitamins, minerals, fiber, and antioxidant com-
pounds. Peach fruit is also called nectarine due to smooth
skin without fuzz or short hairs. Selection and domestication
of peach could have started in Yangzi River valley, China,
around 7,500 years ago [24].

Whole genome analysis of P. persica L. “Lovell” covered
224.6 Mb (84.7%) of genome (estimated total size 265 Mb)
and represented 27,852 protein-coding genes. Repetitive
sequences present in peach were estimated as 84.41 Mb
(3714%) which is lesser than the apple (42.4%) and grape
(44.5%). 67.26 Mb (29.60%), 20.56 Mb (9.05%), and 17.14 Mb
(7.54%) appeared as TEs, DNA transposons, and unclassified
repeats, respectively [25]. Recently, P. persica “Lovell” double
haploid genome version 2.0 was released with deep rese-
quencing approach. Assembled genome of 227.4 Mb (85.8%)
contains 26,873 genes [26].

2.4.3. Sweet Cherry (Prunus avium). Prunus avium generally
called sweet cherry is an important drupe fruit in the Rosacea
family. Sweet cherry is used for human consumption and wild
cherry trees for wood which is also called mazzards. Sweet
cherry and sour cherry are the most commercial and edible
crops in Prunus genus [27].

Genome size of P. avium is about approximately 350 Mb.
Shirasawa et al. (2017) assembled about 77.8% (272.4 Mb) of
the P. avium “Satonishiki”. About 43.8% (119.4 Mb) of the P.
avium genome were covered with the repetitive sequences.
Among the 119.4 MDb of repeats, 85.1 Mb of repeats are unique
to P. avium “Satonishiki”. Identified genes clustered with the
P. persica, P. mume, M. domestica, and E. vesca. 75,627 genes
clusters are formed. 3,459 clusters (4,535 genes) from P. avium
are present in all the investigated species and 16,151 clusters
(21,642 genes) were found only in the P avium with the
absence of 869 clusters [28].

2.5. Rose. Roses are one of the most essential ornamental
plants worldwide. Ornamental value of rose enjoyed since
the dawn of civilization. Cultivation of roses traced back to
3000 years ago. It consists of 200 species and most of them
are polyploid. It has also been cultivated for its cosmetic
values such as perfumes and antiques and also some of the
phytochemicals of roses have high therapeutic values. Rose
hips can be used to cure osteoarthritis [29].

2.5.1. Rosa chinensis. Rosa chinensis is one of the important
pot-type rose cultivars. Recently, Raymond et al. (2018)
sequenced the whole genome of R. chinensis “Old Blush”
and resequenced the major genotypes contributed for rose
domestication. Totally, 503 Mb (97.7%) of the genome was
assembled. Genome results comprised 36,377 protein-coding
genes, 3,971 long noncoding RNAs, and 207 miRNAs. In the
genome TEs were present about 67.9%. From that, 50.6%
were identified as long-terminal-repeat retrotransposons
[30]. From the doubled-haploid rose line of R. chinensis
“Old Blush” (“HapOB”) about 90.1 to 96.1% (512Mb) of
genome was assembled. About 466 Mb was anchored to seven
pseudo-chromosomes and the remaining were assigned
to the chromosome 0 (Chr0). Totally 44,481 genes were
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identified including 39,669 protein-coding and 4,812 noncod-
ing genes. Repeats covered about 279.6 Mb of genome [31].
Rosa and Fragaria genomes shared the eight chromosomes
of ancestral Rosaceae with one chromosome fission and two
fusions. Divergence of Rosa, Fragaria, and Rubus could have
occurred within a short period [30]. Synteny analysis showed
that chromosomes 1, 4, 5, 6, and 7 of R. chinensis have
higher collinearity with chromosomes 7, 4, 3, 2, and 5 of E
vesca. Interestingly, chromosomes 2 and 3 of R. chinensis were
detected as reciprocal translocation with chromosomes 6 and
1of E vesca [31].

2.5.2. Rosa multiflora. Rosa multiflora is a five-petal plant
belongs to the section Synstylae. It is native to the eastern
Asian regions [32]. R. multiflora was used for breeding
purpose to the modern roses. Especially, its resistance locus
(RdrI), tolerance against powdery mildew was introgressed
with the R. hybrida [33].

Genome size of R. multiflora was estimated as 750 Mb
and about 711Mb was sequenced. Assembled genome was
characterized with 67,380 genes (54,893 complete genes
and 12,487 partial genes). Repeat regions covered 56.4%
(4172 Mb) of assembled genome. Out of 18,956 gene clusters
in R. multiflora 1,287, 904, and 241 clusters were shared with
the F vesca, P. persica, and M x domestica, respectively. R.
multiflora shared more number of gene clusters with the
E vesca than the other two plants of Rosaceae. However,
unique gene clusters and genes of R. multiflora are 2.5 (3,482
of R. multiflora and 1,397 of E vesca) and 3.3 (14,663 of R.
multiflora and 4,482 of E vesca) times higher than the E vesca,
respectively [34].

3. Functional Genomics

3.1. Fruit Development and Sucrose Metabolism in Apple.
Pome is a unique nature of false fruit formation from the
basal part of sepals and receptacles. Velasco et al. (2010)
suggest that pome could have evolved recently from Maleae
specific WGD which could be a major factor contributing to
apple development and its specificity [11]. Genes encoding
for like-hetero chromatin protein 1 (LHP1) such as MdLHPIa
and MdLHPIb regulate the flowering time of apple [35].
Flowering locus T1 (MdFTI) can promote flowering whereas
terminal flower (MATFLI and MdATFL2) expressed in the
vegetative part could repress flowering and maintains the
vegetative meristem identity [36]. Soon after fertilization,
higher expression of two cyclin-dependent kinase (CDK)b
genes and one cyclin-dependent kinase regulatory subunit
(CKS) 1 indicates the active cell division of fruits [37]. Tran-
scription factors such as Agamous (AG), Fruitfull (FUL), AG-
like (AGL)1/AGLS5, Spatula (SPT), Crabs Claw (CRC), and
Ettin (ETT) regulate the carpel identity and differentiation
[38]. Microarray data on apple reported that SPT, ETT/Auxin
Response Factor (ARF) 3, FUL/AGLS, and CRC transcripts
were abundant during the fruit enlargement stage. However,
most of their expressions are downregulated in cell division
stage [39]. In apple, fruit development-related gene families
such as MADS-box genes, carbohydrate metabolism, sorbitol
assimilation, and transportation were expanded more than

the cucumber, soybean, poplar, A. thaliana, grape, rice,
Brachypodium, sorghum, and maize [11]. Expression of «-
expansin (a-EXP) was detected only during the cell expansion
phase of apple [39]. MAMADS2.1 and MdMADS2.2, orthol-
ogous to FUL-like genes in A. thaliana, were progressively
involved in the fruit developmental process. Among two
candidate genes, MAMADS2.1 was closely associated with
fruit flesh firmness [40]. ARF106 gene expressed during
cell division and cell expansion stages is consistent with a
potential role in the control of fruit size [41]. Methylation of
DNA plays an essential role in the fruit size [12]. Comparative
study between the bigger size apple (Golden Delicious) and
smaller size apple (GDDHI18) showed that twenty-two genes
found as responsible for small size have lesser methylation in
the promoter region [6].

After pollination, the small amount of starch present in
the floral buds starts to metabolize. Conversion of carbon
to sucrose was mediated by the tonoplast monosaccharide
transporters (TMTs), MATMT1 and MdTMT?2. Expansion of
fruit cells is associated with the starch accumulation. Higher
expression of sorbitol dehydrogenase (SHD), cell wall invertase
(CIN), neutral invertase (NIN), sucrose synthase (SS), fruc-
tokinase (FRK), and hexokinase (HK) indicates the metabo-
lization of sorbitol and sucrose [42]. In the early period of
cell expansion, starch accumulation was higher, and it starts
to decline in the later phase [11]. Transcript of SS genes in
apple is correlated with the starch accumulation [39]. Sorbitol
dehydrogenase (SDH) converts carbohydrate into fructose.
Nine SDH genes were identified in apple fruit [43]. In young
fruit, MdSDHI expression was higher than in mature fruit
[42]. Other genes significantly upregulated during ripening
stage are isopentenyl pyrophosphate (IPP) isomerase, catalase
(CAT), histone 2B (H2B), and the ripening-inhibitor (RIN)
MADS-box gene [39]. During the ripening process, a decrease
of starch synthesis is vice versa with the sugar level [44].
Expression profiles of sucrose-phosphatase phosphatase (SPP)
and sucrose-phosphate synthase (SPS) were active in the ripen-
ing stage [42], suggesting that these enzymes may be involved
in starch degradation pathway. Polygalacturonase 1 (MdPGI)
and aminocyclopropane-1-carboxylate oxidase (MdJACOI)
were involved in the fruit softening and ethylene biosynthesis
in apple, respectively [45]. Decrease in the expression of
PGI alters the firmness, tensile strength, and water loss in
apple M x domestica fruit [46]. Meanwhile, MdFT1, MdACSI
(I-aminocyclopropane-I1-carboxylic acid synthase), MdACOI,
and MdExp7 are regulating the fruit softening. Among
them, MdExp7 and MdACOI control firmness in apple [45].
Gene coding for MYB TF in apple, MdMybl, increases the
anthocyanin content and is responsible for the red skin color
[47]. Acidity in apple is due to the malic acid, and mama
recessive gene is responsible for low acidity [48].

In apple, fruit size, sugar content, and palatability are
essential qualities determining its marketability. Knowledge
of genes governing the fruit quality could be essential for
screening better lines/genotypes for breeding.

3.2. Lignin Metabolism and Stone Cell Formation in Pear.
Stone cell content is the main quality determinant of pear
fruit. Deposition of lignin on the primary cell wall of
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FIGURE 1: Simple heuristic representation of genes/transcription factors involved in lignin synthesis and stone cell formation in pear
fruit. Pb, Pyrus bretschneideri; hydroxycinnamoyl transferase, HCT; p-coumaroyl-shikimate/quinate 3'-hydroxylases, C3'H; caffeoyl-CoA O-
methyltransferase, CCOMT; NAM, ATAF1/2, and CUC2, NAC; Linll/Isll/Mec3, LIM; myeloblastosis, MYB; cinnamyl alcohol dehydrogenase,

CAD; and cinnamoyl-CoA reductase, CCR. Red colored dots represent the stone cells.

parenchyma cell followed by the secondary sedimentation on
a sclerenchyma cell forms the stone cells. Majority of stone
cells present in pear is branchy sclereids comprised lignin and
cellulose. Lignins are synthesized by two ways, one starts with
p-coumaric acid and second with phenylalanine precursor
to cinnamic acid and then p-coumaric acid. Other forms of
lignin monomers are caffeic acid, ferulic acid, 5-hydroxy-
ferulic acid, and sinapinic acid [49-51]. Finally, monomers are
polymerized to form lignin products. Monomers of lignin are
categorized into three types, syringly lignin (S-lignin), guaia-
cyl lignin (G-lignin), and hydroxyphenyl lignin (H-lignin).
From the gnome analysis, a total of 66 lignin synthesis-
related gene families were characterized in P. bretschneideri.
It signifies the high demand for lignin synthesis in pear [15].
In “Dangshan Su” pulp, milled wood lignin was identified
as guaiacyl-syringyl-lignin. It was observed that “Dangshan
Su” lignin possesses more guaiacyl units than the syringyl
units [49]. Hydroxycinnamoyl transferases (HCT) play a
significant role in the lignin synthesis [52]. Accumulation of
G-lignin and S-lignin is interrelated with the HCT expression
especially at early fruit developmental stage [15].
Cinnamoyl-CoA reductase (CCR) and cinnamyl alco-
hol dehydrogenase (CAD), belonging to medium-or-short-
chain dehydrogenase/reductase, are key enzymes for lignin
monomer synthesis [53]. Totally 31 CCRs and 26 CADs
genes were identified in P. bretschneideri “Dangshan Su”. All
members of CCR and CAD identified in P. bretschneideri are
not involved in the lignin biosynthesis [54]. Among them,

PbCAD2, PbCCRI, PbCCR2, and PbCCR3 were identified to
participate in the lignin synthesis of stone cells [15]. NAC
(NAM, ATAF1/2, and CUC2) and LIM (Lin11/Isl1/Mec3) are
an important TF influencing the lignin pathway [55, 56]. Most
of the CCRand CAD members present in the pear possess SPL
(squamosal promoter binding-like) light-responsive element
on their upstream. Functions of PbCCR and PbCAD are
related to the light signaling. Presence of MYB-binding AC
cis elements in some promoter of the PbCCRs suggested
that phenylpropanoid metabolism of lignin synthesis was
regulated by MYB transcription factors. Similarly, TGACG-
motif on some PbCCRs and all PbCAD’s promoter regions
revealed their involvement in the abscisic acid, jasmonic
acid, and methyl jasmonic acid metabolism [15]. The pictorial
illustration of genes/TFs required for the lignin synthesis as
well as stone cell formation is mentioned in Figure L.

There are many internal and external factors involved in
the stone cell formation of pear. Identification of candidate
genes of lignin biosynthesis and stone cell formation will
be very much useful to improve the cultural practices for
producing pear fruits with different palatable level of stone
cells.

3.3. Fruit Aroma and Softness in Strawberry. Strawberry is
widely appreciated for its delicate flavor, aroma, and nutri-
tional value. Aroma of strawberry is due to esters, alcohols,
aldehydes, and sulfur compounds. Hundreds of volatile esters
have been correlated with strawberry ripening and aroma
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[57]. Volatile esters are the major constituents of floral scent.
Wild species such as E vesca and E virginiana have much
stronger aroma than the cultivated types. Compared to the
regular octoploid strawberry, unique phenolic compounds
were found in E vesca fruits, such as taxifolin 3-O-arabinoside
and peonidin 3-O-malonylglucoside [58]. Pinene synthase
(PINS) is primarily expressed in wild strawberry while
insertional mutation reduced its expression in cultivated
species. F vesca contains high amounts of ethyl-acetate and
lower methyl-butyrate, ethyl-butyrate, and furanone levels. F.
nilgerrensis possesses higher ethyl-acetate and furanone but
lower methyl-butyrate and ethyl-butyrate. Hybrids between
E vesca and E ananassa have intermediate contents of fra-
grance and aroma related compounds while crosses between
E nilgerrensis and F ananassa more closely resemble F
nilgerrensis [17]. Volatile compounds found to be responsible
for general strawberry smell are 2, 5-dimethyl-4-hydroxy-
3(2H)-furanone, linalool, and ethyl hexanoate. Nevertheless,
ethyl butanoate, methyl butanoate, y-decalactone, and 2-
heptanone are represented as cultivar specific aroma com-
pounds [59]. O-methyltransferase of strawberry (FaOMT) is
vital for the biosynthesis of vanillin and furaneol [60]. Alcohol
acyltransferase (AATs) in strawberry (SAAT) is involved in
the last step of volatile esters synthesis and vital for flavor
biogenesis in ripening fruit. SAAT catalyzes esterification
of an acyl moiety from actyl-CoA to alcohol [61]. Straw-
berry quinone oxidoreductase (FaQR) is required for the
biosynthesis of furaneol. Furaneol and its methoxy derivative
(methoxyfuraneol and mesifuran) are catalyzed by OMT. All
three furaneol compounds are highly accumulated during
fruit ripening stage [62]. Though two types of pyruvate
decarboxylase (PDC) were identified in strawberry, only
FaPDCI was induced during fruit ripening [63].

Strawberry is highly perishable even with controlled
atmospheric storage. Higher proportion of fruit last occurred
due to its softness and sensitivity to fungal disease. Red
colored strawberry showed the higher level of anthocyanin-
related transcripts [64]. FeMYBI could regulate branching-
point of the anthocyanin/proanthocyanidin biosynthesis.
FaWRKYI1 mediate defense response and FaPEI, encoded
for pectin methyl esterase, are conferred at least with a
partial resistance of ripened fruit against Botrytis cinerea
[65, 66]. Polygalacturonase 1 of F x ananassa (FaPGl) is
critical for fruit softening [67]. In strawberry fruits beta-
D-glucosyltransferase (FaGT) correlated with the relevant
phenylpropanoid glucosides [68]. D-xylose reductase (FaXyll)
and beta-xylosidase activity were higher in “Toyonaka” (soft)
than in the “Camarosa” (firm) showing the correlation
between FaXyll expression and fruit softening [69]. Fruit-
specific rhamnogalacturonate lyase 1 (FaRGLyase) is involved
in the firmness and postharvest life [70]. A lesser activity of
beta-galactosidase (8Gal) and Xyl activity were correlated
with decreased fruit firmness in E chiloensis and E X
ananassa, respectively [71]. Expression of FaCCR is higher
in soft fruit cultivar (Gorella) whereas FaCAD is higher in
firm fruit cultivar (Holiday) [72]. Expression of five expansin
genes (FaEXPI, FaEXP2, FaEXP4, FaEXP5, and FaEXP6) was
studied in cultivars with different firmness “Selva” (hard),
“Camarosa” (medium), and “Toyonaka” (soft). Higher level

of FaEXPI, FaEXP2, and FaEXP5 expression was found
in fruit with less firmness (“Toyonaka”) than the other
two cultivars (“Selva” and “Camarosa”). Fruit firmness
is identified to be associated with pectate lyase (FaPell)
identified. Expansin activity was characterized by cell wall
modification [73]. Polysaccharides were modified by five
different genes such as FasPG, FaPG-like, FaPell, FaPel2, and
FaEXP2 [74]. Sorbitol dehydrogenase (FaSDH) and sorbitol-6-
phosphate dehydrogenase (FaS6PDH) genes are involved with
the sorbitol synthesis in leaves, fruits, and shoot tips [75].
SEPALLATA (SEP)4-like gene FaMADS9 is responsible for
the fruit ripening [76].

Apart from the aesthetic and taste, mechanisms of flower-
ing and its response to the light signaling in strawberry need
to be studied in detail. Cultivars with continuous flowering
and growing under minimal light energy are beneficial for the
strawberry growers as most of the commercial cultivation is
carried out in the controlled greenhouse.

3.4. Early Blooming and Fruit Ripening in Prunus. Prunus
is the first plant to bloom in later winter/early spring. So,
it is the best model plant to study early flowering as well
as chilling tolerance. Dehydrins are known as 2 or D-I1
family late-embryogenesis-abundant (LEA) proteins. They
play a vital role in plant growth and cold tolerance [77]. In
P. mume, 30 LEA genes were characterized and classified
into eight groups LEA1, LEA2, LEA3, LEA4, LEA5, PvLEAI1S,
dehydrin, and seed maturation protein. Out of 30 identified
genes, 22 were expressed in flowers, and 19 were induced
by abscisic acid (ABA) treatments [78]. Molecular cloning
of PmLEAS, PmLEAIO, PmLEA19, PmLEA20, and PmLEA29
showed that, except PmLEAS, all other genes enhanced
the freezing-tolerance. Interestingly, among all cold-resistant
LEA gene members studied, only PmLEAI9 were upregulated
four times when the branches of P. mume were exposed to 4°C
[79]. Downregulation in P. mume dormancy associated MADS
(PmDAM) 4, PmDAMS5, and PmDAMG6 expression releases
the endodormancy [80]. Among the six DAM genes, except
PmDAMS3, all other genes are responsive to the photoperiod
and seasonal (cold) responses [81]. In P. persica from six iden-
tified DAM genes, PpDAMS5 and PpDAM6 were character-
ized to be involved in the lateral bud dormancy breakage [82].
DAMS5 and DAM6 were identified as homologous to Short
Vegetative Phase (SVP)/AGL 24 in A. thaliana. Both SVP
and AGL-24 are required for floral meristem identity [83].
AGL24 is well known for promoting early flowering and floral
transition in plants [58]. Transcriptome analysis between
cold sensitive (“Morettini”) and cold tolerant (“Royal Glory”)
cultivars in P. persica showed that p-D-xylosidase (BXL)
and pathogen-related protein 4b (PR-4B) were significantly
expressed only in resistant variety [84]. Other candidate
genes identified as required to control flowering time are
suppressor of phyA (SPA), COPI interacting protein8 (CIPS),
phytochrome A (phyA), and phytochrome interacting factor 3
(PIF3) [85]. Figure 2 demonstrates the important key genes
involved in cold tolerance, early blooming, and flowering
time control of P. mume. Higher number of aesthetic prop-
erties related genes such as benzyl alcohol acetyltransferase
(BEAT) (34) are identified in P. mume. Only, 16 in Malus x
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FIGURE 2: Factors involved in the early blooming of Chinese plum/Japanese apricot. Prunus meme, Pmj; late-embryogenesis-abundant, LEA;
dormancy associated MADS, DAM; B-D-xylosidase, BXL; pathogen-related protein 4b, PR-4B; suppressor of phyA, SPA; COPI interacting
protein8, CIP8; phytochrome A, phyA; and phytochrome interacting factor3, PIF3. The lower arrow represents downregulation.

domestica, 14 in F. vesca, 4 in Vitis vinifera, 17 in P. trichocarpa,
and 3 in A. thaliana of BEAT genes were identified. Therefore,
in P mume BEAT genes are considered as key factor to
determine its exclusive floral fragrance [23].

In Prunus, UDP-glucose-flavonoid-3-O-glucosyltransfer-
ase (UFGT) expression was higher during the initial period
and it is reduced on the developmental process. During
the ripening process, MYBIO, MYBI23, and basic-helix-loop-
helix (bHLH3) were upregulated whereas MYBI16 and MYBIi1
were downregulated. Higher anthocyanin and Proantho-
cyanidin levels were correlated with the MYBI10 and MYBPAI,
respectively. Stimulation of TFs is responsive for the devel-
opment and external stimuli [86]. Gene encoding ethylene-
responsive transcription factor (ERF)4 is necessary for the fruit
maturity [87]. Though 74 EFR genes were predicted in the
peach genome, only one copy of ERF4 has existed. Therefore,
ERF4 is vital to control the fruit maturity and ripening in
peach [85]. An initial stage of fruit has higher aldehyde and
alcohol production whereas later stages have lesser content
which is correlated with the ester production. Abundance of
alcohol dehydrogenase (ADH) and lipoxygenase (LOX) gene
is constant in the fruit development stages. Expression of AAT
was sharply increased in the later stage of harvest [88]. Rapid
softening of fruits was related to the ethylene production
in P. persica. It is correlated with expression of PpACSI (I-
aminocyclopropane-1-carboxylic acid synthase) [89]. Ripened
sweet cherry P avium has unique fragrance. In the sweet
cherry (“Hongdeng”, “Hongyan”, and “Rainier”) 97 volatile
compounds were identified. Alcohols and terpenes were the
predominant components of bound volatiles. Benzyl alcohol,
geraniol, and 2-phenylethanol are the major bound volatile
constituents. Free volatile compounds majorly present in
sweet cherry are hexanal, 2-hexenal, 2-hexen-I1-ol, benzyl

alcohol, and benzaldehyde. Free volatiles are responsible for
floral aroma and bound volatiles involved in fruit freshness.
Depending on the level of free and bound volatiles, aroma and
glycosidically bound compounds aroma and fruit firmness
were varied between the cultivars of sweet cherry [90].

In Prunus, apricot, peach, sweet cherry, and sour cherry
are widely used for human consumption. Comparative
genomics study between the species offer the candidate gene
to produce hybrids with more preferable qualities.

3.5. Blooming and Scent Pathways in Rose. Continuous flow-
ering (CF)/recurrent blooming (RB) genotypes flowers in all
favorable seasons, whereas once-flowering (OF) genotypes
only flowers in spring. Recurrent blooming is an important
trait required by breeders. R x hybrida “La France” was the
first hybrid combined with the growth vigor of European
species and recurrent blooming of Chinese species. It has
the complex genetic pool combination of three ancestral
genotypes such as Cinnamomeae, Synstylae, and Chinenses.
Insertion of TE in the TFLI encodes gene Ksncopia (KSN)
was found as responsible for the recurrent blooming of “La
France” [30]. Previously, Horibe et al. (2013) reported that
KSN gene regulates the CF behavior of R. rugosa [91]. Wang
et al. (2012) studied recurrent flowering character and the
expression patterns of TFL1 homologs in R. multiflora, R.
rugosa, R. chinensis, and other species/cultivars. Among the
three orthologs, RTFLIc was highly expressed at all four
flowering stages in R. multiflora and R. rugosa (nonrecurrent
flowering species) and barely detected in R. chinensis (a
recurrent flowering species) at any stage. Therefore, it can be
considered that lower expression of RTFLIc is required for
recurrent flowering of roses [92]. Iwata et al. (2012) elucidate
that occurrence of TE insertion and point mutation in the
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TFLI ortholog on rose and strawberry correlate with recur-
rent blooming [93]. Higher expression of TFLI in seasonal
flower is associated with the repression of LEAFY (LFY) and
activating protein-1 (API), a downstream gene of FT [94].
Expression of flowering locus T of rose (RoFT) was pro-
gressively increased after floral bud formation. CONSTANS
TF induces the FT, and, upon induction, FT was suggested
to move from leaves to shoot apical meristem (SAM) via
phloem [95-97]. Additionally, suppressor of Ty (SPT) and
delay of germination (DOG)I are other important candidates
determining recurrent blooming in roses [31].

Rose scent is a complex trait involved with hundreds
of volatile molecules. Rose floral scent contains phenolic
derivatives, terpenoids, and fatty acid derivatives. Several
genes have been identified to be related to rose scent pro-
duction. Floral scent of roses contains higher germacrene
D synthase. Cyanidin and germacrene D were identified to
be involved in the color and scent pathways. Sesquiterpene
synthase catalyzes the production of germacrene D [98].
Phenylacetaldehyde synthase (PAAS) and phenylacetaldehyde
reductase (PAR) are responsible for the synthesis of 2-
phenylethyl alcohol, a typical rose scent compound [99].
Anthocyanin synthesis on rose was linked with the pig-
mentation and volatile (scent) compounds related pathways.
Anthocyanin and volatile compound have been generated
by enabling the formation of MYB-bHLH-WD40 protein
complex. Orcinol-o-methyltransferase (RhHOOMT) 1 and 2 is
responsible for synthesis of 20MT. Alcohol acyltransferase
of R. hybrida (RhAATI) gene converts alcohol geraniol into
geranyl acetate [62]. Major scent compound of Euro-
pean roses is 2-phenylethanol and monoterpenes [100, 101].
RhOOMT: catalyze the orcinol to synthesize two important
volatiles such as 3,5-dimethoxy toluene (DMT) and 1,3,5-
metoxy benzene (TMB) biosynthesis in R. hybrida [62].
From the study of interhybrid cultivars of rose, DMT was
concluded to come from Chinese rose, as ancient European
roses such as R. damascena and R. gallica do not produce
DMT [102]. Geraniol, a hydrolyzed product and its down-
stream monoterpene volatile metabolites, are responsible
for the aroma of rose petals. Nudix hydrolase (NUDX)1 is
involved in synthesis of geraniol and other geraniol-derived
monoterpenes [103]. Still, there are many pathways rose scent
need to be elucidated.

Genome released in rose will be helpful for decoding
the metabolic networks of scent pathway, floral transition,
and flowering pattern. Therefore, irrespective of complex and
cumbersome heterozygous nature, interspecific hybridiza-
tion can be accelerated to produce hybrid with valuable traits
in rose.

4. Conclusions

Complete genome information of plant reduces effort and
time required for conventional MAS approach. Identification
and characterization of genes controlling important traits and
tagging molecular markers for introgression to produce a new
variety are feasible with available genome information. Along
with abiotic and biotic stress resistance, several fruit quality
traits can be improved with genomics-based studies. Fruit

firmness is one of the desirable quality traits. It depends on
the postharvest shelf life, cell turgor pressure, and intrinsic
characteristics of the cell wall. Modification and turnover
of the primary cell wall are required for both size and
softness of fruits. New varieties/cultivars with small/larger
size, good-flavored fruits, attractive color, sugar and acid
levels, reduced juvenile phase, massive and constant yields,
reduced susceptibility to fruit cracking, self-compatibility,
and improved resistance or tolerance to disease are now
feasible with the completion of the whole genome sequence.
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