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'e present study aims to design a robust adaptive controller employed in the active tuned mass damper (ATMD) system to
overcome undesirable vibrations in multistory buildings under seismic excitations. We propose a novel adaptive type-2 neural-
fuzzy controller (AT2NF). All system parameters are taken as unknowns. 'e MLP neural network is used to extract the Jacobian
and estimate the structural model; then, the estimated model is applied to the controller online. To tune the control force applied
to the ATMD and achieve the control targets, the controller parameters are adaptively trained using the extended Kalman Filter
(EKF) and the error back-propagation algorithm. A PID controller is also included in this method to increase the stability and
robustness of the adaptive type-2 neural-fuzzy controller against seismic vibrations. An online simple adaptive controller (OSAC)
is studied to demonstrate the suggested controller’s superiority. 'e OSAC is based on adaptive control of the implicit reference
model. In this proposed method, the EKF is used to tune the controller parameters online as a novel feature. 'e uncertainty
associated with identifying the mechanical properties of structures, such as mass and stiffness, is one of the primary challenges in
the real-time control of structures.'is paper investigates how both controllers cope with parametric uncertainties under far-field
and near-field seismic excitation. According to numerical results, the AT2NF controller outperforms OSAC in minimizing the
dynamic responses of the structure during an earthquake and accomplishing control objectives when the structure’s
characteristics change.

1. Introduction

Nowadays, some natural disasters, such as large-scale
earthquakes and strong winds, can cause significant damage
to human life and have injuries and enormous economic
consequences [1–17]. As a result, structural control is a
modern and efficient scheme for reducing dynamic re-
sponses and preventing excessive damage or collapse in
structures [18]. Control strategies can ensure an acceptable
level of comfort and serviceability to users while allowing the
designer to increase flexibility in the structural system and
reduce the use of materials [19]. Various control systems

have been developed to ensure safety even in excessive vi-
bration in an earthquake or wind excitation. 'ese systems
are classified into four general groups, including passive
control systems [20, 21], semi-active control systems [22],
active control systems [23–25], and hybrid control systems
[26, 27]. One of the advantages of the active control system
of ATMD over passive control systems such as TMD is its
remarkable adaptability and performance for various exci-
tation frequencies. 'is system is also efficient for transitive
vibrations and effectively minimizes the responses resulting
from strong earthquakes [28]. 'e tuned mass damper
(TMD) is a typical example of a passive control system with
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several inherent limitations, such as restriction to a narrow
frequency band and sensitivity to parameter adjustment.
Notably, TMDs are adjusted to only a specific structural
frequency.

On the other hand, buildings subjected to strong
earthquakes or wind undergo considerable structural
damage, leading to a change in the dominant frequency of
the structure consequently. Since the optimal parameters of
the TMD damper are a function of the dominant frequency
of the main system, the high sensitivity of that to the pa-
rameters of the structural model or neglect of the soil-
structure interaction may cause an undesirable shock ab-
sorption effect [29–32]. 'us, the researchers suggested
utilizing several TMDs with different properties to tackle
these drawbacks [33–42]. Besides, presenting the nonlinear
stiffness or nonlinear damping to linear TMD can be useful
for broadening the damping frequency band. For this
purpose, the performance of particle tuned mass damper
(PTMD) under the complex dynamic loads was examined by
Lu et al. in 2009 [40]. 'e fundamental interaction me-
chanics consist of energy loss and momentum variation.

'e authors exploited the concept of the effective mo-
mentum exchange and particle damping technology [43, 44]
to propose a particle TMD for dealing with such dynamic
loads. 'is concept specifies the effect of momentum
quantity on the performance of the low volumetric filling
ratio particle damping. Compared to the conventional ones,
the overall stability of this type of TMD is remarkable since it
can cover a vast range of damping frequency bands and
control the structure response if it is tuned well. Notably, the
semi-active and hybrid control strategies are more feasible in
implementation than the others and are always based on
active control algorithms [23, 28, 36, 45]. 'e semi-active
and hybrid control strategies have remarkable benefits,
which make them extremely popular for control purposes.
To mention a few, since the semi-active control systems are
actually the passive control systems that can tune and change
the system’s physical properties, they are known as the
controllable passive devices. Such semiactive control systems
are inherently nonlinear and have many of the advantages of
active control systems without the need for a large power
source. Also, the control forces in most semi-active control
systems are applied in the opposite direction of the structure;
thus, the structure’s overall stability is maintained. 'e
hybrid controllers are a combination of an active control
system and a passive control system. 'e former is used as a
supplementary and improvement of the passive control
system’s efficiency, and the latter is employed to reduce the
required energy in the active control system. 'e hybrid
control strategy can significantly reduce the limitations of
the active control systems and has a better performance.
Besides, this controller does not lose its good performance
even when the energy source faces a problem.

Nevertheless, an active tuned mass damper can be a
helpful alternative. 'e system can work with multiple vi-
bration modes and is considered a feasible option for multi-
degree-of-freedom buildings [46]. One of the essential ad-
vantages of ATMDs is that a relatively small mass can reduce
the response of structures and create high performance [47].

In addition, the active control force employed to transmit
this small mass strikingly exerts a secondary inertial force
against the vibrations [48]. However, regarding the mass of
the entire system, including the building and the mass of the
adjustable damper, the driving force requirements applied to
the ATMD systems may reach a high level which this sit-
uation is unfavorable for all control systems. Since the
performance of control systems depends a lot on the control
algorithm employed for tuning the control force, the various
control algorithms have received much attention as an ef-
ficient approach to enhance the performance of an ATMD
control system. In other words, they are applied to reduce
dynamic vibrations of buildings and enhance the civil en-
gineering structures’ capabilities, such as safety and efficient
performance against severe environmental excitations. Us-
ing an effective control scheme, an appropriate trade-off is
created between these contradictory aims, including control
force reduction and structural response reduction [49, 50].

'e main algorithms widely employed to tune the
control force applied to ATMD are LQR [51–53], H2 and
H∞ [54, 55], bang-bang control [56], fuzzy logic controller
[38, 48, 57, 58], acceleration feedback regulators [59, 60],
feedforward and feedback optimal tracking controllers
(FFOTC) [61], sliding mode control (SMC) [62–64], fuzzy
PID controller [65, 66], and PID controller [53, 67, 68]. Most
of the studies in structural control are conducted based on
their nominal parameters. However, in real structures, the
structural system responses are inevitably uncertain due to
the simplification of engineering structures model, esti-
mates, assumptions, and environmental loads that are
changeable and unpredictable. On the other hand, the
possibility of damage to the structural component due to
extreme environmental events like earthquakes and wind
loads exists.'is situation leads to a change in the structure’s
characteristics, such as stiffness, natural frequencies, and
mode shapes, and subsequently, it creates the characteristics
of a time-varying structural system. 'erefore, such un-
certainties can affect the performance of the control algo-
rithm and probably make it unstable. Also, traditional
control methods in this situation do not provide stability and
strength required to effectively reduce the structural re-
sponse resulting from unrecognizable and different external
dynamic loading conditions [69–71].

As a result, developing a control scheme that is insen-
sitive to parametric changes in the structural system and is
sufficiently robust while providing satisfactory performance
for a control system is essential for successful operation. It is
noteworthy that the simultaneous use of vibration control
and structural health monitoring strategies is necessary to
make structures smart [72–74]. 'erefore, the structural
characteristics of the intelligent structural system must be
measured during extreme excitations in real-time. 'en, the
appropriate control forces must then be applied by the
control system to reduce dynamic responses and compen-
sate for possible damage to the structure [62, 75–78].

'e linear quadratic regulator (LQR) that is extensively
employed for controlling the structural vibrations is con-
sidered one of the significant accomplishments of modern
control in linear analysis of the systems. According to the
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optimal quality of LQR, when it is appropriately designed,
the control strategy can minimize the cost and response very
successfully. Nevertheless, where all cases are unavailable for
complete feedback, an observer needs to reconstruct them
from the system output. After performing this process for
extensive systems, many sensors are required to estimate the
observation and quality of state reconstruction. It can sig-
nificantly increase the cost of the optimal control approach
and complicate its implementation. It is also required the
controller LQR access to structural parameters like mass,
stiffness, and damping.'ese parameters are not available in
many existing structures. 'erefore, implementing a control
approach that is cost-effective, reliable, predictable, and
effective may lead to the calculation of this control solution
in the design. Finally, a flexible and secure structure will be
created. 'e adaptive control strategy is a good idea to
overcome many uncertainties related to predicting struc-
tural system parameters and seismic loads. Since this
adaptive strategy can calculate the control gain based on
real-time sensed responses, it guarantees desirable perfor-
mance in the presence of uncertainties [19]. Concerning the
various control strategies, significant improvements in
adaptive control theory have been made for identifying
[79, 80] and controlling linear and nonlinear systems, such
as backstepping control [81], model reference control
[71, 82], robust adaptive control [83, 84], and indirect
adaptive control [85–87].

Notably, recent years have seen a growing interest in
adaptive control strategies in structures. For instance, a
multi-degree-of-freedom (MDOF) structure in 2000 was
controlled through an integrated procedure by Gattulli
and Romeo [88]. 'e numerical analysis of this study was
performed through a sliding mode control and model
reference adaptive control (MRAC), and acceptable re-
sults were obtained. Likewise, a real-time model reference
adaptive identification approach was presented by Chu
(2009) to exploit online system identification in the
MRAC algorithm, considering Lyapunov’s direct method
in parameter estimation [89]. In a significant advance in
2013, Bitaraf and Hurlebaus employed semi-active
adaptive control to examine the seismic excitations in the
20-story tall building with nonlinear behavior and mag-
netorheological (MR) dampers and finally obtained ac-
ceptable results. In 2014, an active control system
equipped with an active mass damper was presented by Tu
et al. [90]. Model reference adaptive control (MRAC) was
utilized in this system, whose parameters’ exact values do
not need to be calculated.

Regarding adaptive backstepping control, Amini and
Ghaderi [91] developed a design procedure for specifying
the desired control force for a structure subjected to an
earthquake. In this method, the controlled structure’s
mass, stiffness, and damping matrices were unknown. In a
groundbreaking paper from 2018 regarding the online
self-tuning approach, Hosseini and Taghikhany exploited
a fuzzy inference system to adjust the structural system
parameters and improve the defects of the simple adaptive
control (SAC) method [92]. 'e proposed control
structure was assessed according to the uncertainty in the

model and regardless of that. According to Luyu Li et al., a
proposed model reference sliding model control
(MRSMC) could minimize the structure’s vibration under
earthquakes by considering an AMD in a multi-degree-of-
freedom (MDOF) nonlinear structure [93]. Mamat et al.
proposed a nonsingular terminal sliding mode control to
examine the control performance subjected to seismic
excitations [62]. Sourni et al. in 2020 introduced an
adaptive optimal controller to identify parametric un-
certainties in the seismic motion control of structures
[94].

Many existing studies in the broader literature
[76, 95–101] have successfully implemented adaptive
control schemes on structures. Some controllers, such as
the Simple Adaptive Controller (SAC), recently studied by
Soares et al. [18, 102], can be used to reduce the seismic
response of structures under seismic excitations. 'ere is
no research in the existing literature on the reduction of
seismic responses in an ATMD-equipped structure using
an adaptive type-2 neural-fuzzy controller. Since neural
networks can approximate any nonlinear function with
the desired accuracy and have robust adaptive, self-
learning, and self-organization modes under specific
conditions, their remarkable practicality is undeniable
[83, 103–105]. 'erefore, this study presents a novel
adaptive type-2 neural-fuzzy network (AT2FN) controller
to regulate the active tuned mass damper (ATMD) control
force on the 11-story structure. 'is controller aims to
minimize the dynamic responses in the system under
near-field and far-fault field excitations, which can cause
more uncertainties than type-1 fuzzy controllers and be
less sensitive to these parameters without considering the
dynamics of the structural system and information related
to seismic input excitations.

'e multilayer perceptron neural network (MLP)
structure is utilized to extract the Jacobian of the system.'e
online estimation model is then applied to the controller. By
combining the extended Kalman filter (EKF) with error
back-propagation, the controller parameters used to adjust
the ATMD control forces are trained. In this case, the
control error signal that is the same as the roof displacement
is minimized. In addition, a proportional-integral-derivative
controller (PID) is added to the adaptive type-2 neural-fuzzy
controller to increase the system's stability and robustness
against seismic vibrations. To evaluate the robustness and
efficiency of the controllers under different real earthquakes,
the performance of the suggested control method is com-
pared with the other control methods that have been pre-
sented so far. In addition, the comparison is made between
the performance of the AT2NF controller and an online
simple adaptive controller (OSAC), which is based on the
implicit reference model adaptive control. 'e OSAC does
not require complete identification of the controlled system
parameters for obtaining the control gains needed to track
the desired behavior in the control process. 'e main in-
novation of this controller is that the EKF is used in OSAC
for tuning its parameters online. 'e comparison results
imply the remarkable capabilities of the AT2NF controller in
meeting the control purposes.
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'e significant advantages of the proposed control ap-
proach are summarized as follows:

(i) 'e parameters of the structural system are assumed
to be unknown, and the controller is designed in
online mode.

(ii) Because the system’s dynamics are uncertain, the
MLP neural network is used to model and extract
the system’s Jacobian.

(iii) Type-2 neural-fuzzy controller based on EKF is
introduced to enhance the performance of the
structural system and reduce the responses caused
by various earthquakes.

(iv) Due to the adaptability of this controller, it does not
require initial settings by the operator.

(v) 'e proposed controller can overcome uncertain
parameters and a time-varying system.

2. Literature Review

In addition to the related works mentioned in the intro-
duction, many studies have been conducted regarding op-
timal controllers that were significantly accurate. However,
regardless of the benefits of OSAC and AT2NF controllers,
the efficiency of the proposed controllers is not on par with
the ones presented in this paper. 'e well-known studies
that have successfully designed optimal controllers are
mentioned in the introduction comprehensively. Never-
theless, the gap in the literature can be easily observed in
Table 1, in which the related works are categorized. Notably,
the studies highlighted in Table 1 are novel and limited to
2021 and 2022.

As shown in Table 1, the control methods proposed in
the previous studies vary significantly and have brought
remarkable accuracy. However, the authors claimed that the
OSAC and AT2NF controllers proposed in this study out-
perform the whole state of art controllers presented so far.

3. TheMainRelations ofMotionEquation in the
Structural Model

Mass Dampers (MD) are extensively applied to the buildings
under external forces like earthquakes to obtain the desired
reduction. 'e passive form of MD is a Tuned Mass Damper
(TMD) in which a moving mass is attached to a spring and a
viscous damper. In an Active Mass Damper (AMD), an
actuator is also connected with the moving mass. 'e de-
veloped form of TMD, namely ATMD, consists of inertial
mass, stiffness element, and damping element. 'e actuator
is used to provide the control forces needed to minimize
vibrations through an active mass. 'is section gives the
necessary information regarding themotion equations of the
structural model considered in this study. Figure 1 illustrates
the structural model equipped with ATMD on the top story,
based on the dynamic equation of motion in the N-degree-
of-freedom (DOF) shear building. 'is equation is given
below:

M €x(t) + C _x(t) + Kx(t) � − MΛ€xg(t). (1)

According to equation (1), x(t) represents the vectors of
structural displacement, _x(t) denotes the velocity, €x(t) is the
acceleration, and €xg(t) represents the excitation acceleration
vector for the building with dimensions (N + 1) × 1, where
N is the freedom degrees of building. M, C, and K imply
(N + 1) × (N + 1) mass, damping, and stiffness matrices,
respectively, of the structure equipped with an ATMD.
Besides, equation (2) shows the (N + 1) × 1 relative dis-
placement vector, denoted by X(t).

X(t) � x1(t), x2(t), . . . , xi(t), . . . , xN(t), xTMD(t)􏼂 􏼃
T
.

(2)

Regarding equation (2), xi(i � 1, 2, . . . , N) represents
the displacement of the i-th story comparative to the ground.
Accordingly, the expression xTMD indicates the displace-
ment amount between the TMD and the ground. It is
noteworthy that the location vector of the excitation ac-
celeration is captured by Λ, showing the (N + 1) × 1 vector
in this case. It is assumed that the masses are cumulated at
floor levels; thus, the mass matrix is considered as follows:

M � di ag m1, m2, . . . , mi, . . . , mN, mTMD( 􏼁, (3)

where mi(i � 1, 2, . . . , N) denotes the mass of the i-th story
and mTM D represents the mass of the TMD. One item is
added to the degree of freedom in this structure by adding a
TMD to the primary structure. Equation (4) indicates the
structural stiffness matrix:

K �

k1 + k2( 􏼁 − k2 0

− k2 k2 + k3( 􏼁 − k3

− kN − −

⋮ ⋮ ⋮

sym kN + kTMD( 􏼁 − kTMD

− kTMD − kTMD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where ki(i � 1, 2, . . . , N) shows the stiffness of the i-th story,
and the stiffness coefficient of the TMD is denoted by kTMD.
Based on Rayleigh’s approach, it is presumed that there is a
proportion between the structural damping matrix C and the
mass and stiffnessmatrices, as indicated in equation (5).ω1 and
ω2 in this equation shows the natural structural frequencies in
the first and second modes. Furthermore, in the first two
modes, ξ denotes the structural critical damping ratio.

C �
2ξω1ω2

ω1 + ω2
M +

2ξ
ω1 + ω2

K. (5)

'e top story of the building is designed to have an active
control system.'e actuator is located between the structure
and the TMD system. 'e actuator applies the controlled
force u(t) in real-time to the ATMD. Subsequently, its re-
action is used in the top story. According to the earlier
explanations, the structure movement containing an ATMD
is defined by equation (6).
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M €x (t) + C _x(t) + Kx(t) � − MΛ€xg (t) + Du(t). (6)
As the control force location vector D depends on the

location of actuators in the structure, when ATMD is located
on the top story, D= [0, . . ., 0, − 1, 1]T represents the
(N+ 1)× 1 location vector of the control force. In equation
(7), the state space form is considered for the dynamic
equation of motion in the structural system, for which vector
Z(t) is chosen, as in the equation below:

Z(t) �
x(t)

_x(t)
􏼨 􏼩. (7)

Moreover, equation (8) indicates the state matrix A,
input matrix B, vector H, and output matrix G:

A �
0 I

− M
− 1

K − M
− 1

C
􏼢 􏼣,

B �
0

M
− 1

D
􏼢 􏼣,

H �
0

− Λ
􏼢 􏼣,

G � I 0􏼂 􏼃,

y(t) � GZ(t),

(8)

Table 1: A summary of the proposed controllers in the previous studies.

No Controller Targets Type of structure Features

1 Adaptive neural network control
system [106]

Tackling the dynamic
nonlinearities and uncertainties

A quarter car
electrohydraulic active
suspension system

'e ability to tackle the unknown
smoothing functions

2 An adaptive neural network
control method [107]

Obtaining the precise and
robust control of nonlinear
systems with unknown

dynamics

A generic single-input
single-output nonlinear
system with unknown

dynamics

'e network trained by an
iterative control learning

algorithm and a proportional-
integral controller are combined

in this controller

3
A novel online neural-network-
based sliding mode control
(OLNN-SMC) design [108]

Obtaining robust adaptive
precision motions

Piezoelectric actuated
(PEA) system

'e ability to realize the
nonlinearity of the PEA system
using singularity-free neural

networks (NNs)

4 Neural Network-Based Adaptive
Controller [109]

Tackling the parametric
uncertainties and external

disturbances
Wheeled mobile robots

A neural network-based kinematic
controller and a model reference
adaptive control are combined

5

An adaptive neural network
control strategy based on radial
basis function neural network

(RBFNN) [110]

Tracking control of the
pneumatic servo system pneumatic servo system

'e proposed controller considers
the state constraints to enhance

the tracking accuracy

6

adaptive radial basis function
(RBF) neural network-based
active disturbance rejection
controller (ADRC) [111]

Minimizing the effect of internal
and external unknown

uncertainties of the unmanned
helicopter

An unmanned helicopter

Better anti-disturbance,
robustness, and tracking accuracy
compared to the traditional ADRC

and PID approaches

7
An intelligent adaptive neural
network (ANN) controller for

Ref. [112]

Optimization of the parameters
of a PI controller with real-time

data and giving dynamic
stability

A direct torque controlled
(DTC) electric vehicle (EV)

propulsion system

'e stator reference flux voltage
considered for synthesizing the

space vector with width
modulation is obtained for a DTC

8 Modified Simple Adaptive
Control [113]

Examining the effect of aircraft
weight on the controlled system

response considering the
various disturbing states

A simple adaptive shimmy
suppression system

To avoid windup impacts, the
saturation of actuator control
moment and a simple back-

calculation design are considered

9

An adaptive neuro-fuzzy
inference system (ANFIS) and
simple adaptive control (SAC)

approaches [114]

Tackling the uncertainties of full
three-dimensional models
under multi excitations

'ree-dimensional coupled
buildings

'e performance of both
controllers was acceptable

10
A simple adaptive controller
methodology and model

predictive control (MPC) [115]

Creating and tracking
trajectories of a spacecraft next

to the asteroids
Spacecraft Near Asteroids

Adaptive control is used as a
feedback controller and MPC as a
feedforward controller for tackling

the unknown uncertainties

11
A Simple Adaptive Control
(SAC)-based reconfiguration

approach [116]

Tackling the faults of sensors
and actuators in the CPCS

Cabin Pressure Control
System (CPCS)

'e control method capability for
controlling the rules online
regardless of identifying the

system under faults

12 Simple Adaptive Control (SAC)
[117]

Reduction of the adverse effects
of the earthquake on the

structures
Six-story structure

'e proposed controller has a
striking performance under
various seismic excitations.

Computational Intelligence and Neuroscience 5



In this equation, y(t) denotes the output vector, and I

and 0 are the identities and zero matrices, respectively,
with suitable dimensions. It is noteworthy that element B

specifies the locations of the control forces. According to
the modeling errors, the physical parameters of the
nominal and actual structures are different. Since the
elements of matrices M, C, and K in equation (1) are not
known exactly, it can be assumed that their values are
within certain known intervals, as illustrated in Equation
(9).

M � 1 + ΔM( 􏼁M,

C � 1 + ΔC( 􏼁C,

K � 1 + ΔK( 􏼁K,

(9)

where M, C, and K denote the nominal values of M, C, K,
respectively. Besides, ΔM,ΔC, and ΔK indicate the uncer-
tainty percent of the structural model.

4. The Proposed Control Scheme

'e control strategy proposed in this paper is explained in
this section. Also, the required information in this regard is
presented in detail.

4.1. Neural Network Structure of the MLP. Multilayer feed-
forward neural networks are among the most important
artificial neural network structures (ANN). Figure 2 illus-
trates the structure of this neural network employed for the
adaptive calculation of the system identification.

'e expressions shown in Figure 2 are defined as follows:

(i) 'e expression u(t − τ1), u(t − τ2) . . . , u(t − τn)

denotes the inputs of neural networks in which
τ1, τ2, . . . , τn are constant delays. 'e MLP neural
network receives the previous time samples and the
control signal as inputs.

(ii) u(t) is the sum of the control signal and output
system at the instant t.

(iii) w1
11, w1

12, . . . , w1
1n represent the middle layer weights

connected to the first neuron.
(iv) w1

21, w1
22, . . . , w1

2n represent the middle layer weights
connected to the second neuron.

(v) w1
q1, w1

q2, . . . , w1
qn represent the middle layer weights

connected to neuron q. q here denotes the number
of neurons in this layer.

(vi) 'e weights associated with the output and neurons
of the middle layer are denoted by w21, w22, . . . , w2q.

Now, the output of this neural network is gained through
the steps described below:

(1) Neural network input, control signal, and system
output in the previous sample times.

(2) 'e neuron’s output in the middle layer is calculated
based on the equations below:

u (t - τ1) 

u (t - τ2)

w21

y
w22

w1
11

w1
qn

w2qOq

/

u (t - τn) 

O2

Layer2: Middle Layer Layer3: Output LayerLayer1: Input Layer

O1

Figure 2: 'e MLP neural network structure for the system
identification [118].

XTMD

KTMD

XN

Xi

X1

X
..

g

CN KN

Ki
Ci

mi

m1

mN

mTMD

CTMD

Actuator
u (t)

C1
K1

Figure 1: 'e structural model with ATMD on the top story.
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oi � g neti( 􏼁, i � 1, . . . , q,

neti � w
1
i U,

(10)

where

U � u t − τ1( 􏼁, u t − τ2( 􏼁 . . . , u t − τn( 􏼁􏼂 􏼃
T
,

w
1
i � w

1
i1, w

1
i2, . . . , w

1
in􏽨 􏽩,

g neti( 􏼁 �
1 − exp − neti( 􏼁

1 + exp − neti( 􏼁
.

(11)

'e MLP neural network’s output can be calculated
using the equation below:

y � w2O, (12)

where

O � o1, o2, . . . , oq􏽨 􏽩
T
,

w2 � w21, w22, . . . , w2q􏽨 􏽩.
(13)

'e weights of this neural network are trained in line
with minimizing the cost function of E:

E �
1
2
e
2
est �

1
2

yd − 􏽢y( 􏼁
2
. (14)

According to (14), yd denotes the desired output, and 􏽢y

is the neural network’s output. 'e relationship for weights
at t + 1 is represented by w(t + 1) � w(t) − ηzE/zw. Also,
gradient descent and error back-propagation algorithm are
employed in training. To obtain zE/zw, the chain differ-
entiation rule of zE/zw � (zE/ze)(ze/z􏽢y)(z􏽢y/zw) applies.
According to (15), the rule of training weights is calculated
by substituting zE/ze � e, ze/z􏽢y � − 1, z􏽢y/zw � 0. 'e
equation below indicates the rule of training weights.

w2(t + 1) � w2(t) + ηeestO. (15)

'e adaptive rule for the weights of the first layer is
obtained as follows:

w
1
i (t + 1) � w

1
i (t) + ηeestg′ neti( 􏼁w2iU. (16)

Concerning (16), w1
i denotes the vector of the neurons’

weights in themiddle layer connected to the i-th layer.g′(neti)

is thederivationofg(neti)basedonneti input. It is noteworthy
that η represents the training rate of gradient descent,
according to which the adaptive rate is considered constant.

4.2. Jacobian of the MLP and Type-2 Neural-Fuzzy Controller
Structure. Using the obtained model, the system’s Jacobian
is calculated:

zΔf

zuc

� w
1
11,w

1
21, . . . ,w

1
q1􏽨 􏽩diag g′ net1( 􏼁, . . . ,g′ netq􏼐 􏼑􏽨 􏽩w2􏼐 􏼑.

(17)

According to (17), zΔ f/zuc represents the derivative of
system output relative to control input. 'e expression
[w1

11, w1
21, . . . , w1

q1] is the considered vector of weights
connected to the first input and neurons of the middle layer.
diag(A) denotes the diagonal vector of matrix A. 'e ex-
pression [g′(net1), . . . , g′(netq)] 'is vector represents the
derivative of neurons’ output based on their inputs in the
middle layer. 'e vector of weights connected to output and
neurons of the middle layer are represented by w2.

Figure 3 illustrates the structure of the neural-fuzzy
network. To clarify this type of network structure, giving
attention to this figure is important.

According to Figure 3, N represents the number of
middle layer neurons. Also, the displacement and the dis-
placement derivative denote the number of neural-fuzzy
network inputs. According to the fuzzy firing rules (18) the
feedforward output of the controller is calculated through
the equation below:

Ok � exp −
X − C

2
k

σ2k
􏼠 􏼡,

OK � exp −
X − C

2
k

σ2k
),􏼠

(18)

where Ck is the center of the Gaussian function, σk is the
width of the Gaussian function, and k � 1, 2, . . . , N.

Based on the order reduction of Nie-Tan, (19) is used to
calculate the output of the neural-fuzzy network:

uC � w
T
Z. (19)

Concerning this equation, w is the vector of weights in
the output layer, and Z is defined below:

Z � z1, z2, . . . zi, . . . , zN􏼂 􏼃
T
,

zi �
Oi + Oi( 􏼁

􏽐
N
i�1 Oi + Oi( 􏼁

.

(20)

Concerning (20), N denotes the number of rules or
neurons in the middle layer.

Output

w

ON

ON

O2

O2

O1

O1

x1

x2

xn

Figure 3: 'e structural definition for the type-2 neural-fuzzy
controller.
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4.3. Considering Error Back-Propagation and Extended Kal-
man Filter to Train Type-2 Neural-Fuzzy Controller. 'e
weights training according to the error back-propagation
and the extended Kalman filter are presented here. In the
beginning, the square of the instantaneous error between
the optimal response (the roof displacement becomes
zero) and the network output at t is known as a cost
function:

E �
1
2
e
2

�
1
2
(Δf)

2
. (21)

Concerning (21), e denotes the roof displacement error
in the x axial. Due to the training rule of the error back-
propagation and the extended Kalman filter, the cost
function is derived from the neural-fuzzy network
parameters.

w(t) � w(t − 1) + p(t)φ(t)e(t),

p(t) � p(t − 1)[I − K(t)φ(t)] + Qp(t),

K(t) �
p(t − 1)φT

(t)

Rm(t) + φ(t)p(t − 1)φT
(t)

,

(22)

where zE/zw denotes the cost function according to the
neural-fuzzy network parameters and is calculated through
(23), w depicts the weights vector in the last subsections.
φ(t) represents the derivative output of the neural-fuzzy
system relative to the parameters of the rules. Using a chain
derivative, zE/zw is obtained as follows:

zE

zw
�

zE

zΔf
zΔf
zuc

zuc

z􏽢y

z􏽢y

zw
, (23)

where uc denotes the control signal, and the output in the
MLP neural network is represented by 􏽢y. Notably, zΔ f/zuc

is the system’s Jacobian, which was obtained through the
neural system model and is calculated as follows:

E �
1
2
e
2

�
1
2
(Δf)

2⇒
zE

zΔf
� Δf,

uc � 􏽢y⇒
zuc

z􏽢y
� 1,

􏽢y � w
T

Z⇒
z􏽢y

zw
� Z,

(24)

where Z is obtained through equation (20).

The proposed control approach

Type-2 neural-fuzzy controller

Fire degrees for the rules

The output of the Type-2 Neural-Fuzzy
system based on Nie-Tan

Training Back-Propagation and
extended Kalman filter

System’s Jacobian

Structure of MLPs

Unknown system dynamics identification

Minimize cost function training
gradient descent

See eq.(18)

See eq.(19, 20)

See eq.(21, 22)

See eq.(14,15)

See eq.(17)

See eq.(23)

See fig.(2)O–K = exp (– (||X – Ck||2)/σ–k
2), k = 1,2 ..., N

OK = exp (– (||X – Ck||2)/σk
2), k = 1,2 ..., N

Z=[z1, z2 ..., zN]T
uc = wTZ

E = 1/2 e2 = 1/2 (∆f)2

E = (1/2)e2
est = 1/2 (yd – ŷ)2

= w2 (t) + eestOw2(t + 1)

w(t) = w(t – 1) + p(t)φ(t)e(t)

∂∆f/∂uc
zi = (Oi + Oi)/ Σ (Oi + Oi)i=1

N

∂E =
∂w

∂E
∂∆f

∂∆f
∂uc

∂uc
∂ŷ

∂ŷ
∂w

Figure 4: 'e flowchart of the structural control strategy according to the proposed approach.
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'e flowchart of the method proposed in this paper is
shown in Figure 4.

4.4. Structure of the Proposed Controller. Structural systems
have nonlinear dynamics as well as parametric and seismic
uncertainties. Under such conditions, controllers with fixed
interest rates do not work correctly. Hence, an adaptive or
robust controller is necessary to tackle these uncertainties.
On the other hand, a trade-off needs to be created between
stability and accuracy to make an ideal controller work
properly. It is noteworthy that many studies have considered
the approaches of intelligent control, such as fuzzy logic,
artificial neural networks (ANN), or neural-fuzzy networks,
to identify complex systems and construct advanced con-
trollers so far [119–127].

'ese studies are often conducted in twomethods, which
are as follows:

(i) When the system dynamics are determined, the
controller is designed online.

(ii) When the controller is designed offline, the system’s
dynamics are unknown.

For this purpose, in the second case, evolutionary al-
gorithms are employed to optimize the controller, and the
optimized parameters are applied to the system. 'e basis of
the assumption considered here is that the system parameters
are indirectly known. It is worth mentioning that the main
drawback of these methods is that they are time-consuming,

and an optimal operating point may not be achieved. In this
case, the computational work is expected to rise, leading to
system instability. However, in both methods, the controllers
are not resistant to uncertainties and cannot overcome pa-
rameter changes. 'erefore, a novel adaptive type-2 neural-
fuzzy controller (AT2NF) is considered here that, assuming
the system dynamics are unknown, it can model more un-
certainty than type 1 fuzzy systems. 'e proposed controller
strikingly reduces the sensitivity to system parameters and
raises the output response speed. In addition, this controller
optimizes the computations through order reduction and can
adapt itself to new conditions. 'e proposed method block
diagram is demonstrated in Figure 5. In this paper, the
system parameters are presumed to be unknown in this
method; however, the controller is designed online. In this
case, the neural-fuzzy network output, which is the control
signal, is obtained online. In addition, the parameters of this
neural-fuzzy network are adjusted so that the roof dis-
placement error tends to be minimized. 'erefore, the
considered control aim is achieved. Calculating the cost
function is based on the gradient descent that needs the
system’s Jacobian.'e system’s Jacobian is unknown because
the system dynamics are assumed to be unknown. Hence, the
system’s Jacobian is extracted online through modeling the
system using the MLP neural network (see Figure 5).

'e main qualities of this proposed control method are
as follows:

PID

M
od

el
 A

pp
ro

xi
m

at
io

n

U

Type-2 Neural-Fuzzy
Controller

+

-EKF

MLP Neural Network

Δf

Structural ResponsesControl Force

plant

+

Displacement

Velocity

Figure 5: 'e Structure of the Proposed Control Strategy.
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(i) 'is adaptive type-2 neural-fuzzy controller is
designed not to require initial settings by the
operator.

(ii) 'is controller can overcome uncertain parameters
and a time-varying system.

(iii) A PID controller has been added to the type-2
neural-fuzzy controller to increase stability and
robustness.

(iv) 'e dynamics of the structural system are consid-
ered entirely uncertain.

(v) In contrast to other similar methods, there is no
need for the Jacobian of the plant.

(vi) 'e performance of type-2 adaptive neural-fuzzy
controllers in a larger scale structural system can be
evaluated.

4.5.AlternativeController. 'is paper uses a simple adaptive
controller (SAC) to evaluate the Type-2 neural-fuzzy system
controller. Sobel et al. introduced the SAC method based on
classical implicit or direct reference adaptive control [2, 19].
'en, this algorithm was extended by Bar-Kana et al., which
improved many problems of the classical method when
running a multiple-input multiple-output (MIMO) system
[128, 129].

It should be noted that the direct methods develop the
adaptation process without explicit calculation of structural
parameters. In other words, the SAC is not required to
identify the controlled system’s parameters fully, referred to
as the plant, to obtain the necessary control gains for tracking
arbitrary behavior in the control process. 'e primary aim of
the SAC is to compel plant outputs to follow the ideal
system’s behavior, namely the referencemodel. Also, it allows
the reference states to have less order than the plant [130].
'e diagram block of SAC is indicated in Figure 6 [2].

'e controlled structure’s dynamic behavior (plant) in
the form of state space is indicated as follows [128, 129] (see
Figure 6):

x
‘

p(t) � Apxp(t) + Bpup(t) + di(t),

yp(t) � Cpxp(t) + do(t),
(25)

where xp denotes the state vector of plan n × 1, up indicates
the input control vector of m × 1, yp represents the output
plant of q × 1. Also, the state matrix of n × n is shown by Ap,
Bp is the input matrix of n × m, and Cp indicates the output
matrix of q × n. According to the equation above, di(t) is the
disturbance to the system, and d0(t) is the disturbance in the
sensors [129, 130]. 'e reference model in the state space is
indicated as follows [129]:

x
‘

m(t) � Amxm(t) + Bmum(t),

ym(t) � Cmxm(t),
(26)

where xm indicates the state vector of the reference model of
nm × 1, um shows the input control vector of m × 1, and ym

denotes the reference output vector of q × 1. Besides, the
state matrix of nm × nm is indicated by Am, Bm denotes the
input matrix of nm × m, and the output matrix of q × nm is
shown by Cm [129, 130]. Plant n has a smaller order than the
reference model nm. Note that this value must be sufficient to
carry out the desired operation to create the plant [1, 111]. It
is noteworthy that this ideal model (reference) demonstrates
only the desired behavior (selected by the designers) and
does not require that previous knowledge of the plant’s
dynamic parameters be provided [110]. SAC attempts to
minimize (approaching zero asymptotically) the output
tracking error (the output of the reference model and the
output of the plant) denoted by ey.

'e control commands must be calculated based on the
whole available data for the ideal model by considering the
states and inputs of the model in a feedforward configu-
ration [128, 131].

ey(t) � ym(t) − yp(t),

up(t) � Ke(t)ey(t)+Kx(t)xm(t)+Ku(t)um(t) � K(t)r(t),

(27)

where

K(t) � Ke(t) Kx(t) Ku(t)􏼂 􏼃,

r(t)
T

� ey(t) xm(t) um(t)􏽨 􏽩
T
.

(28)

According to the equations above, the time-varying
stabilizing control gain matrix is represented by Ke(t). It is
worth mentioning that only the first expression in (27),
namely, Ke(t)ey(t) Is needed for the control system’s sta-
bility. As a result, Kx(t) and Ku(t) denote the time-varying
feedforward control gains required for obtaining zero output
tracking error. 'ese control gains are generated by the SAC
method to ensure the stability of the controlled system and
reduce the tracking error to zero asymptotically [109, 132].
When there is a disturbance, the coefficient of r(t)T in (28) is
used, and it might be quite small [133]. Adaptive control

Plant

+
+
-

MODEL

+

+Control
Device Structure

F

Cm
xmum

up

K–e

K–x

K–u

e = ym – yp

xp

yp

ym

Cp

di

d0

Figure 6: Simple adaptive control system block diagram [19].
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gains K(t) can be derived using a combination of integral
and proportional terms [128, 131].

K(t) � KI(t) + Kp(t), (29)

where

_KI(t) � ey(t)r(t)
TΓI − σKI(t), (30)

Kp(t) � ey(t)r(t)
TΓp. (31)

According to (30), the positive-definite diagonal matrix
is denoted by ΓI, which defines the control gains’ rate of
adaptation. Notably, the matrix of constant coefficients is
represented by Γp. Also, the proportional term Kp(t) is
known as the immediate fine for large-scale errors [129, 131],
which quickly directs the system towards small-scale errors.
In addition, σ is a forgetting term matrix in the equation
above, which is employed to prevent integral gain divergence
under disturbances.

Regardless of the σ term, KI(t) is a complete integrator
and has the potential to grow indefinitely whenever full
tracking (ey � 0) is not possible. As a result, this term may
reach unneeded and large values or even become divergent
[129]. It should be noted that the integral adaptive control
terms only guarantee the stability of the direct adaptive
algorithm in equation (29). To increase the convergence of
the closed-loop system towards complete tracking, the
proportional adaptive control terms are added [128, 131]. To
set the SAC controller, the parameters in equations (30) and
(31) must be adjusted correctly. 'e process of selecting is
often conducted by trial and error, requiring many sensi-
tivity analyses, and there is doubt whether it leads to the
most appropriate values or not [109, 132]. According to
equation (32), the reference model is selected so that the
output ym is limited to − Ymax and Ymax(− Ymax ≤ym ≤Ymax)

at any time under unknown inputs of um. 'e acceleration of
the earthquake is presumed to be not measured by any
sensor. Hence, the term Ku(t)um(t) is eliminated from the
procedure of generating the control command. 'e refer-
ence model states are considered as follows:

xm �
qm

_qm

􏼢 􏼣 �
􏽚 _qmdt

_qm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

􏽚 ymdt

ym

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

ym � yp if yp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<Ymax,

ym � sign yp􏼐 􏼑ymax if yp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥Ymax,

(32)

where qm and _qm indicate the displacement and velocity of
the reference model and Ymax represents the vector of the
maximum acceptable value for the model output. Ymax can
have any value equal to or greater than zero. 'e optimal
value for Ymax depends on the purpose of the study, such as
minimizing drift, acceleration, or other structural responses.
According to this study, it is assumed that Ymax � 0 causes
the controller to reduce the displacement of the top story of
the structure. It is novel that the parameters of the matrix σ
and diagonal matrices ΓI and Γp are adjusted at any time

utilizing the extended Kalman filter. Accordingly, the OSAC
needs to be presented as a novel controller.

5. Numerical Study

5.1. Structural Characterization and Dynamics. In the be-
ginning, a structure with an 11-story realistic building is
considered. 'is structure is situated in Rasht, one of Iran’s
cities. 'e purpose here is to numerically study and clarify
the advantages of the proposed control strategy in mini-
mizing the seismic response of the structure [48]. 'e story
levels are assumed to have a rigid diaphragm, and the whole
building mass is lumped at the story levels. Hence, a sim-
plified linear model is considered for this structure. Also, the
building containing the rigid beams and the columns with
axially rigid and flexible features to lateral deformation is
being considered.'us, spring stiffness is established instead
of the equivalent stiffness on each floor.

According to the assumptions that havebeenpresentedup
to now, a shear-type buildingmodel could be a good choice to
analyze the problem in this study. Accordingly, a degree of
freedom (DOF) can define the displacements at each floor
level.'e top story contains a TMD, and in this case, one item
is added to the DOF of the main structure. 'erefore, the
displacement of the structure stories and the TMD/ATMD
systems is defined by 12 degrees of freedom. Since analyzing
with the high expedition is generally desirable, a two-di-
mensional shear building can be considered. 'e control
system employed here has an ATMD on the top story of the
building. 'e stories’ masses range from the first floor to the
top are equal to 215, 201, 201, 200, 201, 201, 201, 203, 203, 203,
and 176 tons. Furthermore, the values of 468, 476, 468, 450,
450, 450, 450, 437, 437, 437 and 312MN/m are assigned to the
related stiffness coefficients. TMD can be modeled on the
highest floor using a linear spring and a viscous damper. 'e
frequency ratio, namely, βTMD is commonly presumed to be
the ratio of thenatural frequencyof theTMDto thefirstmodal
frequency in the primary structure.

Furthermore, αTMD-percent of the total mass of the
building is considered for the TMD mass, and ξTM D

-percent of the critical damping value is assigned to the
damping ratio of the TMD. Using a genetic algorithm, the
optimal values of αTMD, ξTMD, and βTMD are specified and
turned out to be 3%, 7%, and 1.0, respectively. 'en, the
values of ω1 = 6.57 and ω2 = 19.36 rad/s are obtained for the
uncontrolled structure’s first and second natural frequen-
cies. In addition, the structural damping ratio value is equal
to 5% of the critical damping value in the first two modes.
'e supplementary information regarding this issue is given
in the study of Pourzeynali et al. [48]. 'e damping matrix is
computed using Rayleigh’s method, shown in equation (5).

Table 2: 'e uncertainty coefficients’ values in the nominal and
perturbed models.

Models Nominal model Model 1 Model 2 Model 3 Model 4
ΔM 0.00 +0.15 +0.15 − 0.15 − 0.15
ΔK 0.00 +0.25 − 0.25 +0.25 − 0.25
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Table 2 illustrates the various values of ΔM and ΔKthat it
is assumed that five structural models are considered to
demonstrate the strength and stability of the proposed
controller. Accordingly, ±15% and ±25% uncertainty are
considered for the mass matrix and the structural system’s
stiffness coefficients, respectively.

A building simulation to perform time history analyses
of both the uncontrolled and controlled (with TMD/ATMD
system) structure is conducted employing MATLAB/
Simulink. Figure 7 outlines a block diagram of the SIMU-
LINK software’s online identification and control imple-
mentation [134].

'e necessary information concerning this figure can be
obtained from Figures 8(a) to 8(d). Accordingly, the content
of Figure 8(a) is obtained by clicking on the green block in
Figure 8. By clicking on the blue block of Figure 8(a),
Figure 8(b) is obtained in which two layers exist. 'e

contents of Layers 1 and 2 are respectively shown in
Figures 8(c) and 8(d). Hence, the specific flowchart of the
MLP Neural Network is more clearly outlined in Figure 8.

5.2. Earthquake Suite. To clarify the effectiveness of the
proposed adaptive type-2 neural-fuzzy controller (AT2NF)
implementation, the controlled structure with the ATMD
system will be evaluated after being subjected to four specific
earthquakes. It is worth mentioning that the International
Association for Structural Control (IASC) reported two
earthquakes far from the fault, the El Centro fault in 1940
and Hachinohe in 1968, and two earthquakes near the fault,
the Northridge fault in 1994 and Kobe in 1995. 'e absolute
maximum value for these earthquake records’ ground ac-
celeration (PGAs) equals 0.34g, 0.22g, 0.83g, and 0.82g,
respectively. Figure 9 outlines the time history of the four
earthquakes based on the value of PGA.
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Figure 9: 'e time history of the considered earthquakes. (a) El Centro 1940, (b) Hachinohe 1968, (c) Northridge 1994, and (d) Kobe 1995.

Table 3: A comparison of the performance of different controllers in terms of the maximum responses of stories during the El Centro
earthquake.

Story
Maximum responses of stories (m) Reduction amount based on the percentage (%)

Unctrl.
[48]

Passive
[48]

LQR
[48]

FLC
[48]

FOPID
[68]

OSMC
[63] OSAC AT2NF Passive LQR FLC FOPID OSMC OSAC AT2NF

1 0.019 0.013 0.009 0.090 0.009 0.008 0.005 0.003 31.6 52.6 52.6 52.6 57.9 73.2 85.5
2 0.039 0.025 0.018 0.016 0.016 0.016 0.010 0.005 35.9 53.8 59.0 59.0 59.0 74.9 86.5
3 0.057 0.037 0.027 0.023 0.023 0.024 0.014 0.008 35.1 52.6 59.6 59.6 57.9 74.9 86.4
4 0.074 0.048 0.035 0.028 0.029 0.032 0.019 0.010 35.1 52.7 62.2 60.8 56.8 74.7 86.4
5 0.090 0.058 0.043 0.034 0.034 0.041 0.023 0.012 35.6 52.2 62.2 62.2 54.4 74.6 86.5
6 0.100 0.067 0.050 0.039 0.038 0.047 0.026 0.014 34.4 51.0 61.8 62.8 53.0 73.5 86.0
7 0.120 0.074 0.058 0.043 0.041 0.053 0.030 0.016 38.3 51.7 64.2 65.8 55.8 75.4 87.1
8 0.130 0.083 0.060 0.047 0.043 0.058 0.032 0.017 36.2 53.9 63.9 66.9 55.4 75.3 87.1
9 0.140 0.094 0.067 0.049 0.044 0.062 0.034 0.018 32.9 52.1 65.5 68.6 55.7 75.8 87.3
10 0.140 0.094 0.070 0.050 0.046 0.064 0.035 0.018 32.9 50.0 64.3 67.1 54.3 75.1 86.9
11 0.147 0.099 0.072 0.051 0.049 0.065 0.035 0.019 32.7 51.0 65.3 66.7 55.8 76.3 87.3
Average 0.096 0.063 0.046 0.035 0.034 0.043 0.024 0.0014 34.6 52.1 61.8 62.9 56.0 74.9 86.6
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6. Results and Discussion

'is section discusses and assesses the outcomes of
employing the proposed adaptive controllers, namely the
OSAC and AT2NF Controller, in the 11-story structure

equipped with the ATMD system. 'e proposed adaptive
controllers’ performance will be compared to several other
controllers used in earlier studies. In addition, the intended
uncertainties are taken into account when evaluating such
controllers.

Table 4: Comparison of performance of the different controllers in terms of maximum responses of stories in the Hachinohe earthquake.

Story
Maximum responses of stories (m) Reduction amount based on the percentage (%)

Unctrl.
[48]

Passive
[48]

LQR
[48]

FLC
[48]

FOPID
[68]

OSMC
[63] OSAC AT2NF Passive LQR FLC FOPID OSMC OSAC AT2NF

1 0.014 0.012 0.011 0.008 0.007 0.011 0.004 0.002 14.3 21.4 42.9 50.0 21.4 73.1 83.6
2 0.028 0.024 0.021 0.017 0.005 0.021 0.007 0.004 14.3 25.0 39.3 82.1 25.0 73.9 84.3
3 0.040 0.035 0.032 0.024 0.005 0.030 0.011 0.006 12.5 20.0 40.0 87.5 25.0 73.0 84.3
4 0.053 0.046 0.041 0.030 0.005 0.039 0.014 0.008 13.2 22.6 43.4 90.6 26.4 73.2 85.0
5 0.064 0.055 0.050 0.036 0.051 0.047 0.018 0.009 14.1 21.9 43.8 20.3 26.6 72.6 85.4
6 0.074 0.064 0.058 0.040 0.050 0.052 0.021 0.011 13.5 21.6 45.9 32.4 29.7 72.1 85.8
7 0.085 0.073 0.065 0.046 0.047 0.057 0.024 0.012 14.1 23.5 45.9 44.7 32.9 72.2 86.4
8 0.094 0.081 0.071 0.050 0.042 0.062 0.026 0.013 13.8 24.5 46.8 55.3 34.0 72.2 86.6
9 0.100 0.089 0.076 0.053 0.046 0.066 0.028 0.014 11.0 24.0 47.0 54.0 34.0 72.0 86.4
10 0.110 0.095 0.079 0.055 0.050 0.068 0.029 0.014 13.6 28.2 50.0 54.5 38.2 73.6 86.9
11 0.110 0.099 0.083 0.057 0.051 0.070 0.029 0.015 10.0 24.5 48.2 53.6 36.4 73.4 86.4
Average 0.070 0.061 0.053 0.038 0.033 0.048 0.019 0.010 13.1 23.4 44.8 56.8 30 72.8 85.6

Table 5: A comparison of the maximum response times of different controllers to the Kobe earthquake.

Story
Maximum responses of stories (m) Reduction amount based on the percentage (%)

Unctrl.
[48]

Passive
[48]

LQR
[48]

FLC
[48]

FOPID
[68]

OSMC
[63] OSAC AT2NF Passive LQR FLC FOPID OSMC OSAC AT2NF

1 0.060 0.049 0.050 0.046 0.038 0.037 0.019 0.012 18.3 16.7 23.3 37.5 38.3 68.5 79.8
2 0.120 0.098 0.101 0.092 0.075 0.057 0.037 0.024 18.3 15.8 23.3 37.5 37.5 68.8 80.0
3 0.180 0.149 0.144 0.131 0.106 0.113 0.056 0.036 17.2 20.0 27.2 41.0 37.2 69.0 80.0
4 0.240 0.199 0.192 0.180 0.141 0.151 0.074 0.048 17.1 20.0 25.0 41.4 37.1 69.1 80.1
5 0.290 0.238 0.241 0.229 0.169 0.186 0.091 0.059 17.9 16.9 21.0 41.8 35.9 68.5 79.7
6 0.340 0.289 0.269 0.258 0.191 0.219 0.107 0.069 15.0 20.9 24.1 43.9 35.6 68.5 79.7
7 0.390 0.332 0.308 0.293 0.209 0.248 0.121 0.078 14.9 21.0 24.9 46.3 36.4 69.0 80.0
8 0.430 0.361 0.344 0.335 0.225 0.273 0.132 0.086 16.0 20.0 22.1 47.7 36.5 69.2 80.1
9 0.460 0.391 0.363 0.354 0.238 0.293 0.141 0.091 15.0 21.1 23.0 48.4 36.3 69.3 80.2
10 0.480 0.408 0.374 0.360 0.250 0.306 0.147 0.095 15.0 22.1 25.0 47.9 36.3 69.5 80.2
11 0.500 0.420 0.390 0.370 0.256 0.315 0.149 0.097 16.0 22.0 26.0 48.8 37.0 70.1 80.6
Average 0.317 0.267 0.252 0.241 0.173 0.201 0.098 0.063 16.4 19.7 24.1 43.8 36.7 69.0 80.0

Table 6: Comparison of the response times of different controllers during the Northridge earthquake.

Story
Maximum responses of stories (m) Reduction amount based on the percentage (%)

Unctrl.
[48]

Passive
[48]

LQR
[48]

FLC
[48]

FOPID
[68]

OSMC
[63] OSAC AT2NF Passive LQR FLC FOPID OSMC OSAC AT2NF

1 0.046 0.040 0.033 0.031 0.026 0.032 0.010 0.005 13.0 28.3 32.6 43.7 30.4 77.7 88.1
2 0.088 0.080 0.063 0.058 0.049 0.059 0.020 0.011 9.1 28.4 34.1 44.8 33.0 77.4 87.9
3 0.123 0.109 0.109 0.080 0.068 0.083 0.029 0.015 11.4 11.4 35.0 44.7 32.5 76.3 87.5
4 0.150 0.140 0.110 0.099 0.091 0.103 0.038 0.020 6.7 26.7 34.0 39.5 31.3 74.7 86.9
5 0.180 0.160 0.130 0.119 0.110 0.119 0.046 0.024 11.1 27.8 33.9 38.8 33.9 74.5 86.8
6 0.194 0.178 0.149 0.130 0.126 0.138 0.053 0.027 8.2 23.2 33.0 34.9 28.9 72.7 85.8
7 0.204 0.190 0.169 0.139 0.139 0.155 0.059 0.030 6.9 17.2 31.9 31.7 24.0 71.2 85.0
8 0.210 0.200 0.181 0.143 0.152 0.169 0.063 0.033 4.8 13.8 31.9 27.5 19.5 69.8 84.3
9 0.220 0.220 0.189 0.156 0.162 0.188 0.067 0.034 0.0 14.1 29.1 26.4 14.5 69.6 84.3
10 0.230 0.230 0.209 0.168 0.172 0.204 0.069 0.035 0.0 9.1 27.0 25.3 11.3 70.0 84.7
11 0.230 0.230 0.219 0.170 0.181 0.218 0.070 0.035 0.0 4.8 26.1 21.1 5.2 69.4 84.7
Average 0.170 0.162 0.142 0.118 0.116 0.133 0.048 0.025 6.5 18.6 31.7 34.4 24.1 73.0 86.0
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6.1. Examination and Comparison Results. To evaluate the
OSAC and AT2NF controllers, analyses of the time his-
tories of structural excitations under four well-known
earthquakes are investigated. 'e results highlighted in
Tables 3–6 are considered for making more comparisons
between the proposed controllers and other control
strategies presented in the previous studies.'is is followed

by a comparison of the maximum displacements of stories
for the OSAC-controlled structure, the TMD-controlled
structure [48], the FLC-controlled structure [48], the
FOPID-controlled structure [68], and the OSMC-con-
trolled structure [63] obtained under the El Centro,
Hachinohe, Kobe, and Northridge earthquake excitations.
'e fuzzy logic controller of reference [48] is designed
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Table 7: A comparison between the performance of proposed controllers and uncontrolled structure in terms of maximum acceleration.

'e earthquake
Max responses in an absolute acceleration of stories

(m/s2) Percentage of reduction (%)

Unctrl. OSAC AT2NF OSAC AT2NF
El Centro 8.63 3.68 1.54 57 82
Hachinohe 8.35 3.55 1.62 57 81
Kobe 30.11 15.04 5.78 50 81
Northridge 19.57 9.86 4.07 50 79
Total Average 16.67 8.03 3.25 54 81
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based on two input variables, namely displacement and
velocity of the top floor of the structure. An input variable
contains five trapezoidal membership functions, while an
output variable contains seven triangular membership

functions as an active external control force. A fuzzy as-
sociative memory (FAM) maps FLC input variables onto
output variables. A genetic algorithm is used to optimize
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Figure 13: 'e performance of the proposed adaptive controllers in comparison with uncontrolled structure in terms of base shear. (a) El
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the membership function and weighting factors of the FAM
(see Tables 3 to 6).

'e results indicate that TMD as a passive device can
reduce the structure’s seismic responses, but its performance
depends on the seismic inputs. 'e results obtained for the
Northridge earthquake show the lowest reduction, while the
highest reduction is related to the El Centro earthquake. 'e
numerical results emphasize the remarkable capabilities of
ATMD as an active control in controlling the seismic re-
sponses of the four earthquakes with different frequency
content. 'e numerical results indicate the unique advan-
tages of OSAC over the previous controllers, including LQR,
FLC, OSMC, and FOPID, in terms of mitigating and con-
trolling the displacements of the structure. FLC, which
generally outperforms LQR, has reduced the maximum top
story displacement of the structure by about 0.051, 0.057,
0.37, and 0.17 m in the El Centro, Hachinohe, Kobe, and
Northridge earthquakes, respectively. 'e performance of

FOPID is close to the OSAC, but it can never provide the
maximum reduction of the displacement same as OSAC.'e
OSAC and AT2NF controllers perform acceptable perfor-
mance in near-fault and far-fault earthquakes. Nevertheless,
the superiority of the AT2NF controller compared to the
OSAC is considerable for the four earthquake excitations
because, in this control method, the dynamics of the
structural system are considered entirely uncertain, and this
controller can overcome the uncertain parameters and the
time-varying system and provide amore accurate estimate of
the condition of the structure. AT2NF controller reduces
about 87.3%, 86.4%, 80.6%, and 84.7% in the maximum
structural responses for the mentioned earthquake excita-
tions. In contrast, such values are 76.3%, 73.4%, 70.1%, and
69.4% for the OSAC under the El Centro, Hachinohe, Kobe,
and Northridge earthquakes. 'e root mean squared (RMS)
values of the structure’s top stories displacement under the
El Centro earthquake are approximately 3.01, 1.46, and
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Figure 15: Examining the performance of (a) the AT2NF controller and (b) OSAC in terms of maximum displacement.
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0.57 cm for the uncontrolled, OSAC, and AT2NF control-
lers, respectively. 'us, the OSAC and AT2NF controllers
result in a reduction of approximately 51% and 81%, re-
spectively, in comparison to the uncontrolled case. 'ese
reductions for the OSAC are about 60%, 62%, and 54%
during the Hachinohe, Northridge, and Kobe earthquakes,
respectively. Similarly, these reductions are approximately
86%, 82%, and 79% for the AT2NF controller.

It is concluded that the AT2NF controller outperforms
the OSAC to reduce the structure’s maximum and RMS
seismic reactions. It is noteworthy that the AT2NF con-
troller and OSAC generally demand the upper limit of the
permissible control force, which is typically 5% total weight
of the structure for the whole seismic excitations. As stated
in the introduction, the control algorithm plays a prom-
inent role in tuning the control force. Since the AT2NF
controller does not depend on the structural parameters
and has a remarkable capability in identification, it

managed to provide a more accurate estimation regarding
the structure condition and apply the control force to the
structure at the right time. All these benefits of the AT2NF
controller are the main reasons why the performance of this
controller in the maximum reductions is better than the
OSAC. In Figure 10, the averaged reductions in dis-
placement for all stories for different earthquake excita-
tions to demonstrate TMD's overall performance are
illustrated. 'is figure also displays the total average of the
reductions in displacements for all stories and all earth-
quake excitations for TMDs and various controllers. While
TMDs perform well in a narrow range of load disturbances,
they decrease performance during some earthquakes, such
as the Northridge and Kobe earthquakes. 'e control
system of ATMD considerably increases the effectiveness of
TMD for a wide range of earthquakes with varying in-
tensities and frequencies; however, the control algorithm
used plays a crucial role in the idea’s efficacy. 'e
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Figure 16: Examining the performance of (a) the AT2NF controller and (b) OSAC in terms of maximum drift.
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performance of the OSAC and AT2NF controllers is
considerably better than the rest in this case. Nevertheless,
the AT2NF controller offers the best performance for re-
ducing the maximum displacement of structural stories
compared with the OSAC and other control strategies.
Based on the total average reduction of the maximum
displacement for all stories shown in Figure 10, the total
average reduction for the AT2NF controller is 84.6%, which
is about 12.2% better than the OSAC. Also, the FOPID
controller, with a total average reduction of 49.5%, has the
best performance after the AT2NF controller and OSAC. In
contrast, this value for the FLC, OSMC, LQR, and passive
controllers are equal to 40.6%, 36.7%, 28.5%, and 17.7%,
respectively (see Figure 10).

According to Figure 11, the performance of the OSAC
and AT2NF controller, along with uncontrolled structure, is
evaluated in terms of the maximum acceleration of struc-
tural stories. In this case, the diagrams of the controller’s
performance are plotted based on the story level and
maximum acceleration of structural stories.

In accordance with the numerical results presented in
Table 7, the AT2NF controller has the remarkable capability
of controlling the maximum acceleration of the structural
stories. Notably, the AT2NF controller can, on a total av-
erage, reduce the maximum response by about 27% more
than the OSAC.

Figure 12 compares the time histories of top story
displacements and accelerations of the uncontrolled struc-
ture and the structure controlled by the ATMD control
system with the proposed OSAC and AT2NF controllers.
However, the AT2NF controller has a better performance in
terms of reduction of maximum displacement and accel-
eration of structure under various earthquake excitation
compared to the OSAC.

Figure 13 demonstrates the values of the base shear of the
structure under the El Centro, Hachinohe, Kobe, and
Northridge earthquakes. Accordingly, both proposed con-
trollers have been successful in base shear reduction.
However, since the value of base shear reduction for the
AT2NF controller and OSAC is 81% and 54% on total
average, the performance of AT2NF controller is consid-
erably better.

6.2. Uncertainty Analysis. To assess the robustness of the
online SAC controller and adaptive type-2 neural-fuzzy
controller, a perturbation in the structural system is defined
by − 20% uncertainty in the initial stiffness matrix of the
structure.

As shown in Figure 14, the maximum displacement
response of the top floor of the structure of the perturbed
model is compared with those for the nominal model for
both controllers. According to the obtained results, the
performance of both OSAC and AT2NF controllers is
suitable against stiffness changes and can provide robust
performance against stiffness uncertainties. Although, the
performance of the AT2NF controller in tackling the un-
certainties outperforms the OSAC, hence the deviation
percentage from the nominal model for the OSAC under

perturbation conditions is 10.3%, 11.7%, 14.8%, and 13.2%
based on the El Centro earthquake, Hachinohe earthquake,
Kobe earthquake, and Northridge earthquake, while the
AT2NF controller has delivered more stable results with the
deviation percentages of 5.3%, 6.3%, 8.2%, and 7.7% in such
seismic excitations.

Finally, a careful comparison is made between the
AT2NF controller and the OSAC in terms of maximum
displacement and maximum drift, as shown respectively in
Figures 15 and 16.

As regards Figures 15 and 16, the robustness and stability
of the proposed control methods under systematic parametric
variations, as shown in Table 2, are assessed when controlling
a seismically excited system equipped with ATMD. Ac-
cordingly, the control system’s performance is expected to
deteriorate when the parameters change. 'e obtained results
imply that, in contrast to OSAC, the AT2NF controller did
not lose its desirable performance under parametric changes.
For instance, the deviation amount relative to the nominal
model (AT2NF controller) in terms of maximum displace-
ment for Model 2 is about 11% on total average, while this
amount is about 23% for OSAC. According to the maximum
drift for Model 2, the average deviation compared to the
nominal model than all seismic records in AT2NF and OSAC
controllers is approximately 7.5% and 25%, respectively.
Hence, the OSAC seems to be more susceptible to parametric
variation and does not maintain the general performance
satisfactorily. Overall, it can be concluded that the AT2NF
controller significantly outperforms the OSAC in terms of
overcoming the parametric uncertainties.

7. Conclusion

'e present paper proposes two robust adaptive controllers,
namely, the AT2FN controller and the OSAC, to adjust the
control forces of the ATMD-equipped structure on the top
story of the structure. In the AT2NF controller, using the
MLP, the Jacobian of the system is extracted, and the
structural system model is estimated. Also, the controller
parameters employed to adjust the control force applied to
the ATMD were trained considering the extended Kalman
filter (EKF) and the error back-propagation algorithm. To
improve the system’s stability and robustness against seismic
vibrations, a PID controller was added to the adaptive type-2
neural-fuzzy controller. A careful comparison is made be-
tween the AT2NF controller and OSAC, which is based on
the implicit reference model adaptive control and does not
require complete identification of the controlled system
parameters for obtaining the control gains needed to track
the desired behavior in the control process. In this com-
parison, both controllers’ ability to reduce maximum dis-
placement, acceleration, base shear, and tackling the
parametric uncertainties under far-field and near-field
seismic excitations was examined. According to the obtained
results, the AT2NF controller has significantly decreased the
maximum structural responses under El Centro, Hachinohe,
Kobe, and Northridge earthquakes and provides better
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performance than the OSAC. 'e major conclusions that
were obtained in this paper are as follows:

(i) 'e AT2NF controller has been more successful
than OSAC inmaximum displacement reduction by
11.7%, 12.8%, 11%, and 13% on average under El
Centro, Hachinohe, Kobe, and Northridge earth-
quake excitations, respectively.

(ii) 'e AT2NF controller gives more acceleration re-
duction compared to OSAC by 27%.

(iii) Regarding the base shear, the performance of the
AT2NF controller is significantly better than OSAC,
and these controllers have reduced the base shear on
a total average of about 81% and 54%, respectively.

(iv) It was revealed that the AT2NF controller has more
robust than the OSAC against the parametric and
seismic uncertainties.

Future studies could fruitfully explore this issue further
by presenting better control methods. Further research
should involve the adaptive form of learning rate η, which is
now constant in the present study. Besides, to present a more
efficient controller even better than the proposed AT2NF
controller, we plan to consider the chaotic form of the
membership functions in the future. In addition, an adaptive
type-2 fuzzy PID controller can be added to the control
system as a compensator to increase stability and robustness
in the future. Furthermore, using an adaptive type-2 fuzzy
sliding mode controller can be very beneficial.
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