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ABSTRACT

Background : An abnormal variation in blood electrolytes, such as potassium, contributes to mortality 
in children admitted to intensive care units. Continuous and real‑time monitoring of 
potassium serum levels can prevent fatal arrhythmias, but this is not currently practical. 
The study aims to use machine learning to estimate blood potassium levels with accuracy 
in real time noninvasively.

Methods : Hospitalized patients in the Pediatric Department of the Rajaie Cardiology and Medical 
Research Center and Tehran Heart Center were recruited from December 2021 to June 
2022. The electrocardiographic (ECG) features of patients were evaluated. We defined 
16 features for each signal and extracted them automatically. The dimension reduction 
operation was performed with the assistance of the correlation matrix. Linear regression, 
polynomials, decision trees, random forests, and support vector machine algorithms 
have been used to find the relationship between characteristics and serum potassium 
levels. Finally, we used a scatter plot and mean square error (MSE) to display the results.

Results : Of 463  patients  (mean age: 8  ±  1  year; 56% boys) hospitalized, 428  patients met the 
inclusion criteria, with 35 patients having a high noise of ECG were excluded. After 
the dimension reduction step, 11 features were selected from each cardiac signal. The 
random forest regression algorithm showed the best performance with an MSE of 0.3.

Conclusion : The accurate estimation of serum potassium levels based on ECG signals is possible 
using machine learning algorithms. This can be potentially useful in predicting serum 
potassium levels in specific clinical scenarios.
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Figure 1: Display of features extracted from the cardiac signal
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INTRODUCTION

As one of the main electrolytes, potassium plays a vital 
role in cellular membrane potential variations, especially 
in the heart.[1] Normal cardiac function depends on 
regular sequential cardiac myocyte depolarization and 
repolarization. Any disruption in this circle may lead to 
cardiac conduction disorders and severe arrhythmia. 
The electrocardiograph (ECG) manifestations are usually 
related to potassium concentration, clinically measured 
as serum potassium levels.[2] Children with cardiac and 
kidney diseases are more susceptible to the effects of 
potassium changes.[3] Factors such as acute systemic 
illness, injection of potassium for electrolyte balance, 
and drugs and medicine intake can cause acute changes 
in potassium blood levels (K+).

It should be noted that 98% of K+  is intracellular 
(140 mEq/L), and 2% is extracellular  (3.8–5.0 
mEq/L).[4] Hypokalemia is the most common electrolyte 
imbalance in cardiac patients, delaying ventricular 
repolarization and downgrading conduction velocity, 
especially at the atrioventricular node. This can lead 
to various arrhythmias, such as sinus bradycardia and 
atrioventricular block.[5,6] Furthermore, hypokalemia 
can increase atrial and ventricular ectopic pulses and 
enhance digoxin’s toxic effect.[7]

Until today, K+ levels have been measured in blood serum 
or plasma. Blood sampling in children is challenging, 
especially when frequent sampling is required. In some 
intensive care unit conditions, repeated blood sampling 
may result in anemia, unwanted cyanosis, or apnea in 
children with congenital heart diseases. Furthermore, 
this method is invasive, expensive, and requires blood 
samples and some time to get the test results. On the 
other hand, K+ measurements with laboratory technical 
processes require clotting preparation, which could take 
some time. This can yield abnormal potassium levels due 
to time‑lapse.[8‑10]

In the face of these challenges, we recently designed a 
method for serum potassium concentration quantification 
from ECG analysis. Although a few studies have been done 
using machine learning algorithms,[11‑13] they must be 
refined to be more practical. In this study, we validated 
our K + estimator and tested it on a large group of patients. 
Potassium value extraction using a single lead would permit 
its use in wearable, wireless ECG patches and possibly 
in implantable loop recorders and cardiac implantable 
electronic devices (pacemakers and defibrillators).

METHODS

Study subjects

A total of 428 hospitalized patients in the Rajaie 
Cardiology and Medical Research Center and Tehran 

Heart Center Emergency Department were recruited 
from December 2021 to June 2022. The ECG features of 
patients were evaluated. The patient’s serum K+  level 
and ECG were taken within 2 h of admission. Patients 
having a history of heart failure, end‑stage renal 
disease (ESRD), bundle branch block, strain pattern in 
ECG, premature ventricular contraction, and digoxin use 
were excluded from the study. A specialist nurse took the 
ECGs. Patients whose ECGs had noise or artifacts for any 
reason were excluded from the study. Information about 
the eligible patients, including their basic demographic 
information, has been collected through interviews and 
questionnaires. The patients or their representatives 
provided informed consent to use their data for the 
study. The Institutional Ethical Committee approved the 
study (Ethical Code: IR.SBMU.MSP.REC.1398.982).

Feature extraction
We recorded each patient’s ECG over 2.8 s using a Philips 
IntelliSpace ECG (12 channels). The data were transferred 
from the device’s memory to an external memory to 
analyze the ECGs. We then developed a program in 
Python language on the Windows platform that can 
extract the amplitude and time values of P, Q, R, S, and 
T from lead II. To remove noise and unwanted values, 
we calculated the median QT intervals and excluded 
values that differed more than 20 ms from the median. 
In total, 16 features were computed using these points, 
as shown in Figure 1.

Preprocessing
We used z‑score standardization according to the 
following formula:

i
i

X - XZ =
S

•	 Xi is a data point (x1, x2 ... xn)
•	 X̄ is the sample mean
•	 S is the sample standard deviation (SD).

Dimensional reduction
In each data set, there is a possibility of having two 
features that are highly correlated. Two identical 



Figure 2: Cross-correlation matrix. One of the two variables with a correlation >0.7 is a candidate for elimination
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features naturally create additional redundancy. The 
cross‑correlation matrix was used for dimensionality 
reduction. For every two signal features with a 
correlation >0.7, one was removed [Figure  2].

Machine learning

Analysis foundation
The programming language used for signal processing, 
machine learning, and survival analysis was Python 
software (Version 3.10, released in October 2021). The 
integrated development environment used for analysis 
was RStudio (1.4.1106, RStudio Team [2020]. RStudio: 
Integrated Development for R. RStudio, PBC, Boston, 
MA URL http://www.rstudio.com/.), an integrated 
development environment for Visual Studio.

Regression machine learning algorithms
A regression model is one of the most common types 
of supervised learning in machine learning. We 
encompassed linear and nonlinear algorithms, including 
support vector regression (SVR), decision tree, random 
forest, and polynomial regression. We used Pearson’s 
correlation coefficient to evaluate the linear relationship 
between the ECG characteristics and the serum potassium 
levels. We assessed the nonlinear relationship using 
decision trees and random forest algorithms.

Linear regression

In the simplest definition, linear regression tries to match 
many data points with a straight line in two‑dimensional 
space or a plane in three‑dimensional space. This type of 
regression examines the linearity between observations 
and targets and tries to show the relationship between 
them as a linear equation or a weighted sum function. 
If a data set has n features x, the target y can be defined 
as follows:

y =w0+w1x1+w2x2+...+wnxn=wTx

The linear regression model, specifically the values of w, 
is adjusted and calculated based on the training data. 
The weighted values are trained to minimize the mean 
square error (MSE) (the mean square difference between 
reality and prediction). If we have m training samples, 
the cost function J (w) can be expressed according to the 
following formula:

( ) ( )( )
1

ˆ
m

=
∑ i i

i
J w y x y

m
21 1= - 

2

which ŷ(xi) = wTxi is the prediction.

The value of w should be optimized so that the value 
of the cost function is minimized. For this, the gradient 
reduction method is used. The first‑order derivative is 
obtained as follows:

( )
1

ˆ
m

=

∆ ∑ i i i

i
w = (y x - y )x

m
1 1

2

The weight vector, w, can be updated by defining the 
learning rate, η, and the gradient defined:

( )
1

ˆ
m

=

η ∑1 1 : = +  ( - )
2

i i i

i
w w y x y x

m

The weights of this algorithm are updated and trained 
several times depending on the value of η. The prediction of 
a new value can be calculated using the following formula:

' T 'y = w x

Polynomial regression

In polynomial regression, the relationship between the 
independent variable x and the dependent variable y is 
modeled as nth‑degree polynomial in x.
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Regression tree algorithm

In this model, the algorithm works by recursively 
partitioning the data into subsets based on the predictor 
variables and then fitting a simple model for each subset. 
This procedure continues until a stopping criterion is 
met, such as a maximum depth or a minimum number 
of data points in a subset.

Algorithms such as 3, C4.5, Classification and Regression 
Trees  (CART), and Chi‑square automatic interaction 
detection have been introduced to form a tree with a 
suitable structure. Currently, the CART algorithm is 
considered the most important decision tree algorithm. In 
this algorithm, a tree is built based on binary division. Each 
node splits into left and right branches. In each section, it 
greedily searches for the most important combination of 
one feature and its value. All possible combinations are 
evaluated using a mathematical function. However, in this 
algorithm, using the best‑selected feature and its value 
as the dividing point, the data set is divided as follows:
•	 Samples with features equal to or greater than the 

value of the dividing point of the right branch
•	 Remaining examples from the left branch.

The process of regression using the decision tree is similar 
to its classification mode, but due to its continuous 
nature, it has two differences:  (1) the correctness of 
the decision point is measured by the MSE of the two 
branches. The mean squared error of the branch can be 
considered the variance of all target values. The smaller 
the MSE, the better the division. (2) The average value of 
the target at the end node is converted into a leaf value 
instead of the majority label.

The stopping criterion can be the number of leaf 
divisions, the minimum MSE, or a combination of both.

Random forest
One of the weaknesses of the decision tree method is high 
variance. This weakness can be reduced to a large extent 
by combining decision trees. Random forest is a group 
learning method that involves combining several trees. 
Each tree is trained, and several random features are 
sampled at each tree node. The average of the regression 
results from all the decision trees is assigned to the final 
decision. 

Estimation with support vector regression

The SVR is part of the support vector family. In SVR, the 
goal is to find a super plane with slope w and bias b so 
that two super planes with specifications wx + b = ε and 
wx + b = −ε cover most of the desired data.

Theoretically, the ideal superplane is as flat as possible. 
According to the figure, most data are located in the ε 
bands of the desired superplane. The optimal extraction 
of w and b depends on the implementation of the 
following two conditions: 2–6 model validation:

1.	 Minimize ‖w‖

2.	 ( ) ≤ εi iy - wx +b

In this study, we used 20% of the population to evaluate 
our model performance, while 80% was used to train the 
model. The estimated potassium level was calculated 
from the obtained ECG data using the corresponding 
patient‑specific potassium prediction model developed 
during the training phase. To assess the accuracy, 
we calculated the mean absolute error and the mean 
absolute value of the difference between the estimated 
and measured potassium levels for each patient.

Variable importance

We used the random forest algorithm capability to value 
the variables.[14]

RESULTS

Among the 463  patients admitted to the hospitals in 
1 year, 35 patients were excluded from the study due to 
high noise and distortion of the ECG. Among the study 
population, 56% were boys and were aged between 1 
and 14 years (mean ± SD: 5±3).

The potassium chart of these patients is shown in 
Figure 3. The results of the cross‑correlation matrix of 
data are shown in Figure 2.

Based on the information in Figure  2, we remove 
one of the two parameters that correlate more 
than 0.7. The features used to train the regression 
methods (algorithms) were PR, Ps, PT, Twidth, QS, QR, 
QT, RS, RT, ST, and RtoT. Table 1 shows the efficiency 
of each regression algorithm based on the MSE. As 
indicated in the table, the polynomial method has the 
lowest accuracy, and the random forest method has the 
highest measurement accuracy.

Considering that most of our studied patients have 
a potassium level between 4 and 4.5, we used the 
scatter diagram to get better feedback than regression 
methods. Figure 4 shows the scatter diagram for different 
approaches.

In Figure 5, the importance of each feature by the random 
forest algorithm is shown in percentage terms. Figure 6 
shows how the decision tree algorithm yields decisions.

DISCUSSION

Acute electrolyte disturbance, especially hyperkalemia in 
children, is life‑threatening and requires prompt attention. 
In addition to correctly determining the K+  level, the 
on‑time result is critical because many children with 
acute illness need immediate medical attention. Blood 
sampling is a well‑known, reliable method for evaluating 
this electrolyte. Evaluation of the K+ level noninvasively 



Figure 3: Histogram of blood potassium serum level
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has always been desirable, and attempts have been made to 
determine the K+ level with high accuracy and sensitivity.

The effect of potassium on the ECG cardiac signal has been 
known for many years.[15‑17] So far, several studies, generally 
based on T‑wave morphology, have been conducted to 
determine serum potassium levels.[18‑22] ECG markers, 
defined as a specific time interval or range of neural 
signals, are noise‑prone.[23] To solve this problem, many 
studies have investigated T‑wave morphology over a long 
period.[24‑26] Significant challenges with these studies have 

Table 1: Efficiency of regression methods based 
on mean squared error
Algorithm Train MSE Test MSE
Linear 0.31 0.62
Polynomial 0.2 1.5
Decision tree 0.29 0.34
Random forest 0.26 0.3
SVR 0.2 0.45

MSE: Mean square error, SVR: Support vector regression

Figure 4: Relation between predicted potassium serum level by machine learning model and measured potassium serum level via 
blood samples. Scatter diagram of (a) Linear regression, (b) Polynomial regression, (c) Support vector regression, (d) Regression tree, 
(e) Random forest

dc

ba

e



Figure 5: Features’ importance by the random forest algorithm. 
The influence of a variable is shown as a percentage

Figure 6: How to allocate blood serum potassium level based on the input characteristics in the decision tree algorithm
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been the definition of morphologies based on complex 
mathematical rules, the long time to calculate optimal 
parameters (several hours), and the low sample size.

The purpose of this study is to design and validate 
an online and noninvasive potassium level extraction 

technique based on a machine learning algorithm. 
We allocated 2.8 s to determine the serum level of 
potassium. This time interval ensures that several 
cardiac cycles are considered. Another strength of this 
study is the application of filtering to remove the effect 
of unwanted distortion on ECG parameters. Therefore, if 
a part of the signal is distorted, the result of evaluating 
the potassium level is still reliable. Another advantage 
of this method is that only one lead is considered. This 
helps to commercialize the mentioned method and 
assess the potassium level remotely. Considering the 
large sample size, it can be assumed that all T‑wave 
morphologies were covered. We are developing our 
algorithm in such a way that we can analyze different 
types of ECG signals.

So far, attempts have been made to measure blood 
potassium levels using cardiac signals. Aslam et  al. 
studied 74 ESRD patients in 2002.[27] In their study, they 
tried to provide a linear relationship between T‑wave 
amplitude or T‑wave to R‑wave ratio and the serum 
potassium level in a patient’s blood. Similarly, Szerlip 
et al.[28] could not provide a relationship between the 
T‑wave to R‑wave ratio and the serum potassium level 
in individuals’ blood.
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In 2020, with the introduction of two parameters, 
T‑right slope and T‑amp, a group of researchers tried 
to discover the potassium serum level with ECG.[29] By 
examining two parameters  (T‑amp and T‑right slope) 
on five lead waveforms (V3, V4, V5, V6, and II), they 
found that T‑wave‑based features were not correlated 
with serum potassium level. Yasin et al. investigated the 
potassium serum level and ECG of 21 dialysis patients.[30] 
The average absolute error between estimated and blood 
potassium was 0.38–0.32 mEq/L. The sample size of our 
study and the wide range of serum potassium levels are 
the strengths of our work compared to theirs.

Another study tried to quantify the amount of potassium 
using the cardiac signal and the serum potassium level 
in the blood of 12 patients.[22] They used the following 
variables for the regression operator in their work: 
the slope of the T‑wave downstroke  (T right slope), 
the amplitude of the T‑wave (T‑amplitude), the center 
of gravity  (COG) of the T‑wave  (T COG), the ratio of 
the amplitude of the T‑wave to the amplitude of the 
R‑wave (T/R amplitude), and the COG of the last 25% of 
the area under the T‑wave curve (T4 COG). They have 
recommended using the cardiac signal as a noninvasive 
method. However, due to the small sample size of their 
study, more research is required. In our study, we tried 
to overcome the weaknesses of previous studies by 
considering a large sample size with a wide range of 
serum potassium levels and more cardiac signal features 
and applying machine learning methods.

The sample size of this study has made it possible to examine 
all the clinical factors of the cardiac signal. Based on the 
results in Figures 5 and 6, the PT parameter is considered 
the most important influencing factor in predicting serum 
potassium levels. This means the combination of PQ, QRS, 
and ST intervals is influential. However, the second most 
important parameter in determining serum potassium 
levels is the difference in R‑ and T‑wave amplitudes. This 
finding is similar to studies that have considered the 
slope of the T‑wave as an important parameter in the 
determination of serum potassium.

As shown in Figure  4, the linear and polynomial 
methods used in most studies do not have adequate 
predictive power. Although the polynomial method has 
high accuracy in the training phase, it has the lowest 
accuracy in the test phase [Table 1]. The phenomenon of 
overfitting causes this. The linear method also predicts 
all values in the 4–4.5 mmol range. Although the decision 
tree method works well for wide potassium levels, it is 
unsuitable for low potassium (under 4 mmol). Prediction 
of potassium level through the SVR method only works 
somewhat well in medium values. However, the random 
forest method has solved the problem of the decision 
tree algorithm to a great extent and has improved the 
detection of potassium in low amounts. Finally, it can 

be said that in this study, the random forest algorithm 
is more efficient than other algorithms.

Besides potassium, other factors such as other electrolytes 
and the location of the leads affect the cardiac signal. 
Despite all the sources influencing the cardiac signal, we 
calculated the serum potassium level with an average 
error of 0.3 in this study. Perhaps, in future studies, the 
effect of other electrolytes on ECG can be processed, and 
by considering their effects on the cardiac signal, an 
increase in the accuracy of predicting blood potassium 
can be attained.

CONCLUSIONS

We defined a comprehensive noninvasive method for 
evaluating K+ level in pediatrics based on ECG signal. 
This study may evolve a noninvasive portable method 
for determining K+ level by monitoring ECG signal results 
and enabling quick measurement of K+ level changes in 
response to systemic conditions in acutely ill children 
and adults.
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