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Abstract

Motivation: The presence of tumor cell clusters in pleural effusion may be a signal of cancer metastasis. The in-
stance segmentation of single cell from cell clusters plays a pivotal role in cluster cell analysis. However, current cell
segmentation methods perform poorly for cluster cells due to the overlapping/touching characters of clusters, mul-
tiple instance properties of cells, and the poor generalization ability of the models.

Results: In this article, we propose a contour constraint instance segmentation framework (CC framework) for cluster
cells based on a cluster cell combination enhancement module. The framework can accurately locate each instance
from cluster cells and realize high-precision contour segmentation under a few samples. Specifically, we propose
the contour attention constraint module to alleviate over- and under-segmentation among individual cell-instance
boundaries. In addition, to evaluate the framework, we construct a pleural effusion cluster cell dataset including 197
high-quality samples. The quantitative results show that the numeric result of APmask is > 90%, a more than 10% in-
crease compared with state-of-the-art semantic segmentation algorithms. From the qualitative results, we can ob-
serve that our method rarely has segmentation errors.

Contact: zh_m@tju.edu.cn or zhaomeng12321@163.com

1 Introduction

The comprehensive segmentation of cells are core analysis steps in
many histopathology image analysis tasks (Bazgir et al., 2021;
Gurcan et al., 2017; Saltz et al., 2017; Shang et al., 2021). A number
of studies have been performed in the segmentation of cells. Gençtav
et al. (2012) and Song et al. (2017) propose a framework based on
prior knowledge and automatic threshold to gradually separate cer-
vical cell clump from the background, cell nuclei and cytoplasm
boundary from the cervical cell regions. Unet (Yang et al., 2017)
and its variants (Isensee et al., 2021; Zhao et al., 2019b) use skip
connection to integrate high-level semantic and low-level fine-
grained texture information to improve epithelial nucleus segmenta-
tion quality (Yi et al. 2019a; Zhou et al., 2019b) joint detector
(SSD, Fastercnn) and segmenter (FCN, Unet) to achieve neural cell
and cervical cell instance segmentation.

However, the above methods perform poorly in tumor cluster
cells, such as Pleural effusion tumor cluster cells (Sarioglu et al.,
2015; Win et al., 2017) illustrated in Figure 1. There are three main
reasons for these problems: (i) Model generalization. Due to the
cluster cell morphology being varied and the segmentation methods
(Gençtav et al., 2012; Song et al., 2017) rely heavily on cells’ prior
knowledge. Therefore, these methods only using fixed prior know-
ledge perform poorly in new miscellaneous cells segmentation tasks.
(ii) Multiple instances properties. The cell pixels in the overlapping
or adhesion area belong to multiple instances. Some semantic seg-
mentation methods such as Isensee et al. (2021), Yang et al. (2017)
and Zhao et al. (2019b) can only define that cell pixels in the over-
lapping the area belongs to one instance, which often lead to error

distinguishment of cell pixels. (iii) Cluster properties. Due to the dis-
tortion, adhesion, overlap between cells, the cell contour is blurred
and the contrast is low. It is not sufficient for Yi et al. (2019a) and
Zhou et al. (2019b) to use mask only to regress the cell obscure
boundary. Therefore, these methods often lead to over-, under-
segmentation, false and missed detection of cell pixels. In addition,
labeling cluster cell with blurred outlines requires the professional
guidance of several pathologists, which is a time-consuming and la-
borious process.

Overall, how to high-quality segment cluster cells is still a signifi-
cant challenge. Therefore, we propose a contour constraint instance
segmentation framework (CC framework) without prior knowledge
based on cluster cell combination enhancement (CCCE). First, to al-
leviate the demand for a large amount of data in the network frame-
work, we constructed a data enhancement module CCCE, which
can enrich cluster cell information through the small number of dis-
crete cells. Secondly, to avoid false detection and missed detection in
intertwined complex cell regions, inspired by keypoints detection
(KD; Yi et al., 2019b), detect branches of CC framework (KD mod-
ule) outputs top-left, top-right, bottom-left, bottom-right and the
center points of a cell on multiple scales. Then, each cell rectangle
can be generated by three points or any two diagonal points in five
points, which can distinguish multiple instances of a cell of pixel
and further improve the detection accuracy and avoid missed detec-
tion. Finally, in the cell segmentation branch, to prevent over- or
under-segmentation in the fuzzy region of ROI multi-instance cells,
we fuse the deep to the shallow features to recover the boundary in-
formation and construct the contour attention constraint (CAC)
module to constrain the cell boundaries. The effect of constraint
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boundary can also further enhance the expression ability of key
points when network parameters are updated by backpropagation.

In summary, our main contributions are given as follows.

1. We construct a pleural effusion cluster cell dataset including

three categories: Discrete pleural effusion cells (68 labeled

images), which are used to synthesize aggregated pleural effusion

cells and labels; Synthetic pleural effusion cluster cells, which

consist of 200 samples as the training set in our framework; Real

pleural effusion cluster cells, which consist of 129 labeled images

as the testing set in our framework. This dataset provides great

challenges in medical image segmentation, such as overlapping,

touching, low contrast and complex background.

2. We propose a cluster cell instance segmentation framework that

only requires unlabeled synthetic dataset as the training set and

achieves an high-quality cell boundaries instance segmentation

close to fully supervised methods on real pleural effusion tumor

cluster cell dataset. The framework includes three modules:

CCCE, KD and contour attention constraint segmentation

(CACS). The CCCE module can simulate the clusters cells image

by using only a few discrete cells images, which greatly reduces

the dependence of the network on the dataset. The KD and

CACS module can be applied to various medical segmentation

images, especially the cluster cell images of complex scenes.

3. We compare with five state-of-the-art (SOTA) algorithms on

two datasets. Our algorithm achieves a 13% increase compared

with other segmentation algorithms and attains >97% on metric

APmask (averaged over Mask IoU thresholds). In metric

APboundary
TP (averaged over Boundary IoU thresholds), the frame-

work also achieves comparable results.

1.1 Related work
1.1.1 Image data enhancement

Data augmentation enhances the size and quality of training datasets
that are widely used in deep learning networks. For example, some
scholars have proposed regularization methods [Dropout
(Srivastava et al., 2014), Cutout (DeVries and Taylor, 2017), Mixup
(Zhang et al., 2017) and Gridmask (Chen et al., 2020a)] to solve the
over-fitting phenomenon. Unfortunately, these data enhancement
methods are not practical in medical images. Because collecting
medical images [such as computerized tomography (CT), tumor
cells] is a time-consuming and laborious process, especially in the
case of disease scarcity, patient privacy, and pathologist guidance.
Therefore, increasing the sample size of medical images and improv-
ing the quality of medical images are essential for medical tasks.
Zhao et al. (2019a) learned labeled example feature to synthesize
unlabeled examples by building a model of transformations to in-
crease the number of samples. Wolterink et al. (2017) used low-dose
CT and routine-dose CT as data input to train an adversarial dis-
criminator through a GAN network to evaluate routine-dose CT
and reduce the noise of low-dose CT. In general, the GAN network

relies on a large number of datasets and only can be applied to low-
resolution images. To solve this problem, Baur et al. (2018) synthe-
sized high-resolution skin pathology images with DDGAN under a
small skin disease training sample.

Although their data enhancement methods have achieved re-
markable results in medical images, they are still unsuitable for clus-
ter cell data. There are two main reasons. First, they need a certain
amount of data for labeling cluster cells, which inevitably faces the
problem of difficulty in labeling cluster cells. Second, these data en-
hancement methods rely on network training, which will lead to the
failure of synthetic data due to the instability and poor generaliza-
tion of the network. When compared with these methods, we can
synthesize cluster cells only with a small number of discrete labeled
cells. The synthesized cluster cells have rich information of overlap,
adhesion and noise, which can effectively fit the real data and allevi-
ate the over-fitting phenomenon. In addition, the process is simple
and effective without adding additional network training.

1.1.2 Cluster cell overlapping occlusion segmentation

Overlapping occlusion phenomena are widespread. To deal with the
high overlap phenomenon, Ke et al. (2021) and Lazarow et al.
(2020) constructed the occluder and the occluded module based on
the occlusion relationship. This module makes full use of interactive
information through the relationship between two instances and
achieved high-performance results on coco and cityscapes panopti-
cal segmentation. In contrast, these phenomena also exist in medical
images. Some scholars apply prior knowledge to cluster cell overlap-
ping occlusion segmentation. Kong et al. (2011) calculated the seg-
mentation boundary according to the concave point distance
between overlapping instances. Song et al. (2018) designed an en-
ergy function for the fragment information of cluster cells, which
can provide geometric information in overlapping contour segmen-
tation. Although these methods have made some progress in cervical
cancer cluster cell segmentation by using boundary, shape and geo-
metric information, they perform poorly in complex situations. The
key to this problem is that the network must have robust feature ex-
traction ability, not a single information expression. In this problem,
deep learning shows the powerful performance. Paulauskaite-
Taraseviciene et al. (2019) used two different conceptual models of
Unet and Mask region-based convolutional neural network (R-
CNN) to jointly segment overlapping cluster cells and analyzed the
performance of the deep learning method in this regard. Yi et al.
(2019a) and Zhou et al. (2019b) used a two-stage instance segmen-
tation network to extract the bounding boxes of multi-instance cells
of the same, and performs contour segmentation for instance cells.

Different from the above methods, our anchor free KD can fully
express intensity (or color) information and shape heterogeneity in
the overlapping region, which makes our framework has strong ro-
bustness to complex textures and highly overlapping cells without
any prior shape information.

1.1.3 Cluster cells densely adhered segmentation

In the task of fine cell segmentation, an ongoing challenge is to seg-
ment densely contacted squeezed deformed cells and outline blurred
cell boundaries. To solve this problem, Liu et al. (2019) added a
dense connected conditional random field on a lightweight network
to improve the segmentation precision. Graham et al. (2019)
encoded the distance from the nucleus pixels to the centroid, and the
distance information can assist in the accurate segmentation of over-
lapping instances. Chen et al. (2020b) designed a two-stage fine-
grained segmentation network from coarse to fine: in the first stage,
a network similar to the contour-aware informative aggregation
mask net Zhou et al. (2019a) was used to obtain each instance in the
cluster cells. In the second stage, the instance cells were refined
through up-down sampling and residuals. Similarly, Fan et al.
(2020) constructed an attention map to learn each instance end-to-
end, it can effectively suppress the background and improve the rec-
ognition ability of overlapping instances.

However, it is worth mentioning that the above algorithms only
are designed for feature extraction of fine information, which easily

Fig. 1. Illustration of morphology pleural effusion cluster cells. Pleural fluid tumor

cluster cells often have variant shapes, overlap, adhesion, obscure contour, low con-

trast, deformation, background impurity, which is very easy to lead to false detec-

tion, missed detection, over- and under-segmentation
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leads to over- or under-segmentation in case of low overlapping
boundary gradient and heterogeneous cluster cell shape. So, we pro-
pose a CAC module to constrain the cell boundaries, which can im-
prove the refine the ability to overlap adhesion boundaries to
prevent over-segmentation or under-segmentation.

2 Methodology

An overview of the CC Framework for cluster cells segmentation is
shown in Figure 2. The framework comprises three parts: cluster
cells combination enhance module (CCCE) to enhance clusters
attributes as input data, the KD module implements the KD-based
scheme to obtain instance proposals, following cluster cells segmen-
tation by CACS module.

2.1 CCCE module
Different from cutout, cutmix and gridmask, CCCE is a simple and
efficient data enhancement strategy. As shown in the left part of
Figure 2, we select a very small number of data images from the
pleural effusion tumor cell cluster dataset as training samples, which
only contain a few cells. Specifically, we randomly select an initial
image and N images from the training samples. Then gradually crop
the area of the cell in N images, following paste the area of the cell
randomly onto the initial image to generate the final cluster cell
image. Let x0 2 R

W�H�C and xt 2 R
W�H�C denote the initial train-

ing image and the randomly selected training image. ~x represents
synthesized cells image by CCCE module, and the generation pro-
cess of the CCCE module is illustrated in the Algorithm 1. Assuming
that the xt contains K cell xk, each cell xk can increase the sample di-
versity through various affine transformation methods such as ran-
dom rotation, color jitter and Gaussian noise; A is the operation of
obtaining cell coordinates. Base_coord, Crop_coord and
Overlap_Coord represent the coordinates of x0; xk and overlapping
regions, respectively. These coordinate points 2 f0; 1gW�H denote a
binary mask; �, � is element-wise multiplication and addition. In
our experiment, all training sample pixels are normalized to (0,1),
which will lead to the pixel value of the overlapping area may be
more than 1, and the visualization effect of this area does not con-
form to the real overlapping images, so we divide the overlapping
area @ (1.8, 2.2, 2.5) to approximate the real images. Besides, the
foreground area th will be set to control the continuation and ter-
mination of cell synthesis, which can effectively evade the imbalance
of positive and negative samples.

2.2 KD module
Our CC framework uses Resnet50 as the Backbone. To avoid
missed and false detection, we detect five keypoints with embedding
vector as the bounding boxes of cells by Keypoints generation
(KG)—the top-left, top-right, bottom-left, bottom-right and the cen-
ter points. These key points are grouped into cells bounding boxes
using Bounding boxes grouping (BBG). The flowchart is shown in
Figure 3 (KD module).

2.2.1 Keypoints generation

Considering the multi-scale cells, we fuse the features of the back-
bone C0–C3 layer as to the input of KG. Heatmaps h(x), Offsets
O(x) and Distance D(x) are outputs through conv7�7, relu and con-
v7�7. Heatmaps are used to commonly represent the position of
key nodes in human posture estimation Newell et al. (2016).
Similarly, in our KD, heatmap h(x) also represents the possible cor-
ners cells bounding boxes, which outputs five channels to represent
keypoint categories. To create a heatmap, each channel contain disc
dry ¼ fx : kx� yk � rgg, where y and r are the position of the key-
point and radius of the disc respectively, and h(x) ¼ 1 for x 2 drðyÞ,
otherwise h(x) ¼ 0. Besides, our KD involves downsampling and
upsampling to merge different scale receptive field. When we map a
location bync from the locations y in the heatmap h(x) (n refer to sam-
pling factor), some precision may be lost. Hence, to improve the ac-
curacy prediction, we predict Offsets O(x) with 5�2 channels to
punish the heatmap h(x) locations deviation loss and set multi-
radius on multi-scale features to supervise 2D positions of a key-
point y from coarse to fine.

OðxÞ ¼ y

n
� by

n
c

� �
; x 2 drðyÞ (1)

where O(x) encodes the displacement between unrounded coordi-
nates y

n and rounded coordinates bync. We apply binary cross-entropy

Fig. 2. The overall flow chart of CC Framework. CC Framework comprises three stages: CCCE module enhance clusters attributes, KD module to obtain instance proposals

and CACS module for instance cells segmentation

Algorithm 1: Procedure of CCCE

Require: training image x0 and xt with W x H.

Let the xt contain K cells. Initial parameters th.

Ensure: Image of cell clusters ~x.

1: for t  1 to N do

2: for i  0 to K do

3: Rand_x¼np.random.randintð0;WÞ
4: Rand_y¼np.random.randintð0;HÞ
5: Crop_coord¼ AðxkÞ � ðRand_x, Rand_yÞ
6: Base_coord¼ Aðx0Þ
7: Overlap_coord¼ Crop_coord \ Base_coord

8: ~x¼ x0 � xk � Crop_coord

9: ~x¼ x0 � Overlap_coord/@

10: All_area=(Base_coord [ Crop_coord).sum()

11: Overlap_coord¼ Crop_coord \ Base_coord

12: while All_area � th do

13: return ~x

14: end while

15: end for

16: end for

17: return ~x
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and L1 loss to punish heatmap h(x) and offset O(x) the loss. In the
actual training process, multiple interference points will be gener-
ated due to the influence of noise. Therefore, we combine heatmaps
h(x) and offsets O(x) to obtain the keypoint score map h0ðxÞ by
using Hough calculators Papandreou et al. (2018), then filter the
interference points through the threshold.

h0ðxÞ ¼ 1

pr2

XN
k¼1

hðxkÞBðxk þ oðxkÞ � xÞ (2)

here, xk represents the kth key point of the image, B denotes the
bilinear interpolation kernel.

2.2.2 Bounding boxes grouping

After obtaining the score keypoint h0ðxÞ, we sort the keypoint score
map h0ðxÞ in descending order and greedily connect the (k, l) pair of
keypoints belonging to the same object by the prediction graph dis-
tance Dk;lðxÞ.

Dk;lðxÞ ¼ ðyl � xÞ;x 2 drðykÞ (3)

where k and l represent two key points, respectively. The direction
of the connection keypoint is similar to a directed graph. Therefore,
there are 10�2�2 channels (10�2 connection types, two direction
in the X- and Y-axis). Similar to offset, we use the L1 to punish pre-
diction graph distance Dk;lðxÞ loss.

Various groups are obtained by the above connect methods,
shown in Figure 3 (BBG). To reduce the possibility of losing box
proposals, we select 5–2 diagonal keypoints as a box; then use Diou
NMS to inhibit repeated detection for the same object.

2.3 CACS module
For cluster cells segmentation, over- and under-segmentation prob-
lems often occur in the highly overlapping area. To overcome the
drawbacks mentioned above, we propose a CACS module shown in
Figure 3 (CACS module), which can be divided into the following
steps: (i) Feature extraction. We crop and fuse the multi-scale fea-
tures from the backbone by the KD detector. These fused features
have deep semantic information and shallow boundary information.
(ii) CAC. We propose the CAC module focus on the cell’s bounda-
ries in Figure 4. The location information of fused feature X 2
R

C�H�W will be extracted by the CA attention Hou et al. (2021).
Specifically, CA attention using Average Pooling along horizontal
and vertical directions encode the fused feature X to capture loca-
tion information Xx 2 R

C�1�W and Xy 2 R
C�H�1. Because the cell

features are represented by the neighborhood pixels in the local re-
gion, we fuse the location information Xx and Xy to enhance loca-
tion feature correlation. Then, using 1�1 Conv and Sigmoid to
obtain boundary attention weight. Finally, a multiplication of the at-
tention weight and fused feature can help the network improve the
ability to identify overlapping adhesion areas. Besides, the output of
the CAC module is cells boundary and cells mask. First, the bound-
ary constraint can further punish the loss of over- and under-
segmentation. Second, the influence of boundary constraint is not
only reflected in the segmented network but also can further im-
prove the perception keypoints in the process of updating shared
network parameters.

3 Experiment

In this section, extensive experiments have been conducted to dem-
onstrate the effectiveness of the CC framework. We first briefly
introduce the experiments datasets, followed by evaluating metrics.
Then, we show the implementation and training details. In addition,
we provide a summary of the evaluation for our framework.
Ablation studies that aim to demonstrate the effectiveness of each
component in CC framework are also provided.

3.1 Datasets
PETCCD. We constructed a pleural effusion tumor cluster cell data-
set (PETCCD). This dataset is divided into two types: discrete pleu-
ral effusion tumor cells (DPETC, 68 training samples) and
aggregated pleural effusion tumor cluster (APETC, 109 images). To
verify the effectiveness of our proposed the CCCE module, we define

Fig. 3. Overall network framework. The network consists of two modules: KD module, CACS module, they share a backbone Resnet 50

Fig. 4. Contour attention constraint module (CAC)

i56 M.Zhao et al.



the synthetic data through the CCCE module as combined enhance-
ment of pleural effusion tumor cluster (CEOPETC, 200 training
samples). For these datasets, we all use the APETC dataset as a val-
idation dataset (24 images) with this number of samples selected by
109 images and remaining 85 samples for training.

OCWBC. Overlapping cluster of white blood cell (OCWBC)
dataset is a public dataset and can be used for cell instance segmen-
tation. It includes two categories: discrete white blood cells (DWBC,
25 training samples), dense OCWBC (DOCWBC, 78 images). we
synthesized 250 training samples on DWBC, combined enhance-
ment of OCWBC, (CEOOCWBC). Similar to PETCCD, this valid-
ation dataset (24 images) is selected by DOCWBC, remaining 54
samples for training.

3.2 Experiment configuration
Our experiments are dependent on Python 3.6.0, CUDA10.0,
Cudnn7.6.5 and Pytorch1.6.0. The experimental equipment is 12G
Titan V GPU, Intel Core i9-7900X CPU and Unbuntu 18.04.

In the training process, we resize the equal aspect ratio of the in-
put network image to 512�512. In addition, data enhancement
methods, such as random expanding, clipping, flipping, contrast dis-
tortion, are used to increase the sample diversity and mitigate model
overfitting. GT boxes are used as bounding boxes to train the CACS
module. Further, we set a total of 200 epochs. The first 100 epochs
module freeze boundary prediction and the last 100 epochs unfreeze
boundary prediction. In the testing process, the input image is
detected to obtain bounding boxes, which are then mapped to the
detected bounding boxes to the CACS module for instance segmen-
tation cells. lr is set to 0.0001. The batch size is set to 4. Diou NMS
and segmentation threshold is set to 0.5.

3.3 Boundary segmentation evaluation metrics
In the instance segmentation task, most papers take APmask as the
metrics to evaluate their algorithms. APmask calculates precision and
recall curve through Mask IoU (intersection-over-Union). When
compared with the pixel level IoU of semantic segmentation, the re-
sponse of Mask IoU to the boundary quality of objects with different
scales is uneven. The segmentation quality of prediction boundary
pixels cannot be accurately evaluated. Based on the above analysis,
Boundary IoU (Cheng et al., 2021) is proposed, which is sensitive to
objects of multiple scales and will not punish anyone excessively.
Mask IoU and boundary IoU are calculated as follows (4 and 5).

Mask IoUðG; PÞ ¼ jGm \ Pmj
jGm [ Pmj

(4)

Boundary IoUðG; PÞ ¼ jðGd \GmÞ \ ðPd \ PmÞj
jðGd \GmÞ [ ðPd \ PmÞj

(5)

where Gm and Pm respectively refer to the gt and predicted mask,

Gd and Pd are the sets of all pixels within d pixels distance from the
Gm and Pm contours respectively. We choose APmask and APboundary

TP

as segmentation quantitative evaluation criteria. APmask is the stand-
ard evaluation metrics for instance segmentation (Lin et al., 2014).
APboundary

TP is employed to calculate the positive sample (averaged
over Boundary IoU thresholds), which can eliminate the influence of
negative sample detection object on boundary segmentation evalu-
ation to improve the segmentation evaluation standard.

3.4 Experimental results
We compare the proposed CC framework with state-of-art algo-
rithms on CEOPETC and CEOOCWBC datasets. It can be observed
from Table 1 that our method has achieved the more than 90%
results on APmask, much better than other algorithms. For the com-
parison of APboundary, although only by calculating positive samples,
our method still is a reduction of 2.74–1.0% on the highest
RefineMask, and the overall results still outperform other instance
segmentation algorithms. Besides, to visually compare our method
with some competitive algorithms, partial better segmentation quali-
tative results are shown in Figures 5 and 6. For the PETCCD and the
OCWBC datasets, most comparison algorithms suffer from huge
multi-instance object confusion recognition (False detection) and
loss of prediction target (Missed detection), especially on overlap
and adhesion region. Similarly, these algorithms are unable to differ-
entiate obscure cell boundaries, which may lead to over- and under-
segmentation for clusters cell pixel. On the contrary, compared with
these SOTA methods, our framework exhibit remarkable

Table 1. Performance comparison of the proposed framework and the state-of-the-art methods on CEOPETC and CEOOCWBC dataset. APm

refer to APmask

Networks Datasets 0.5APm 0.7APm 0.5APb
TP 0.7APb

TP

Yolact Bolya et al. (2019) CEOPETC 78.90 54.63 80.99 83.47

Cascade Mask R-CNN Cai and Vasconcelos (2021) 84.53 83.43 86.85 87.33

SOLOv2 Wang et al. (2020) 61.20 43.80 56.60 34.60

RefineMask Zhang et al. (2021) 81.51 80.05 87.47 88.05

ANCIS Cheng and Qu (2020) 80.97 79.90 81.33 81.33

Ours 97.52 96.52 86.40 87.05

Yolact Bolya et al. (2019) CEOOCWBC 70.76 84.79 53.55 87.85

Cascade Mask R-CNN Cai and Vasconcelos (2021) 88.40 78.00 89.67 90.24

SOLOv2 Wang et al. (2020) 83.90 58.20 74.40 39.10

RefineMask Zhang et al. (2021) 79.46 77.70 90.84 91.83

ANCIS Cheng and Qu (2020) 71.79 67.00 81.23 81.23

Ours 93.65 91.45 89.77 89.09

N

ote: APb
TP refer to AP boudnary

TP

Fig. 5. Instance segmentation qualitative results for cluster cells on PETCCD dataset
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performance in capturing tiny and fuzzy boundary information of
clusters cells, barely false detection, missed detection and over-
segmentation.

In addition, to evaluate the effectiveness of the CCCE module,
We compare the results on the synthesized datasets (CEOPETC,
CEOPETC) with those of original datasets, as shown in Table 2. It
can be immediately noticed that the segmentation results of synthe-
sized datasets outperform discretely cell datasets (DPETC, DWBC),
even higher than the aggregate cell dataset (APETC, CEOOCWBC)
in some metrics. The experimental results demonstrate the signifi-
cant advantages of the CCCE module in segmenting the cluster cells
with scarce data.

3.5 Ablation experiment
In this section, to justify the effectiveness of the CAC module, we
performed ablation experiments on PETCCD and OCWBC datasets.
Table 3 shows the results of the ablation experiment. We can notice
that after adding the CAC module to the baseline, the results of
PETCCD and CEOOCWB both increase by 0.74–3.38% on the
APmask. Simultaneously, the results on APboundary

TP also increased by

0.01–0.79%. Therefore, this demonstrates that the proposed CAC
module can further restrict the segmentation boundary and improve
the expression ability of keypoint features.

3.6 Discussion
As can be seen from Table 1 and Figures 5 and 6, the anchor meth-
ods, such as Cascade Mask R-CNN, RefineMask etc, tends to
missed and false detection on the overlap and adhesion regions. One
possible reason would be that this method is difficult to select the
appropriate initial anchor size and quantity to match each cell in the
area of the intensive cells. Therefore, the offset of predicted bound-
ing boxes will be caused by regression anchor. At the same time, in
the keypoint detection algorithm, the accuracy of AP is directly
related to the location and the connection mode of the keypoints.
For ANCIS, keypoints position deviate gt boxes, so the bounding
boxes connected by these key points cannot accurately cover each
cluster cell. Compare these methods, our KD-based multi-scale fea-
ture fusion and boundary constraints can improve the expression
ability of the keypoints feature. Following two to five keypoints
combination and DIoU NMS, the detector can effectively filter re-
dundant bounding boxes, retaining high score predicted bounding
boxes. The quantitative results show that our detector can effective-
ly avoid missed and false detection. In addition, the boundary of
cluster cells in out-of-focus images tends to be blurry, relying on
regressing mask is not enough to extract the detailed features of
fuzzy boundary. Therefore, these comparison algorithms tend to be
over- and under-segmentation. Thus we introduce the CAC module
that can encode the detailed boundary feature and punish the
boundary loss. From Table 3 and Figures 5 and 6, we can observe
that our methods with the CAC module perform better than SOTA
algorithms.

4 Conclusion

Accurately segmenting the cluster cells can help clinicians pay more
attention to the lesion area and achieve a more accurate diagnosis of
lung cancer. In this article, we propose a novel CC framework,
which leverages the cluster cell combination enhance for more effi-
cient miscellaneous cells feature representation. Quantitative and
qualitative results demonstrate the advantages of our method in seg-
menting the instances cluster cells. In the future, we plan to con-
struct a multi-category, sample imbalanced cluster cell dataset,
which is more consistent with clinical medical pathological images.
In addition, we will pay more attention to semi-supervised method
to reduce the complexity of labeling data as well as improving model
ability to adaptively learn cluster properties features.Fig. 6 Instance segmentation qualitative results for cluster cells on OCWBC dataset

Table 2. Performance comparison of the proposed CCCE module on the PETCCD and OCWBC datasets by state-of-the-art methods

Networks Datasets 0.5APm 0.7APm 0.5APb
TP 0.7APb

TP Datasets 0.5APm 0.7APm 0.5APb
TP 0.7APb

TP

Yolact (Bolya etal., 2019) DPETC 61.14 46.60 77.89 80.84 DWBC 70.25 39.81 79.54 84.51

CEOPETC 78.09 54.63 80.99 83.47 DOCWBC 70.76 84.79 53.55 87.85

APETC 83.69 55.98 81.10 83.71 CEOOCWBC 70.39 41.57 81.16 86.31

Cascade Mask R-CNN

(Cai and Vasconcelos, 2021)

DPETC 67.98 48.33 79.51 63.40 DWBC 77.89 63.98 86.30 87.96

CEOPETC 84.53 83.42 86.85 87.33 DOCWBC 88.40 78.00 89.67 90.24

APETC 84.81 82.82 88.72 89.13 CEOOCWBC 88.19 76.65 88.45 89.43

SOLOv2 (Wang et al., 2020) DPETC 11.50 02.69 08.20 01.30 DWBC 50.70 18.70 50.60 18.50

CEOPETC 61.20 43.80 56.60 34.60 DOCWBC 83.90 58.20 74.40 39.10

APETC 52.00 29.00 45.90 26.90 CEOOCWBC 83.90 58.20 74.40 39.10

Refine Mask (Zhang et al., 2021) DPETC 43.87 31.67 76.72 31.45 DWBC 70.32 59.38 88.03 89.33

CEOPETC 81.51 80.50 87.47 88.05 DOCWBC 79.46 77.70 90.84 91.83

APETC 71.03 90.16 70.85 90.56 CEOOCWBC 75.19 72.13 90.34 91.45

ANCIS (Cheng and Qu, 2020) DPETC 78.12 78.71 80.11 80.11 DWBC 71.79 59.32 80.60 80.60

CEOPETC 80.07 79.90 81.33 81.33 DOCWBC 71.79 67.00 81.23 81.23

APETC 80.10 79.84 82.87 82.87 CEOOCWBC 71.19 67.53 81.39 81.39

Ours DPETC 83.28 82.93 84.43 84.56 DWBC 89.37 84.58 88.84 89.53

CEOPETC 97.52 96.52 86.40 87.05 DOCWBC 93.65 91.45 89.77 90.18

APETC 96.22 94.32 92.05 90.80 CEOOCWBC 92.80 90.30 89.76 90.05
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