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In human patients and animal models of ulcerative colitis (UC), upregulation of

the mitochondrial translocator protein (TSPO) in the colon is consistent with

inflammation. Although themolecular function for TSPO remains unclear, it has

been investigated as a therapeutic target for ameliorating UC pathology. In this

study, we examined the susceptibility of Tspo gene-deleted (Tspo−/−) mice to

insults as provided by the dextran sodium sulfate (DSS)-induced acute UC

model. Our results show that UC clinical signs and pathology were severely

exacerbated in Tspo−/− mice compared to control Tspofl/fl cohorts.

Histopathology showed extensive inflammation and epithelial loss in Tspo−/−

mice that caused an aggravated disease. Colonic gene expression in UC

uncovered an etiology linked to precipitous loss of epithelial integrity and

disproportionate mast cell activation assessed by tryptase levels in Tspo−/−

colons. Evaluation of baseline homeostatic shifts in Tspo−/− colons revealed

gene expression changes noted in elevated epithelial Cdx2, mast cell Cd36 and

Mcp6, with general indicators of lower proliferation capacity and elevated

mitochondrial fatty acid oxidation. These findings demonstrate that intact

physiological TSPO function serves to limit inflammation in acute UC, and

provide a systemic basis for investigating TSPO-targeting mechanistic

therapeutics.
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1 Introduction

Overexpression of the mitochondrial translocator protein (TSPO) in the colon is a

pathological feature observed in human ulcerative colitis (UC) (Ostuni et al., 2010), a

form of inflammatory bowel disease (IBD). Consistent with human pathology, rodent

models of UC have confirmed that TSPO upregulation in the colon is characteristic of UC
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(Ostuni et al., 2010). This finding is supported by studies

investigating TSPO-binding drugs as radioligands for positron

emission tomography (PET)-based diagnostic imaging; it has

been concluded that TSPO detection using these probes provides

a non-invasive method to evaluate the level and localization of

colon inflammation (Bernards et al., 2015; Kurtys et al., 2017).

High expression of TSPO in chronic UC has also been linked to

an increased risk of colorectal cancers (Katz et al., 1988, 1990).

Association between TSPO and inflammation is not only

restricted to observations made in the colon; TSPO

upregulation has been reported in conditions that induce

neuroinflammation (Airas et al., 2015), cardiovascular

inflammation (Fujimura et al., 2008), and rheumatoid arthritis

(Narayan et al., 2018). Indicative of an active function and/or

etiology for TSPO involvement in these pathologies, preclinical

models have demonstrated that a variety of TSPO-binding drugs

are efficacious as therapeutics in ameliorating inflammation.

Protective effects of TSPO-targeting therapies have been

reported for disorders such as multiple sclerosis (Daugherty

et al., 2013), brain injury after intracerebral hemorrhage (Li

et al., 2017), diabetic neuropathy (Giatti et al., 2009),

autoimmune arthritis (Waterfield et al., 1999), and

Alzheimer’s disease (Barron et al., 2013). As the etiology and

pathophysiology of UC remains to be fully defined, TSPO has

been considered as a therapeutic target and investigated for

reducing both stress and colon inflammation.

Of direct relevance to therapeutic efficacy in UC, the TSPO-

binding drug ONO-2952 (1-[(1S)-1-(4-chloro-2-

methoxyphenyl)-5-fluoro-1,9-dihydrospiro [β-carboline-4,1’-
cycloprop ane]-2(3H)-yl]ethenone) has been under

development as a treatment for diarrhea-predominant irritable

bowel syndrome (IBS-D) (Ono Pharma United States Inc.;

NCT01844180, ClinicalTrials.gov). IBS-D patients have

significantly higher levels of pro-inflammatory cytokines

indicative of gut inflammation (Rana et al., 2012). ONO-2952

showed high selectivity in binding to TSPO, and could promote

anti-stress effects by inducing a variety of protective responses

(Mitsui, 2012; Mitsui et al., 2015). In preclinical rat models,

ONO-2952 attenuated stress-induced defecation and rectal

hyperalgesia (Kawahara et al., 2018). In the Phase 2 trial,

ONO-2952 showed evidence for clinical efficacy with

promising trends supporting its consideration as a potential

treatment (Whitehead et al., 2017). Similarly, flunitrazepam,

albeit a non-selective TSPO-binding drug, could protect the

intestinal mucosa against DSS-induced damage (Ostuni et al.,

2010). However, actions of other TSPO-binding drugs have not

been consistent; PK11195 and Ro5-4864 were observed to

enhance initial severity of colonic erosion, but accelerate

recovery (Ostuni et al., 2010). Because the molecular function

of TSPO remains to be elucidated (Selvaraj and Stocco, 2015;

Selvaraj and Tu, 2016), TSPO-binding drugs cannot be

confirmed as agonists or antagonists based on current

understanding of target effects, potentially accounting for

these differences in TSPO-targeting therapeutic efficacy.

First identified as a “receptor” showing high affinity binding

to diazepam and its derivative 4’chlorodiazepam (Braestrup

and Squires, 1977), the protein sequence of TSPO is highly

conserved across microbes, plants and animals (Selvaraj and

Stocco, 2015). Although pharmacology linked to TSPO-binding

has indicated a variety of potential functions (Gavish et al.,

1999), development and utilization of TSPO gene-deleted

(Tspo−/−) models have ruled out its involvement in key

purported pharmacological functions such as induction of de

novo steroidogenesis (Tu et al., 2014a; Banati et al., 2014;

Morohaku et al., 2014b; Wang et al., 2016), mitochondrial

permeability transition (Šileikyte et al., 2014), and heme

biosynthesis (Zhao et al., 2016). Phenotypic observations in

Tspo−/− models point to TSPO’s functional involvement in

lipid/energy metabolism (Leduc et al., 2011; Thompson

et al., 2013; Tu et al., 2016; Liu et al., 2017; Kim et al., 2019;

Koganti and Selvaraj, 2020). While such metabolic modulation

might be relevant to certain TSPO over-expressing colon

cancers (Katz et al., 1990; Maaser et al., 2005; Königsrainer

et al., 2007), the precise mechanism of TSPO function in this

context remains to be defined (Selvaraj and Stocco, 2015;

Betlazar et al., 2020).

Given the considerable relevance of TSPO in the context of

etiology, pathogenesis and therapeutic interventions for UC, we

investigated Tspo−/− mice as a loss-of-function preclinical model

to study the relevance of TSPO in homeostasis and TSPO-

mediated mechanisms in UC. Such genetic studies provide an

opportunity to delineate gene function and distinguish this from

the non-specific actions prominently seen with different TSPO-

binding drugs (Bordet et al., 2007; Li et al., 2008; Luc Do Rego

et al., 2015; Tu et al., 2015; Singh et al., 2020). Our results identify

a clear protective function for TSPO expression in colitis,

deficiency of which results in exacerbated colonic

inflammatory pathology.

2 Materials and methods

2.1 Tspo gene-deleted mice

Generation and validation of Tspo−/− mice has been

previously described (Morohaku et al., 2014a; Tu et al., 2014b;

Zhao et al., 2016). Breeding colonies for Tspofl/fl and Tspo−/− mice

were propagated in the C57BL/6 background. Both male and

female mice (Mus musculus) (8–10 weeks of age) were used in

this study. Animals were maintained in accordance with the

National Research Council Guide for the Care and Use of

Laboratory Animals. All experiments reported in this

manuscript were approved by The Institutional Animal Care

and Use Committee of Cornell University.
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2.2 Translocator protein detection by
Western blots

Detection of TSPO in Western blots was performed as

previously described (Morohaku et al., 2013). In brief, colon

samples were homogenized using a bead beater (Biospec

Products), boiled in Laemmli sample buffer (Laemmli, 1970),

and total protein was quantified using a bicinchoninic acid

(BCA) colorimetric assay. Twenty micrograms of protein was

then separated by SDS-PAGE, transferred to PVDF membranes

and immunoblotted for the presence of TSPO. In brief,

membranes were blocked using 5% non-fat dry milk in tris

buffered saline containing 0.2% Tween 20 (TBST) and

incubated with rabbit anti-TSPO monoclonal antibody (1:

1,000; Abcam, EPR5384) and control mouse anti-actin affinity

purified polyclonal antibody (1:1,000; LI-COR). Detection was

performed by incubation with IRDye® 800 conjugated goat anti-

rabbit IgG and IRDye® 700 conjugated goat anti-mouse IgG

secondary antibodies followed by imaging using a laser

fluorescence scanner (LI-COR) for simultaneous detection of

the two emission wavelengths in the same blot.

2.3 Experimental acute ulcerative colitis

Induction of acute UC was performed using a dextran

sodium sulfate (DSS) model (Okayasu et al., 1990). This

model involved the oral administration of DSS (36–50 kDa,

MP Biomedicals) that compromises mucosal barrier function

in treated mice. For the experimental treatment groups, Tspofl/fl

and Tspo−/− mice received DSS dissolved in autoclaved drinking

water to a 2.5% solution (w/v) in negative pressure bottles ad

libitum for 7 days. For the control groups, Tspofl/fl and Tspo−/−

mice continued to receive regular drinking water for the same

time period. For both the treatment and control groups of both

genotypes, phenotypic recordings were performed daily. This

included body weight measurements, stool consistency

recordings, and scoring the phenotypic severity. Criteria used

for stool scoring system were: 0—Normal appearance,

1—Observation of soft feces or pink color in anus, 2—Mild

rectal bleeding, or blood observed only in feces, 3—Moderate

rectal bleeding, 4—Severe rectal bleeding. Criteria used for

posture scoring system were: 0—Normal appearance, 1—Slight

hunched posturing, 2—Moderate hunching, reduced mobility,

3—Severe hunching, very little mobility. Criteria used for scoring

phenotypic severity were: 1—observation of soft feces or pink

color in anus, indicative of irritation, 2—blood observed in feces,

or mild rectal bleeding, 3—moderate rectal bleeding, 4—severe

rectal bleeding. The phenotypic clinical scoring data was utilized

to generate an average stool score and average posturing score for

each group. For sample collection, mice were euthanized for

tissue collection for histopathology at the end of the 7-day

treatment period; separate experimental runs were performed

for collections at 0 (baseline, prior to any treatment), 4- and 7-

day treatment periods for gene expression analyses.

2.4 Gross pathology and tissue collection

At the end of each study, colons (the complete colorectal region)

were collected after euthanasia and flushed with ice-cold phosphate-

buffered saline from proximal to distal to remove fecal matter. Their

length was measured using digital calipers. Colons were then

dissected along the long axis to open up the lumen for gross

pathological examination of the mucosa (hyperemia, petechial

hemorrhage, punctate to broad-based ulcers of various sizes).

Tissues were then either fixed for histopathology, or snap frozen

in liquid nitrogen and held at -80°C before further processing for

gene expression assays.

2.5 Histopathology

Full lengths of the colons were prepared for fixation by

rolling from distal to proximal as a “Swiss roll” with the

mucosa facing inside, a previously described method to

examine the full length of tissue in sections (Whittem et al.,

2010). The rolled tissue was fixed in place with 4% formaldehyde

in phosphate buffered saline for 48 h. Tissues were then

transferred to 70% ethanol for 24 h and taken through steps

of dehydration and embedded in paraffin. Sections (4 µm thick)

were cut using a microtome, and hematoxylin and eosin staining

was performed to visualize tissue morphology using standard

histological methods, also previously described (Morohaku et al.,

2013; 2014a). Slides were studied under a light microscope

(DM1000-LED, Leica), and images were acquired using a HD

camera (ICC50HD, Leica); full slides were also scanned

at ×40 magnification using the Aperio CS2 Scanscope (Leica).

Image analysis was performed to quantify proximal distance of

ulcerated tissue showing epithelial loss. In brief, lengthwise

measurements of colonic epithelial pathology (from distal to

proximal) and total colon length were made from scanned

histopathology images after calibration using Adobe

Illustrator. These values were used to generate a ratio of

affected to total colon length for comparison between the groups.

2.6 Translocator protein
immunolocalization

After deparaffinization and rehydration (as above), sections

were subjected to antigen retrieval using 0.01 M citrate buffer.

Non-specific binding was blocked using 5% normal goat serum,

then samples were incubated with anti-TSPO antibody (1:200;

Abcam, EPR5384) in 1% BSA in PBS overnight at 4°C. After

incubation, slides were washed in PBS and incubated with
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pHRP-conjugated anti-rabbit secondary antibody, and

processed using the DAB chemistry to visualize positive

staining as previously described (Morohaku et al., 2013). To

highlight morphology, slides were counterstained for a weak

hematoxylin background. Images were acquired as described

for histopathology.

2.7 Gene expression assays

Total RNA was extracted from the colon (distal 1.5 cm)

from Tspo−/− and Tspofl/fl treatments and controls using

TRIzolTM Reagent (Life Technologies), after tissue disruption

(Bead beater, Biospec). Extracted total RNA was further

purified using lithium chloride (Viennois et al., 2013), as we

confirmed that DSS inhibited reverse transcription for qPCR

amplification of cDNA from tissues as previously described

(Kerr et al., 2012). In brief, 0.1 volume of 8M LiCl was added to

total RNA, and incubated at −20°C for 2 h. After incubation,

samples were immediately centrifuged for 30 min to pellet total

RNA at 14,000 x g at 4°C. After discarding the supernatant, the

pellet was washed with 70% ethanol and air dried before

resuspension in RNAse-free water. RNA concentration was

quantified using a spectrophotometer (NanoPhotometer®
Pearl, Implen). Reverse transcription of 1 µg of total RNA

was carried out using MultiscribeTM reverse transcriptase

(Thermo Fischer Scientific). Validated TaqMan™ gene

expression assays (Applied Biosystems) and intron-spanning

primers for SYBR® green detection were used for quantitative

PCR to estimate levels of Krt18, Cd34, Mcp6, Cd11c, F4/80,

Mcp1, Tnfα, Lgr5, Ascl2, Cdh1, Ndrg2, cMyc, Ccnd1, Cdx2,

Socs3, Cpt1a, Acadm, Acadl, Hadha, Cd36, FpnI, Hmox, and

Nrf2. All expressions were normalized to an internal control

gene Gapdh or Tbp. Primer probe sets and sequences are

provided in Supplementary Table S1. Relative fold-change

between Tspo−/− and Tspofl/fl mice was calculated using the

2−ΔΔCt method (Livak and Schmittgen, 2001).

2.8 Statistics

Means for the posturing and stool scores were compared

between genotypes using a Student’s t-test. Colon length and

daily body weight changes were compared using repeated

measures ANOVA and individual timepoints were compared

using Student’s two-tailed t-tests. Histopathological colon length

was analyzed by first calculating a ratio of affected to normal

colonic tissue for each mouse after 7 days of DSS treatment, and

comparing the ratios from Tspo−/− and Tspofl/fl groups using a

two-proportions z-test. Gene expression differences between

Tspo−/− and Tspofl/fl groups at the different timepoints were

compared using Student’s two-tailed t-tests. For all analyses

p < 0.05 was considered significant.

3 Results

3.1 Exacerbated ulcerative colitis clinical
signs and gross pathology in Tspo−/− mice

Deletion of TSPO was confirmed in Tspo−/− mice used in

these studies using both Western blots and immunolocalization

in the colon (Figure 1); expression of TSPO was observed in the

epithelium, with noted absence in submucosal and muscular

layers. In Tspo−/− mice, clinical signs and pathology after DSS-

induced UC were significantly more severe compared to Tspofl/fl

mice. Tspo−/−mice with UC exhibited significantly worse external

clinical signs (phenotypic scores: posture and stool) compared to

Tspofl/fl mice (Figures 2A,B). There was a significantly higher

degree of rectal bleeding and diarrhea, decreased movement, and

hunched posturing observed in Tspo−/− mice. Body weight loss, a

well-studied indicator of disease severity in DSS-induced UC,

was significantly higher from days 4 through 7 in Tspo−/− mice

compared to Tspofl/fl mice (Figure 2C). On postmortem gross

pathology, Tspo−/− mice exhibited subjectively more petechiae,

ecchymoses, and ulceration of the colonic mucosa compared to

Tspofl/flmice (Figure 2D). Tspo−/−mice also exhibited significantly

greater colonic shortening, indicative of the severity of colitis,

compared to Tspofl/fl mice (Figure 2E). There was no significant

difference in colon lengths between male and female mice within

their respective cohorts.

3.2 Colon histopathology indicated
exacerbated ulcerative colitis in Tspo−/−

mice

Histopathological lesions were consistently more severe after

DSS-induced UC in Tspo−/− mice compared to Tspofl/fl mice.

Extremely severe colonic pathologies were noted with UC in

Tspo−/− mice compared to Tspofl/fl mice (Figure 3A). These

included diffuse edema, immune infiltrations, erosion and

ulceration of the epithelium, and loss of crypt and goblet cells;

progression of ulceration occurred continuously from distal to

proximal and correlated with severity of disease. In evaluating the

proximal extent of epithelial damage as an indicator of disease

severity between the two genotypes, lengthwise measurements of

colonic epithelial damage (from distal to proximal) indicated a

substantial increase in ulcerative pathology in Tspo−/− mice

compared to Tspofl/fl mice (Figure 3B). Based on the ratio of

affected:total colon length as an indicator of disease severity,

Tspo−/− mice demonstrated a much more proximal extent of

epithelial damage (ratio = 0.44), while colonic pathology was

limited to the distal colon in Tspofl/fl mice (ratio = 0.17). Based on

evaluation of Krt18 gene expression as a quantitative indicator of

colonic epithelial cells, Tspo−/− mice showed significantly more

severe epithelial loss (4-fold) following DSS-induced UC

treatment compared to Tspofl/fl mice (Figure 3C). This finding
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indicated a substantial structural loss of epithelial barrier

integrity in Tspo−/− mice compared to Tspofl/fl mice, potentially

increasing microbial infiltration and exacerbating associated

pathologies.

3.3 Differences in inflammatory gene
expression of Tspo−/− colons

The involvement of immune cells in DSS-induced colitis

between Tspo−/− and Tspofl/fl mice was evaluated via a variety of

markers. At baseline, expression of Cd34, a marker of mature

mast cells, was significantly elevated in Tspo−/− mice compared to

Tspofl/fl mice, perhaps indicating a larger colonic mast cell

population (Figure 4A). However, Cd34 levels were not

different between Tspo−/− and Tspofl/fl colons during the course

of DSS-induced UC. Mast cell tryptase (Mcp6) levels were

elevated at both baseline and after DSS-induced colitis in

Tspo−/− mice compared to Tspofl/fl mice (Figure 4B), indicative

of increased activation of mast cells in Tspo−/− colons. Expression

of Cd11c, a marker of macrophages and dendritic cells, was

increased at day-4 of UC colitis in Tspo−/− compared to Tspofl/fl

colons (Figure 4C). This was also indicative of differences in

Cd11c expression across different UC timepoints within each

genotype, in that Tspo−/− colons had an earlier peak in Cd11c

expression, with significant up-regulation at day-4 compared to

day-0 (p = 0.0132). In contrast, Tspofl/fl colons showed no

significant difference between baseline and day-4 levels of

Cd11c (p = 0.0706). Expression of F4/80, the macrophage

surface adhesion protein, as well as Mcp1, indicative of

macrophage activation, and Tnfα, a pro-inflammatory

cytokine, progressively increased throughout DSS-induced

colitis, with no significant difference in levels between Tspo−/−

and Tspofl/fl colons (Figures 4D–F).

3.4 Baseline shifts in gene expression in
Tspo−/− mice

Additional genes were examined to evaluate baseline

differences in expression between Tspo−/− and Tspofl/fl colons.

There was no significant difference in expression of Leucine-rich

repeat-containing G-protein coupled receptor 5 (Lgr5, a receptor

seen in epithelial stem cells) and Achaete-scute-like 2 (Ascl2, a

transcription factor that manages stem cell fate), suggesting that

undifferentiated intestinal stem cell populations are similar

between Tspo−/− and Tspofl/fl colons (Figure 5A). Expression of

Cadherin 1 (Cdh1, an epithelial tight junctional protein) and

N-myc downstream regulated gene 2 (Ndrg2, a regulator of gut

epithelial permeability) also remained unchanged between

Tspo−/− and Tspofl/fl colons, suggesting no obvious

perturbations to the setup of epithelial integrity (Figure 5B).

Of the proliferation markers, expression of cellular

myelocytomatosis (cMyc, a cell proliferation indicator) was

not different between Tspo−/− and Tspofl/fl colons; however,

expression of Cyclin D1 (Ccnd1, relevant to cell cycle

progression) was significantly decreased in Tspo−/− colons.

This suggested that the rate of intestinal epithelial turnover

could be modestly decreased in Tspo−/− colons (Figure 5C).

Expression of Caudal-type homeobox 2 (Cdx2, an epithelium-

restricted transcription factor in the intestine), known to be

responsible for intestinal identity and regulating immune cell

FIGURE 1
TSPO expression in Tspofl/fl and Tspo−/− colons. (A) Western blot showing specific recognition of TSPO in Tspofl/fl but not in Tspo−/− colons;
adrenals that show high expression of TSPO are presented for comparison. In the same lanes, β-actin detection was used to indicate protein loading
(control). (B–C) Immunofluorescence and immunohistochemistry images showing TSPO expression in Tspofl/fl but not in Tspo−/− colons. Expression
of TSPO can be observed localized to the mucosal layer but not in the submucosal or muscular layers of the colon wall. (Scale bar 30 µm).
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infiltration, was significantly up-regulated in Tspo−/− compared to

Tspofl/fl colons (Figure 4D). Expression of Suppressor of cytokine

signaling 3 (Socs3, a regulator of cytokine signaling and

inflammation), albeit not different between Tspo−/− and

Tspofl/fl colons, showed a trend of increased baseline

expression in Tspo−/− colons (Figure 5D).

In examining genes associated with an intestinal oxidative

stress response: Cd36 (involved in the uptake of oxidized lipids),

Ferroportin 1 (Fpn1, regulates iron homeostasis and the redox

state), Heme oxygenase 1 (Hmox1, catalyzes degradation of heme

and a sensitive indicator of oxidative stress), and Nuclear factor

erythroid 2-related factor 2 (Nrf2, a transcriptional regulator of

antioxidant and cellular protective genes) were not significantly

affected in baseline Tspo−/− compared to Tspofl/fl colons

(Figure 6A). Expression of genes associated with

mitochondrial fatty acid oxidation indicated that Acyl-CoA

dehydrogenase medium chain (Acadm, catalyzes the initial

step in the mitochondrial β-oxidation of medium chain fatty

acids), was significantly increased in Tspo−/− compared to Tspofl/fl

colons (Figure 6B). Other genes involved in this pathway such as

Carnitine palmitoyl transferase (Cpt1a, essential for transport of

long-chain fatty acids into the mitochondria for fatty acid

oxidation), Acyl-CoA dehydrogenase long-chain (Acadl,

catalyzes the initial step in the mitochondrial β-oxidation of

long chain fatty acids) and Hydroxyacyl-CoA dehydrogenase

subunit α (Hadha, catalyzes the last three steps in the

mitochondrial β-oxidation of the long-chain fatty acids) were

not significantly different between Tspo−/− and Tspofl/fl colons

(Figure 6B).

4 Discussion

In using Tspo−/− mice to investigate the mechanism and test

the foundational value of TSPO-targeting pharmacological

agents in UC, we uncover a functional link that corroborates

TSPO involvement in the pathological basis of the disease. The

DSS-induced colitis model has been shown to primarily induce

epithelial barrier disruption, with inflammation only secondary

to loss of epithelial integrity (Cooper et al., 1993; Laroui et al.,

2012). This model yields colonic pathology that closely mimics

that of human patients with UC (Wirtz et al., 2007). In this study,

TSPO deficiency substantially exacerbated the inflammatory

pathology associated with DSS-induced colitis. Although the

impact of local versus global TSPO loss-of-function remains

FIGURE 2
Exacerbated clinical signs and gross pathology of UC in
Tspo−/− mice. (A) Severity of UC assessed by posturing scoring,
days 5–7 of DSS in Tspo−/− and Tspofl/fl mice (n = 17 per group; p =
0.0053). Scoring: 0, normal behavior; 1, mild hunched
posture; 2, hunched posture and reduced movement. (B) Severity
of UC assessed by stool score, days 3–7 of DSS in Tspo−/− and
Tspofl/fl mice (n = 17 per group; p = 0.03). Scoring: 0, normal stool;
1, soft feces, pink anus; 2, bloody feces, mild rectal bleeding; 3,
moderate rectal bleeding; 4, diarrhea, severe rectal bleeding. (C)
Body weight changes during UC in Tspo−/− mice indicated a
significantly higher weight loss compared to Tspofl/fl mice.
Temporal changes over the 7-day DSS treatment graphed as
percentage of initial body weight in Tspo−/− and Tspofl/fl mice (n =
21 per group; ANOVA p=<0.0001). Body weights at Day 4 (p =
0.0328), Day 5 (p = 0.0193), Day 6 (p < 0.0001), and Day 7 (p <
0.0001), were significantly different. (D) Representative images of
colons from Tspofl/fl and Tspo−/− mice after DSS-induced colitis,
showing differences in length and the presence of petechiation

(Continued )

FIGURE 2
(red hemorrhagic spots) on the mucosal surface indicative of
inflammatory severity. (E) Average colon lengths which correlate
with severity of UC was significantly shorter in Tspo−/− mice than
Tspofl/fl mice after 7 days of DSS treatment (n = 16–21 per
group; p < 0.0001).
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difficult to delineate, the pathologic findings provide conclusive

evidence that effects specific to TSPO can influence inflammatory

injury in colon. Physiologic TSPO function appears to offer a

significant level of protection against colonic insults that might

induce inflammation and injury. As TSPO expression is observed

both in the intestinal epithelium and immune cells, we believe the

exacerbated UC in Tspo−/− mice results from a combination of

vulnerability in the epithelial barrier and dysregulation in specific

immune responses.

The exacerbated UC phenotype in Tspo−/− mice became

obvious as our pilot experiments to generate a colon cancer

model using DSS and azoxymethane (Thaker et al., 2012)

FIGURE 3
Histopathology and epithelial loss indicate severe inflammation with UC in Tspo−/− mice. (A) Histopathological images showing colon rolls
(clockwise: inside distal to outside proximal), from control colons and 7-day DSS-induced UC colons. Representative images are shown for both
Tspo−/− and Tspofl/fl colons. Control Tspo−/− and Tspofl/fl colons were histologically indistinguishable. Normal morphology consists of basally-located
goblet cells (*), a narrow submucosa and thin muscularis mucosa, cuboidal to columnar mature absorptive epithelial cells (white arrowhead). In
both UC cohorts, the pathology was most severe at the distal colon, consistent with the pathogenesis of UC. DSS-treated Tspofl/fl animals exhibited
segmental moderate UC, with the distal colon demonstrating moderate edema, loss of crypt and goblet cells, moderate to severe inflammation, and
erosion and ulceration of the colonic epithelium (‡). In themid-colon (black box), Tspofl/fl colons showed less severe pathology, characterized bymild
submucosal edema (bracket), and mild mononuclear inflammation. The mucosa displays shortened, immature epithelial cells (black arrowhead).
Partial loss of the colonic crypts is present, as well as goblet cell hyperplasia and altered distribution of goblet cells towards the apex of the crypts.
DSS-treated Tspo−/− animals developed more diffuse UC, affecting the entirety of the distal colon and extending into the mid-colon (black box) and
proximal colon. These animals exhibited severe, diffuse colonic edema, extensive crypt and goblet cell loss (ϕ), muscular hypertrophy, epithelial
ulceration and erosion, and severe diffuse mononuclear inflammation. (Low magnification scale bar: 300 μm; high magnification scale bar: 30 µm).
(B) In quantitating the regional degree of colonic epithelial ulceration and erosion due to UC, the ratio of affected:total colon length demonstrated
significantly greater damage in Tspo−/− colons than Tspofl/fl colons (0.44 vs. 0.17 respectively; p = 0.0039, Z = 2.885, n = 9 per group). Representative
histopathology image with an overlay of color-coded measurement lines is shown to demonstrate this quantification of disease extent. (C)
Expression of Krt18, an intestinal epithelial marker, in the distal colon of Tspo−/− and Tspofl/fl mice at baseline and at day-7 of DSS-induced UC;
significant down-regulation of Krt18 indicative of epithelial loss is observed only with UC in Tspo−/− colons (n = 7 per group; p = 0.0011).
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resulted in complete mortality in the Tspo−/− group during the

second cycle of treatment (unpublished observations). During

the 7-day DSS treatment in this study, we observed progressively

aggravated clinical signs and body weight loss in Tspo−/− mice

compared to Tspofl/fl controls. The aggravated response in Tspo−/−

mice was consistent with known pathological parameters of

severity such as progressive, continuous ulceration of the

colonic epithelium, edema, and shortened colon length

(Okayasu et al., 1990). The severity of UC pathology Tspo−/−

mice was also indicative of a degree of unrecoverable loss of

intestinal structure.

As TSPO is expressed in the colonic epithelial cells, we first

considered the possibility that specific loss of function in this cell

type might be linked to a local predisposition to injury in Tspo−/−

colons. Our finding that Krt18, the type I intermediate filament

associated with the colonic epithelium, significantly decreases

with UC in Tspo−/− mice was a clear indication of higher levels of

colonic epithelial loss compared to Tspofl/fl cohorts. Epithelial

denudation has been correlated to the severity of DSS-induced

UC in human patients (Corfe et al., 2015), and in our study,

indicated the increased severity of UC pathology in Tspo−/− mice.

In addition to serving as a marker, mutations in Krt18 that

disrupt the intermediate filament networks have also been shown

to functionally increase epithelial permeability in human

colonocytes (Zupancic et al., 2014). Keratin downregulation

has also shown to dramatically increase susceptibility to cell

death mediated by inflammatory cytokines such as TNF⍺

(Caulin et al., 2000). Supporting our gene expression results,

substantial epithelial loss could be visualized in histopathology of

Tspo−/− colons. Excessive inflammation seen with UC in Tspo−/−

mice compared to Tspofl/fl cohorts could be a consequence of

amplified disruption of the epithelial barrier.

High-affinity benzodiazepine binding sites indicative of

TSPO expression have also been identified in mast cells

(Miller et al., 1988). Rats deficient in mast cells fail to develop

clinical signs of DSS-induced colitis, indicating a crucial role for

mast cells in UC pathogenesis (Araki et al., 2000). Moreover, it

has been demonstrated that mast cell activation, identified by

tryptase levels, has an essential proinflammatory role in

triggering DSS-induced UC (Hamilton et al., 2011). Mast cell

tryptase can also act as a trigger for other mediators of

inflammation (Compton et al., 1998; Huang et al., 1998),

potentially contributing to UC pathology. Functionally,

different drugs that bind TSPO have been shown to have

varying effects on mast cell degranulation (Miller et al., 1988;

Suzuki-Nishimura et al., 1989; Sano et al., 1990; Yousefi et al.,

FIGURE 4
Gene expression indicative of inflammation with UC in
Tspo−/− and Tspofl/fl mice. (A) Expression of Cd34, a surfacemarker
formast cells, was significantly higher at baseline (day-0) in Tspo−/−

colons compared to Tspofl/fl colons (p = 0.0077), but not at
the later UC timepoints. (B) Expression of Mcp6, a mast cell
tryptase, was significantly up-regulated at baseline (p = 0.0010)
and at all UC timepoints in Tspo−/− colons compared to Tspofl/fl

colons (p ≤ 0.0111). (C) Expression of Cd11c, a dendritic cell
transmembrane protein, showed significant up-regulation at day-
4 of UC in Tspo−/− colons compared to Tspofl/fl colons (p < 0.0392).
(D) Expression of F4/80, a surface adhesion protein also observed
inmacrophages, appeared up-regulated in UC but not significantly
different between the two genotypes. (E) Expression of Mcp1, a
macrophage activation marker, appeared up-regulated in UC, but
not significantly different between the two genotypes. (F)
Expression of Tnfα, a mast cell- and macrophage-released
proinflammatory cytokine, was up-regulated with progression of
UC, with significant increases between baseline and day-7 in both
Tspo−/− (p = 0.0089) and Tspofl/fl (p = 0.0002) colons. Although
there was a trend showing relative upregulation in Tspo−/− colons
compared to Tspofl/fl colons at day-4 (p = 0.0652) and day-7

(Continued )

FIGURE 4
(p = 0.0638), it did not reach statistical significance. For all
gene expression changes, n = 5-7 per group; significance
indicated as *p < 0.05.
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2013). Investigating whether Tspo deletion affected the mast cell

response, we identified significant upregulation of murine Mcp6

(which is similar to the human mast cell hTryptase-β) in Tspo−/−

colons. This can be considered an activation response, as Cd34

expression indicative of mature mast cells (Drew et al., 2002),

albeit increased in Tspo−/− colons, was not significantly different

between subsequent (day-4 and day-7) timepoints between the

two genotypes. It has been shown that Mcp6 deficiency

(Hamilton et al., 2011), or tryptase inhibition (Tremaine

et al., 2002; Liu et al., 2021), could reduce UC pathology and

intestinal fibrosis. In parallel, degranulation of mast cells has

also been associated with the release of proinflammatory TNF⍺

(Gordon and Galli, 1991; Bischoff et al., 1999). We observed

higher levels of Tnfα expression during UC in Tspo−/− colons,

although this difference was not statistically significant. In

forms of mast cell driven colitis, TNF⍺-driven effects have

been demonstrated to be crucial for UC pathology (Rijnierse

et al., 2006). It has also been shown that TNFα and other

proinflammatory cytokines could persist in the colon at high

levels for at least 14 days after DSS withdrawal (Yan et al., 2009).

Therefore, protracted effects on inflammation could also be

anticipated in Tspo−/− mice driven by both the inflammatory

milieu and the degree of injury sustained.

We also observed that Cd11c levels peaked at day-4 of UC in

Tspo−/− colons, which was significantly different and earlier than

that measured for UC in Tspofl/fl colons. Cd11c is expressed on the

surface of monocytes, macrophages, and dendritic cells in the

intestinal mucosa; these cells are important players in immune

recognition and tolerance to the gut microbiota (Bain and

Mowat, 2014). Increased infiltration of CD11c+ macrophages

has been demonstrated to trigger mucosal injury in UC

(Bernardo et al., 2018; Fuke et al., 2018), while reduction in

FIGURE 5
Baseline gene expression evaluating colonic epithelial functions in Tspo−/− mice. (A) Expression of Lgr5 and Ascl2, indicative of intestinal stem
cell identity, showed no difference between Tspo−/− and Tspofl/fl colons. (B) Expression ofCdh1 andNdrg2, indicative of adhesion/epithelial integrity,
showed no difference between Tspo−/− and Tspofl/fl colons. (C) Expression of cMyc and Ccnd1, Wnt targets indicative of proliferation showed
divergent effects; cMyc showed no difference between Tspo−/− and Tspofl/fl colons, whereas Ccnd1 was significantly downregulated in Tspo−/−

colons (p = 0.0280). (D) Expression ofCdx2, transcription factor associated with intestinal epithelial development/identity, was significantly higher in
Tspo−/− colons compared to Tspofl/fl colons (p = 0.044). Expression of Socs3, a regulator of cytokine signaling in inflammation, was higher on an
average in Tspo−/− colons compared to Tspofl/fl colons, but did not reach statistical significance (p = 0.0625). Significance indicated as *p < 0.05.
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CD11c+ macrophages ameliorated mucosal pathology (Arnold

et al., 2015). Earlier up-regulation of Cd11c in Tspo−/− animals

may reflect and/or influence the rapid onset and severity of

colonic inflammation. In addition, CD11c+ phagocytes may also

increase gut mucosal epithelial permeability (Ren et al., 2017),

further contributing to colonic pathology through increased

bacterial translocation across the gut barrier.

The upregulation of baseline colonic Cdx2 expression in

Tspo−/− mice indicates that TSPO deficiency contributed to a

homeostatic shift, perhaps compensating for decreased epithelial

barrier function. Cdx2 gene-deleted heterozygous (Cdx2+/−) mice

showed hypersensitivity to DSS-induced acute UC and increased

permeability of the colonic epithelium (Calon et al., 2007). Cdx2

is known to control cell-cell adhesion and extracellular matrix

composition/interactions (Lorentz et al., 1997); baseline Cdx2

upregulation may serve as a compensatory mechanism to offset

increased vulnerability to epithelial permeability in Tspo−/− mice.

High expression of TNFα, through NF-κB and p38 MAPK

pathways, could downregulate Cdx2 (Coskun et al., 2014),

suggesting that there might be significant cross-talk between

epithelium-specific and different immune pathways.

There also exists cross-talk between Cdx2 andWnt signaling,

regulating the proliferative compartment of normal intestinal

crypts (Guo et al., 2010). Our finding that the Wnt target Ccnd1

was decreased in Tspo−/− colons might indicate a lower capacity

for epithelial proliferation and turnover, potentially affecting

regeneration after ulcerative injury. However, based on similar

Lgr5 and Ascl2 levels between Tspofl/fl and Tspo−/− colons, stem

cell populations and adhesion molecule expression were not

altered in Tspo−/− colons. Although Cd34 expression also

believed to be associated with these adult stem cells

(Stzepourginski et al., 2017), are higher at baseline in Tspo−/−

colons, the differences are in all probability linked to mature mast

cell numbers (consistent with higher baseline Mcp6 expression

levels). Although stem cell populations are similar, given the

progressive severity of UC pathology Tspo−/− mice, it is plausible

that TSPO deficiency might also negatively impact epithelial

recovery and functional restoration in the colon. This speculation

is supported by pharmacology that TSPO binding drugs,

PK11195 and Ro5-4864 could accelerate recovery after DSS-

induced UC (Ostuni et al., 2010). Although the extent of TSPO-

mediated action remains unclear, positive and negative outcomes

in DSS-induced UC have been reported for relatively low-affinity

TSPO binding molecules such as curcumin (Li et al., 2013; Liu

et al., 2013; Guo et al., 2022) and retinoic acid (Oehlers et al.,

2012; Li et al., 2013; Rampal et al., 2021).

As recent developments on TSPO function have indicated

possible roles in regulation of mitochondrial fatty acid oxidation

(Tu et al., 2016) and oxidative stress responses (Gatliff et al.,

2014), we examined genes associated with these functions in

Tspo−/− colons. The finding that Acadm is up-regulated in Tspo−/−

colons is consistent with evidence that there exist subtle

metabolic shifts with TSPO loss-of-function. In tissues active

in lipid metabolism that show very high expression of TSPO, we

have previously reported a functional up-regulation of

mitochondrial fatty acid oxidation, and associated increase in

gene expression of Cpt1a, Acadm, Acadl, and Hadha (Tu et al.,

2016). Increases in Cpt1a, Acadl andHadha were not observed in

Tspo−/− colons; therefore, it is conceivable that the present study’s

use of entire colons for gene expression assays, as opposed to just

TSPO-expressing epithelial layers or mast cells, could have

diluted any cell-type specific phenotypes. With regard to

oxidative stress, direct evidence previously demonstrated that

TSPO could stabilize mitochondrial architecture during

inflammatory stress in colonic cells (Issop et al., 2016). We

have previously observed that TSPO involvement in oxidative

stress is cell-type dependent (Tu et al., 2016; Zhao et al., 2016).

Although we did not observe any baseline perturbations in gene

expression associated with oxidative stress responses in Tspo−/−

FIGURE 6
Baseline gene expression evaluating regulators of fatty acid
oxidation and oxidative stress in Tspo−/− colons. (A) Expression of
elements that indicate and/or regulate oxidative stress such as
Cd36, Fpn1, Hmox, and Nrf2, showed no difference between
Tspo−/− and Tspofl/fl colons. (B) Expression of Acadm, a
mitochondrial enzyme essential to metabolize medium chain fatty
acids, was significantly higher in Tspo−/− colons compared to
Tspofl/fl colons (p = 0.0425). Expression of other elements
associatedwithmitochondrial fatty acid β-oxidation such asCpt1a,
Acadl, and Hadha, showed no difference between Tspo−/− and
Tspofl/fl colons. Significance indicated as *p < 0.05.
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colons, baseline expression may not reflect active inflammatory

cell states associated with UC.

In summary, despite lack of a clear structure-function

relationship for the different TSPO-mediated effects that are

described in the literature (Selvaraj et al., 2015; Selvaraj and

Stocco, 2015), and mechanisms that delineate TSPO

pharmacology (Gavish et al., 1999; Gavish and Veenman,

2018), our findings in this Tspo−/− model demonstrates a

protective effect for TSPO on the colonic epithelium and

confirms that there might be potential for therapeutic

interventions with ligands that enhance TSPO function. For

example, the TSPO-binding benzodiazepine derivatives Ro5-

4864 (4’-chlorodiazepam) and flunitrazepam, which were both

shown to quickly suppress mast cell activation in vivo and in vitro

(Yousefi et al., 2013), may be considered to be TSPO agonists.

Understandably, similar actions albeit with differing efficacies,

occur for these same drugs in the in vivo DSS-induced colitis

model (Ostuni et al., 2010). The hypothesis that TSPO likely

provides a dual therapeutic effect, involving both epithelial

barrier-specific functions and immune-cell mediated pathways,

is an attractive mechanism that merits more detailed

investigation. Fundamentally, we uncover that TSPO deletion/

loss-of-function, albeit inconsequential at a resting/healthy state,

makes mice more vulnerable to insults. Future studies that dissect

the precise molecular function of TSPO might help describe its

physiological and pharmacological significance in UC and other

inflammatory disease models.
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