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Abstract: Chitosan/cellulose acetate (CS/CA) used as a biopolymer systema, with the addition of TiO2

as photocatalyst (C-T/CA) were fabricated by alternating electrospinning/electrospraying technology.
The uniform dispersion of TiO2 and its recovery after the removal of methyl orange (MO) was
achieved by incorporating TiO2 in CS electrosprayed hemispheres. The effects of pH values, contact
time, and the amount of TiO2 on adsorption and photocatalytic degradation for MO of the C-T/CA
were investigated in detail. When TiO2 content was 3 wt %, the highest MO removal amount for fiber
membranes (C-T-3/CA) reached 98% at pH value 4 and MO concentration of 40 mg/L. According to
the data analysis, the pseudo-second-order kinetic and Freundlich isotherm model were well fitted to
kinetic and equilibrium data of MO removal. Especially for C-T-3/CA, the fiber membrane exhibited
multiple layers of adsorption. All these results indicated that adsorption caused by electrostatic
interaction and photocatalytic degradation were involved in the MO removal process. This work
provides a potential method for developing a novel photocatalyst with excellent catalytic activity,
adsorbing capability and recycling use.
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1. Introduction

With the quick progress of industrial technology, water pollution generated from organic dye
contaminants has become an increasing global environmental concern in recent years [1–4]. Organic
dyes are mainly generated from manufacturing, such as textile finishing, plastics, paper, cosmetics,
pharmaceuticals and food processing. It can cause serious problems for both the environment and
to human beings [5–10]. Up until now, several methods such as chemical oxidation, coagulation,
adsorption, biodegradation, photocatalysis, and reverse osmosis, have been developed to treat dye
contaminated wastewater [11–14]. Particularly, photocatalysis is considered a “green” treatment method
which uses solar energy effectively for the degradation of organic pollutants [15–19]. Adsorption is also
considered a valid method for the removal of dye in aqueous solutions with high efficiency, low price
and easy operation [20–22].

At present, researchers have found that the combination of adsorption and photocatalysis had
excellent potential applications for dye treatment [23]. TiO2 is a type of common semiconductor
photocatalyst on account of its prominent characteristics of chemical resistance, excellent catalytic
activity, mechanical robustness, and low cost [24–28]. While the low dispersibility, inconvenient
recovery, low adsorption performance of TiO2 limit its use in photocatalysis applications [29]. Absorbent
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materials with good adsorption performance on organic pollutants are often used as carrier materials
to improve the photocatalysis capability of TiO2.

Ideal carrier materials should provide stable anchoring of TiO2, outstanding structure stability,
selective adsorption for target dye pollutions and the transfer of organic dye molecules to the
vicinity of the photocatalytic site. Multifarious materials have been developed for photocatalytic
degradation carrier materials, comprising silica, ceramic, polymers, activated carbon, zeolite, and glass.
As an environmentally friendly, nontoxic, biodegradable, biocompatible natural macromolecule [30–34],
CS with functional groups of hydroxyl and amino groups derived from deacetylation of polysaccharide
chitin, is a promising carrier material [35–38]. Li et al. produced pure CS membranes by electrospinning,
exhibiting high adsorption capacity for acid blue-113 [37]. Huang et al. produced an organoclay/CS
hybrid system, allowing efficient and concurrent adsorption of different dyes [38]. However, CS is
easily soluble in water when amino groups are protonated, making it difficult to maintain integrity
of the whole materials. As a hydrophilic, environmentally friendly, biodegradable, and renewable
material [39–43], CA has characteristics of non-specific adsorption, and its hydroxyl and ester groups
can form stable hydrogen bonding with certain polar functional groups [44,45]. Electrospinning
technology is a common and effective method for the preparation of adsorbents [14]. Doh et al.
electrospun TiO2 nanofibers had a higher degradation rate of organic dye than TiO2 nanoparticles
because of a high specific surface area and excellent dispersibility [4]. Razzaz et al. proved that CS/TiO2

electrospun membranes had higher effective surface area, structural stability and adsorption capacity
for metal ions compared with TiO2-coated CS nanofibers [46].

In this study, based on CA electrospun fibers, C-T/CA fiber membranes were successfully prepared
via electrospraying CS/TiO2 concave hemispheres on the surface of CA fibers. As a substrate material,
CA was expected to improve the water flux of fiber membranes effectively so that aqueous solutions of
organic pollutant, MO could rapidly penetrate into the interior of membranes. The CS hemispheres
might disperse TiO2 nanoparticles, have good adsorption performance of MO, and transfer MO to
the vicinity of TiO2 active sites for further photocatalytic degradation. The morphology of fiber
membranes were characterized by SEM. Effects of TiO2 content, pH values, contact time at different
MO concentration for adsorption and photocatalytic degradation of MO were investigated. The MO
removal mechanism was surveyed by FTIR, XPS and BET.

2. Experiment

2.1. Materials

CS (90% deacetylated, average Mw = 200,000 Da), TiO2 nanoparticles (anatase-type nanopowder,
particle size < 25 nm, metal basis), CA (white powder, Mn ≈ 30,000 Da, acetyl content ≈ 39.7 wt %,
DS = 2.45) and MO were all purchased from Aladdin Industrial Corporation, Shanghai, China. Acetic
acid (HAc) and acetone were purchased from Beijing Chemical Works, Beijing, China. Deionized
water was obtained from the laboratory. The chemicals were all of analytical grade and used without
further purification.

2.2. Preparation of Polymer Solutions

10 wt % CA (w/w) was dissolved in acetone/deionized water (85/15, w/w) and 2 wt % CS (w/w) was
dissolved in 90% acetic acid (v/v), respectively. The solutions were stirred for 24 h at room temperature
to obtain the uniform solutions. Then, the various contents of TiO2 (1%, 2%, 3%, 4%, 5%, w/w) were
added to CS solutions at room temperature and stirred for 24 h. The C-T-X solutions were obtained,
where X stands for the content of TiO2 (1, 2, 3, 4, 5 wt %). The solutions were placed in an ultrasonic
water bath for 30 min before using. The frequency of ultrasonication was 25 kHz.
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2.3. Fabrication of C-T/CA Fiber Membranes

The fabrication processes including (I) electrospinning and (II) electrospraying are shown in
Figure 1. The solution was loaded into a 5 mL plastic syringe. The electrospinning conditions included
the applied voltage of 20 kV, the 15 cm distance between the tip of the needle and the collector, and the
flow rate of 1.0 mL/h. The condition for electrospraying was 18 kV voltage with a distance of 15 cm
between the tip of the needle and the collector, and the flow rate was 0.3 mL/h. Then the membrane
was dried at 25 ◦C for 24 h, and peeled off aluminum foil for further study.
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Figure 1. The preparation of C-T/CA fiber membranes: (I) Electrospinning, and (II) electrospraying.

2.4. Characterizations

The viscosity of precursor solutions was measured by a viscosimeter (NDJ-1, Yutong, Shanghai,
China). The electrical conductivity of the solutions was measured using a conductometer (DDS-11A,
Shengci, Shanghai, China). All measurements were taken 3 times at room temperature. The morphology
and structure of membranes were characterized by SEM (JSM-6700F, JEOL, Tokyo, Japan). All samples
were sputtered with platinum under vacuum before assessment. The average microsphere diameters
were measured by Image J software. Surface area, pore volume and pore size were characterized
by N2 adsorption and desorption using a Brunauer–Emmett–Teller analyzer (BET, Autosorb-iQ2,
Quantachrome Instruments, Shanghai, China). The structures of the composite fibers were analyzed
by FTIR spectroscopy (FTIR-4100, Jasco, Shanghai, China), within the wavenumber ranging from 400
to 4000 cm−1 and a wide angle X-ray diffractometer (XRD, D/Max, Rigaku, Beijing, China), under mode
of 40 kV and 50 mA, λ = 1.5406 Å radiation using copper-K alpha. The samples were scanned in the 2θ
range from 5◦ to 60◦ with a scanning rate of 30 min−1. The chemical composition of membrane surfaces
were analyzed by XPS (ESCALab220i-XL, VG Scientific, Waltham, MA, USA) with Al Kα X-ray source,
Ni-filtered radiation, 40 kV of tube electric pressure and 30 mA of tube electric current.

2.5. Investigations on MO Adsorption and Photocatalysis Study

Organic dye MO was used as the adsorbate for adsorption and photocatalysis studies of fiber
mats. 20 mg of fiber mats were immersed in 40 mg/L MO aqueous solution (20 mL). The solution
with fiber mats was stirred in dark conditions for 1 h to reach the adsorption equilibrium. After that,
the mix solution was irradiated for 30 min in a photodegradation reactor under UV light (wavelength of
365 nm) by mercury lamp (25 W). The mixed solution (6 mL) was taken out every 5 min and centrifuged.
The centrifugation was used to separate the solid particles in the suspension from the liquid to obtain
a supernatant for subsequent absorbance detection. The UV spectrophotometer of the residual MO
content was recorded. The process was repeated six times. The other set of photocatalytic experiments
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were performed under visible light (wavelength of 600 nm) using a 350 W xenon lamp. The operation
was the same as the process using UV light. The concentration of the residual MO was recorded every
20 min for 120 min. The adsorption and photocatalytic degradation R (%) of membranes to MO was
calculated by the Equation (1):

R(%) =
A0 −At

A0
× 100% (1)

where A0 and At are the original and equilibrium absorbances of the MO solutions.
The batch experiments of MO onto the fiber membranes were carried out as functions of TiO2

concentration (0–5 wt %), pH (4–9), contact time (0–85 min), and initial concentration (10–80 mg/L) at
room temperature. The adsorption and photocatalysis ability was computed as follows:

qt =
C0 −Ct

m
×V (2)

where qt (mg/g) represented the removal amount at time t, C0 (mg/L) and Ct (mg/L) are the original
and equilibrium concentrations of the MO solutions, V (L) is the volume of MO solutions, m (g) is the
quantity of fiber membrane.

In the reusability experiment, the used adsorbent was washed by deionized water. Then the
supernatant of the solution, after the reaction was replaced by fresh MO solution. The photodegradation
reaction was carried out under UV illumination with magnetic stirring for 1 h. This experiment was
cycled five times.

3. Results and Discussion

3.1. Morphology Observation

The morphology and diameter distributions of the CA substrate are displayed in Figure 2.
The surfaces of the CA fibers were smooth without beads. The mean diameter of CA fibers was
0.55 ± 0.24 µm (shown in Figure 2b).
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Figure 2. (a) The morphology, and (b) the diameter distribution of the CA fibers.

The morphology and the diameter distributions of the CS microspheres with different additions of
TiO2 are shown in Figure 3. Pure CS showed concave hemisphere morphology as shown in Figure 3a.
With the content of 1, 2, 3 wt % TiO2, CS still maintained the concave hemisphere morphology, and TiO2

nanoparticles were evenly distributed on the surface of CS hemispheres (see Figure 3b–d). When TiO2

content was 4 wt % and 5 wt %, TiO2 nanoparticles begun to accumulate, and the original uniform
morphology of CS hemispheres gradually disappeared (Figure 2e,f).

The particle size of pure CS hemispheres was 1.07 ± 0.24 µm. With the increase of TiO2 content
from 1 wt % to 3 wt % (Figure 3b1–d1), the diameters of CS hemispheres were 1.35 ± 0.26 µm,
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1.40 ± 0.28 µm and 1.46 ± 0.34 µm, showing an upward trend. This was because the increase of viscosity
was more important than the conductivity of the electrosprayed solution (Table 1). As the content of
TiO2 continued to increase, the diameters of CS hemispheres were 1.10 ± 0.24 µm and 1.11 ± 0.30 µm,
respectively. The quick increase in the viscosity of the solutions led to the agglomeration of TiO2 on the
surface of CS hemispheres, as shown in Figure 3e1,f1. The size of the decrease in the CS hemispheres
was due to an increase in the conductivity of the electrospray solution.
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Figure 3. SEM images and diameter distributions of the microspheres. (a) and (a1) 2 wt % CS, (b) and
(b1) C-T-1, (c) and (c1) C-T-2, (d) and (d1) C-T-3, (e) and (e1) C-T-4, (f) and (f1) C-T-5.

Table 1. The parameters of C-T-X electrospraying solutions.

TiO2 Content 0% 1% 2% 3% 4% 5%

Viscosity (mPa s) 140.7 158.8 172.5 183.6 209.5 220.4
Conductivity (µS cm−1) 219.0 230.7 243.8 256.1 265.0 273.4



Polymers 2019, 11, 1293 6 of 18

3.2. XRD Characterization

The XRD patterns of all the samples are illuminated in Figure 4. The broad peak at 20.10◦ and
22.01◦ were characteristic peaks of CS and CA, respectively [47,48]. TiO2 powder showed three sharp
feature peaks at 48.06◦, 37.86◦ and 25.41◦ of 2θ values [45]. Compared with XRD of CA powders,
the peak at 22.01◦ of CS/CA was weakened due to the addition of amorphous CS which inhibited
crystallization of CA. Compared with XRD of CS and CA powders, the peaks at 20.10◦ and 22.01◦ of
C-T-3/CA were weakened due to the addition of TiO2 which inhibited crystallization of CS and CA.
It indicated that there were interactions between TiO2 and CS/CA, which might stabilize TiO2 on the
membranes [45].
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3.3. MO Removal Analysis

3.3.1. Effect of TiO2 Content on MO Removal

The effect of the amount of TiO2 on the removal of MO under visible light is demonstrated in
Figure 5. Before visible light irradiation, the absorbance of MO solutions for all samples decreased due
to adsorption of MO by the CS based membrane. Under visible light, the absorbance of all solutions
with different fibrous membranes decreased as the reaction time increased (shown in Figure 5a). There
was a significantly faster removal trend for the MO in visible light than in darkness because of the
effects of both adsorption and photocatalysis. The removal of MO consisted of two stages for all
samples. In the first stage, as the reaction time increased, the removal rate of MO was fast. In the
second stage, the removal rate declined and got close to an equilibrium state. All samples could reach
saturation state at 120 min. In combination with Figure 5b, the removal amount increased at first and
then decreased with a further increase of TiO2 content. When the TiO2 content was higher than 3 wt %,
the MO removal amount declined. This might be attributed to the reduction of the reaction sites by the
TiO2 agglomeration. Therefore, the best adsorption and photocatalysis performance was obtained at 3
wt % content of TiO2 for CS based adsorbents.
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Figure 5. MO removal performance under visible light. (a) The effect of reaction time on absorption
amount, (b) the effect TiO2 content on removal rate.

The effect of TiO2 contents on the MO removal under UV light is demonstrated in Figure 6.
Under UV light, the absorbance of all solutions decreased faster than samples in darkness because
of concurrent adsorption and photocatalytic degradation as the reaction time increased (shown in
Figure 6a). A similar situation was found as in the visible light, where the removal of MO consisted
of two stages for all samples. In the first stage, the removal rate of MO was fast as reaction time
increased. In the second stage, the removal rate declined and then got close to an equilibrium state.
All samples could reach saturation state at 30 min [20]. In Figure 6b, it can be seen that the removal
amount increased at first and then decreased with further increase of TiO2 content. When the TiO2

content was higher than 3 wt %, the MO removal amount declined. This might be attributed to the
reduction of the reaction sites by the TiO2 agglomeration. The removal amount of MO by adsorption
and photocatalytic degradation under UV light were superior to that in visible light because of more
energy for electronic transitions [23]. Therefore, C-T-3/CA was selected for further MO removal studies
by UV irradiation in the following tests.
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3.3.2. Effect of pH Values on the MO Removal

The pH value, as a crucial parameter, controlled the MO removal ability by affecting the degree
of ionization of hydrogen ions, hydroxide ions in solutions and structural stability. Figure 7 shows
the removal amount of MO in the pH value range from 4 to 9 under UV light. Both samples
exhibited high removal amount with pH value in the range of 4–6, and MO removal amount gradually
declined as the pH value increased. C-T-3/CA had a higher removal amount than CS/CA due to
both adsorption and photocatalysis for C-T-3/CA. The removal amount was greatly improved by the
addition of TiO2 (that allowed for simultaneous adsorption and photocatalysis) under acidic conditions.
This was because under acidic conditions, the –NH2 on the CS molecule was protonated, and TiO2

existed in the form of TiOH2
+, resulting in the electrostatic attraction among—SO3

− in MO, –NH3
+

and TiOH2
+ [48,49]. Under alkaline conditions, the –NH2 on the CS molecule was deprotonated,

TiO2 generated the TiO−, and an electrostatic repulsion appeared between fibrous membranes and
MO, which resulted in the decrease of removal amount [47]. The maximum removal amount of MO
for both samples was obtained at pH = 4.
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3.3.3. Effect of Initial MO Concentration on the MO Removal

The effect of initial MO concentration on MO removal is indicated in Figure 8. The MO removal
ratio of CS/CA and C-T-3/CA decreased with the increase of the initial concentration of MO. At a lower
initial concentration of MO, fiber membranes CS/CA and C-T-3/CA provided sufficient reactive
sites for removal of MO. With the increase of initial concentration of MO, the total amount of MO
molecules increased. However, the amount of fiber membranes remained unchanged, meaning that
the amount of reactive sites did not change. Therefore, the removal ratio of MO decreased at the higher
initial concentration of MO. C-T-3/CA showed a higher removal ratio of 98.4% than CS/CA at initial
concentration of 10 mg/L due to simultaneous adsorption and photocatalysis for the MO removal
by C-T-3/CA.
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3.3.4. Effect of Contact Time and Kinetic Study

The effect of time on the removal capacity of MO by CS/CA and C-T-3/CA are shown in Figure 9a.
As time increased, the removal amount of MO by CS/CA and C-T-3/CA increased and then gradually
reached the equilibrium state. In the initial stage (t < 25 min), due to the large number of active sites
in both adsorbents, the removal amount of MO increased rapidly with the increase of contact time.
The removal amount of MO increased slowly and finally reached the equilibrium 25 min later [49].
For CS/CA, the adsorption equilibrium appeared at 40 min, while for C-T-3/CA, equilibrium was
reached at 60 min. Due to the addition of TiO2 nanoparticles, which increased the specific surface
area of the fiber membrane, more time was token for the MO to penetrate the fiber membranes.
Therefore, the contact time of 60 min was used for subsequent tests to ensure sufficient adsorption and
photocatalytic degradation treatment. The pseudo-first-order and pseudo-second-order kinetic models
were used to study the behavior of MO removal of fiber membranes [46], which can be expressed
as follows:

Pseudo-first-order kinetic model:

log(qe − qt) = log qe −
k1

2.303
t (3)

Pseudo-second-order kinetic model:

t
qt

=
1

k2q2
e
+

t
qe

(4)

where qe and qt (mg/g) represent the equilibrium removal amount and the removal amount at time t;
k1 and k2 are the constants pseudo-first-order and pseudo-second-order rate, respectively.

The experimental kinetic curves of MO removal are shown in Figure 9b,c. The relevant kinetic
parameters calculated from the curves are listed in Table 2. The correlation coefficients of the
pseudo-first-order model and the pseudo-second-order model for MO removal by CS/CA were
nearly equal to and greater than 0.95, indicating that physical adsorption and chemical adsorption all
contributed to the removal of MO. The R2 of the pseudo-second-order model (0.9952) was higher than
that of the pseudo-first-order model (0.9878) for the removal of MO by C-T-3/CA. This suggested that
fiber membranes exhibited mainly chemical adsorption accompanied by physical adsorption via the
addition of TiO2 [50].
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Table 2. Kinetics parameters for MO removal.

Sample qe, exp (mg/g)
Pseudo-First-Order Model Pseudo-Second-Order Model

k1 R2 qe, cal (mg/g) k2 R2 qe, cal (mg/g)

CS/CA 19.24 5.44 × 10−2 0.9748 15.08 13.48 × 10−2 0.9799 20.80
C-T-3/CA 39.20 9.86 × 10−2 0.9878 30.61 32.33 × 10−2 0.9952 40.67

3.3.5. Isotherm Study

The Langmuir model and Freundlich model were used to describe the isotherm equilibrium data of
MO removal by CS/CA and C-T-3/CA fiber membranes [50]. It can be expressed as Equations (5) and (6)

The Langmuir model:
Ce

qe
=

1
qmKL

+
Ce

qm
(5)

The Freundlich model:
log qe =

1
n

log Ce + log KF (6)

where qe (mg/g) represents the equilibrium removal amount, Ce (mg/L) is the equilibrium concentration
of MO in aqueous solution and qm (mg/g) represents the maximum removal amount, KL is the Langmuir
isotherm constant related to free energy and KF and n are the Freundlich isotherm constant which
expressed removal capacity and removal intensity, respectively.
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The experimental isotherm curves of MO removal are shown in Figure 10a,b. The relevant
isotherm parameters calculated from the curves are listed in Table 3. On the basis of the correlation
coefficients of MO removal by CS/CA, the Freundlich isotherm model (Figure 9b) was better fitted
than the Langmuir isotherm model (Figure 9a). Therefore, the CS/CA mainly exhibited multiple layers
of adsorption. After the addition of TiO2, the correlation coefficients of the Langmuir model and
Freundlich model were approximately equal, indicating that C-T-3/CA exhibited multiadsorption
behavior. This might be due to both the effects of photocatalytic degradation and adsorption [50].
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Table 3. Isotherm parameters for MO removal.

Sample
Langmuir Model Freundlich Model

KL qm (mg/g) R2 KF n R2

CS/CA 7.28 × 10−2 30.01 0.9714 2.30 1.41 0.9932
C-T-3/CA 62.5 × 10−2 76.22 0.9948 25.33 1.90 0.9997

3.4. Removal Mechanism Analysis

3.4.1. FTIR Spectra Results

The FTIR spectra of C-T-3/CA fibers before and after removal of MO are demonstrated in Figure 11.
Before removal of MO, the peaks at 3100–3500 cm−1 were ascribed to –OH and –NH2, 1638 and
1572 cm−1 were attributed to –NH3

+ and –NH2 of CA and CS, respectively. The peak appearing
at 1154 cm−1 was attributed to the stretching of the C–O–C band of CA. The peaks in the range of
400–800 cm−1 were ascribed to the characteristic absorption of Ti–O [47,51]. After the adsorption and
photocatalytic degradation of MO, the peak of the –NH2 group at 1572 cm−1 decreased and the –NH3

+

at 1638 cm−1 increased [49]. It demonstrated that –NH2 was protonated as –NH3
+ in the process of

MO removal. Several new characteristic peaks that appeared were listed as follows: 1400–1450 cm−1

were ascribed to –N=N– group, and 1039 cm−1 was attributed to –SO3
− of MO. It showed that MO

was adsorbed on surfaces of CS molecules during the reaction process. The peaks at 3100–3500 cm−1

increased, which might be due to the formation of abundant active hydroxyl radicals (·OH) during the
photodegradation process (see Equations (9) and (10)).
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3.4.2. XPS Spectra Results

As shown in Figure 12, XPS was employed to analyze the chemical element of the membrane
surface before and after the removal (that allowed for coinstantaneous adsorption and photocatalysis)
of MO with full-range and magnified spectra of S, N, O and Ti. It can be seen in Figure 12a that C-T-3/CA
membranes before MO removal showed peaks of binding energy at 285.5, 397.7, 531.2 and 457.1 eV,
which were assigned to carbon atom (C 1s), oxygen atom (O 1s), nitrogen atom (N 1s) and titanium
atom (Ti 2p), respectively. As seen in Figure 12b, the peak of S 2p appeared at 167.7 eV after removal of
MO, indicating MO adsorbed on the surface fiber membranes. For the N 1s spectrum in Figure 12c,
the peak at 399.1 eV was assigned to –NH2 group before MO removal. After MO removal, a new
peak appeared at 401.7 eV and was attributed to –NH3

+, and the peak of –NH2 at 399.1 eV shifted to
399.8 eV. This indicated that –NH2 was protonated as –NH3

+, and electron transfer occurred between
–NH2 and MO molecules, respectively [22]. As seen in Figure 12d,e, the O 1s and Ti 2p binding energy
increased after the removal of MO. Ti could exist in the form of TiOH2

+ in acid solutions. After the
reaction with MO molecules, the groups of –OH2

+ as electron acceptors could interact with –SO3
− of

MO due to electrostatic attraction, which could influence charge density of Ti and O [20].

3.4.3. BET Analysis

The BET results of CS/CA and C-T-3/CA membranes were measured by nitrogen adsorption
method (see Table 4). After the addition of TiO2, the fiber membrane attained higher specific surface
area and pore volume owing to uniform distribution of TiO2 on CS hemispheres and an increase of
the distance among C-T hemispheres (see Figure 3d). Therefore, the relative high adsorption capacity
of MO on C-T-3/CA was ascribed to the high specific surface area, which should be good for the
photodegradation of MO.
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Table 4. BET results of CS/CA and C-T-3/CA.

Sample Specific Surface Area (m2/g) Pore Volume (cc/g) Average Pore Diameter (nm)

CS/CA 301.30 0.33 4.39
C-T-3/CA 342.10 0.48 4.79

3.4.4. Mechanism Analysis

According to the above analysis, the high removal capacity of C-T-3/CA was mainly due to the
effective dispersion of TiO2 in combination with CS, which improved the specific surface area of fiber
membranes and increased the sites of photocatalytic degradation and adsorption. MO molecules
could be adsorbed to the vicinity of photodegradation sites by electrostatic attraction between CS and
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MO molecules, promoting the contact probability of TiO2 and MO in the following photocatalytic
degradation process. The reaction mechanism between MO and C-T-3/CA is illustrated in Figure 13.
The mechanism of photocatalysis is summarized from Equation (7) to Equation (12). The MO removal
mechanism included: (1) Adsorption, the electrostatic attraction between –NH3

+ group of CS and –SO3
−

of MO molecules; (2) photocatalysis, the photocatalytic degradation of the MO by UV illumination began
with photoexcitation of the TiO2 and then formed an electron-hole pair (Equation (7)). High oxidation
valence-band holes (h+) directly oxidized MO degradation (Equation (8)). Water decomposition
produced ·OH (Equation (9)) or a reaction of h+ with OH− (Equation (10)). Meanwhile, the reaction
between conduction-band electrons (e−) and proper electron acceptors (such as O2) yielded oxidative
radicals as described by Equation (11). The generated hydroxyl radicals easily degraded MO to form
inorganic small molecules (Equation (12)) [6]. These results agreed with BET, FTIR and XPS analyses.

TiO2 + hv→ e− + h+ (7)

h+ + MO→MO·+ → Oxidation of MO (8)

h+ + H2O→ H+ + ·OH (9)

h+ + OH− → ·OH (10)

e− + O2 → ·O−2 (11)

MO + ·OH/·O−2 → Degradation of MO (12)
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3.5. Recycling Ability

To research the recycling ability of the composite membranes, the absorbance changes were
measured in five cycles of MO removal. As demonstrated in Figure 14, the MO removal of fiber
membranes was almost invariable for five consecutive cycles. The membranes still had a removal ratio
of 98% at the end of the fifth cycle, testifying that the membranes maintained good performance of
adsorption and photocatalytic degradation. This was because the stability of CS in aqueous solutions
was improved by the intermolecular hydrogen bonds between CS and CA, and TiO2 could be uniformly
distributed via the interactions with CS molecules for effective photocatalytic degradation of MO [45].
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4. Conclusions

In this work, the C-T/CA fiber membranes were prepared via electrospinning and electrospraying.
After the addition of TiO2, the removal capacity of MO was improved, as a result of concurrent
adsorption and photocatalytic degradation. When TiO2 content was 3 wt %, the highest MO removal
amount for fiber membranes (C-T-3/CA) was reached, 98% at pH value of 4 and MO concentration
of 40 mg/L. The kinetic and isotherm model for the removal of MO by fiber membranes were well
fitted pseudo-second-order kinetic and Freundlich isotherm models. Especially, C-T-3/CA membranes
exhibited multiple layer adsorption with the addition of TiO2. The involved mechanisms including
adsorption and photocatalytic reaction occurred in the removal process which was demonstrated by
FTIR, XPS and BET results. The recycling experiment showed fiber membrane had excellent stability
and reusability.
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