Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triaqua(7-oxabicyclo[2.2.1]heptane-2,3dicarboxylato- $\kappa^3 O^2, O^3, O^7$)cobalt(II) monohydrate

Fan Zhang,^{a,b} Ai-Ping Jia^a and Qiu-Yue Lin^{a,b*}

^aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and ^bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China Correspondence e-mail: sky51@zjnu.cn

Received 3 July 2011; accepted 15 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.023; wR factor = 0.063; data-to-parameter ratio = 12.3.

The title complex, $[Co(C_8H_8O_5)(H_2O)_3]\cdot H_2O$, was synthesized by reaction of cobalt acetate with 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) in aqueous solution. In the molecule, the Co^{II} atom is six-coordinated in a distorted octahedral environment, binding to the bridging O atom of the bicycloheptane unit, to two O atoms from monodentate carboxylate groups and to three water O atoms. The crystal structure is stabilized by several $O-H\cdots O$ hydrogen-bonding interactions involving both the coordinated and uncoordinated water molecules as donors and the carboxylate O atoms of neighbouring molecules as acceptors.

Related literature

For background to the applications of norcantharidin, see: Jiao *et al.* (2005); Wang (1989). For related structures, see: Wang *et al.* (2010); Kaplonek *et al.* (1994).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Co}(\mathrm{C_8H_8O_5})(\mathrm{H_2O})_3]\cdot\mathrm{H_2O} \\ & M_r = 315.14 \\ & \mathrm{Monoclinic}, \ P2_1/c \\ & a = 10.0965 \ (3) \ \mathring{\mathrm{A}} \\ & b = 10.0208 \ (3) \ \mathring{\mathrm{A}} \\ & c = 14.5893 \ (3) \ \mathring{\mathrm{A}} \\ & \beta = 129.177 \ (1)^\circ \end{split}$$

 $V = 1144.25 (5) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.54 \text{ mm}^{-1}$ T = 296 K $0.24 \times 0.17 \times 0.13 \text{ mm}$ Data collection

Bruker SMART CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\min} = 0.745, T_{\max} = 0.824
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.063$ S = 1.082004 reflections 163 parameters 14892 measured reflections 2004 independent reflections 1861 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

 $\begin{array}{l} \mbox{4 restraints} \\ \mbox{H-atom parameters constrained} \\ \mbox{$\Delta \rho_{max} = 0.28$ e \AA^{-3}} \\ \mbox{$\Delta \rho_{min} = -0.30$ e \AA^{-3}} \end{array}$

Table 1 Selected bond lengths (Å).

-			
Co1-O3	2.0631 (14)	Co1-O1	2.0849 (13)
Co1 - O1W	2.0691 (15)	Co1 - O3W	2.0948 (13)
Co1-O2W	2.0728 (15)	Co1-O5	2.1510 (13)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2W-H2WB\cdots O4W$	0.85	2.06	2.872 (2)	160
$O4W-H4WB\cdots O5$	0.85	2.60	3.0316 (19)	113
$O1W-H1WA\cdots O4^{i}$	0.85	1.88	2.716 (2)	169
$O1W-H1WB\cdots O4W^{ii}$	0.85	2.00	2.789 (2)	153
$O2W - H2WA \cdots O1^{iii}$	0.85	1.87	2.7168 (19)	171
O3W−H3WB····O2 ^{iv}	0.85	1.84	2.688 (2)	173
O4W−H4WB···O2 ^{iv}	0.85	2.09	2.916 (2)	164
O3W−H3WA···O3 ^v	0.85	1.85	2.6969 (19)	178
$O4W-H4WA\cdots O3W^{vi}$	0.85	2.35	3.112 (2)	149

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 2, -y + 2, -z + 1; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) -x + 1, -y + 2, -z + 1; (vi) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank the Natural Science Foundation of Zhejiang Province, China, (grant No. Y407301) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2510).

References

- Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jiao, K., Wang, Q.-X., Sun, W. & Jian, F.-F. (2005). J. Inorg. Biochem. 99, 1369– 1375.
- Kaplonek, R., Baumeister, U. & Hartung, H. (1994). Z. Anorg. Allg. Chem. 620, 574–580.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Wang, G.-S. (1989). J. Ethnopharmacol. **26**, 147–162. Wang, Y.-Y., Hu, R.-D., Lin, Q.-Y., Zhao, Y.-L. & Wang, N. (2010). Asian J. Chem. E22, 5993–5999.
 Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supplementary materials

Acta Cryst. (2011). E67, m1119-m1120 [doi:10.1107/S1600536811028431]

Triaqua(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato- $\kappa^3 O^2, O^3, O^7$)cobalt(II) monohydrate

F. Zhang, A.-P. Jia and Q.-Y. Lin

Comment

7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin), derived from cantharidin, is a variety of pharmacologically important compounds such as protein kinase inhibitors and antitumor properties (Wang, 1989). Cobalt is recognized as an essential metal element widely distributed in biological systems in cells and the body (Jiao *et al.*, 2005). A manganese complex of dimethylcantharate was reported recently (Wang *et al.*, 2010) and a similar cobalt complex of dimethylcantharate (Kaplonek *et al.*, 1994) has also been reported.

The molecular structure of the title complex is shown in Fig. 1. The cobalt(II) atom is six-coordinated in a distorted octahedral coordination mode, binding to the bridging O atom of the bicycloheptane unit, to two O atoms from corresponding carboxylate groups and to three O atoms from water. The crystal structure is stabilized by several O—H…O hydrogenbonding interactions involving both the coordinated and uncoordinated water molecules as donors and the carboxylate O atoms of neighbouring molecules as acceptors.

Experimental

An ethanol solution containing 0.5 mmol salicylic acid was dropwisely added into 0.5 mmol aqueous cobalt acetate solution. After stirring for one hour, an aqueous solution containing 0.5 mmol norcantharidin was dropwisely added into the mixture. Two hours later, the solution was filtered and after 2 weeks, crystals with suitable size for single-crystal X-ray diffraction were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aliphatic of tertiary carbon C—H = 0.98 Å, aliphatic of secondary carbon C—H = 0.97 Å, both with $U_{iso}(H) = 1.2U_{eq}(C)$]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (1) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level.

$Triaqua (7-oxabicyclo [2.2.1] heptane -2, 3-dicarboxylato - \kappa^3 O^2, O^3, O^7) cobalt (II) monohydrate$

F(000) = 652

 $\theta = 2.6 - 25.0^{\circ}$

 $\mu = 1.54 \text{ mm}^{-1}$

 $0.24 \times 0.17 \times 0.13 \text{ mm}$

T = 296 K

Block, red

 $D_{\rm x} = 1.829 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8994 reflections

Crystal data

 $[Co(C_8H_8O_5)(H_2O)_3] \cdot H_2O$ $M_r = 315.14$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.0965 (3) Å b = 10.0208 (3) Å c = 14.5893 (3) Å $\beta = 129.177$ (1)° V = 1144.25 (5) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer	2004 independent reflections
Radiation source: fine-focus sealed tube	1861 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 11$
$T_{\min} = 0.745, T_{\max} = 0.824$	$k = -11 \rightarrow 11$
14892 measured reflections	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.063$	H-atom parameters constrained
S = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0277P)^2 + 1.0316P]$ where $P = (F_o^2 + 2F_c^2)/3$
2004 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
163 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
4 restraints	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Col	0.75127 (3)	0.93105 (2)	0.50125 (2)	0.01957 (10)
01	0.78435 (19)	0.89643 (14)	0.37592 (12)	0.0290 (3)
O1W	0.7237 (2)	1.13465 (15)	0.47074 (14)	0.0427 (4)
H1WA	0.7016	1.1781	0.4125	0.064*
H1WB	0.7586	1.1869	0.5279	0.064*
O2	0.7679 (2)	0.77531 (16)	0.24295 (14)	0.0442 (4)
O2W	1.01188 (18)	0.94437 (15)	0.63877 (13)	0.0348 (4)
H2WA	1.0847	0.9886	0.6399	0.052*
H2WB	1.0612	0.8811	0.6887	0.052*
O3	0.49581 (17)	0.89349 (14)	0.36612 (12)	0.0281 (3)
O3W	0.71943 (19)	0.95345 (14)	0.62906 (13)	0.0301 (3)
H3WA	0.6499	1.0012	0.6291	0.045*
H3WB	0.7291	0.8840	0.6664	0.045*
O4	0.3105 (2)	0.79264 (17)	0.19436 (13)	0.0465 (4)
O4W	1.1014 (2)	0.73049 (16)	0.79981 (13)	0.0387 (4)
H4WA	1.1328	0.6564	0.7907	0.058*
H4WB	0.9987	0.7184	0.7718	0.058*
05	0.78301 (16)	0.72157 (12)	0.54243 (11)	0.0191 (3)
C1	0.8565 (2)	0.64609 (19)	0.49869 (16)	0.0215 (4)
H1A	0.9702	0.6772	0.5300	0.026*
C2	0.7198 (2)	0.66254 (18)	0.36363 (16)	0.0206 (4)
H2A	0.7197	0.5836	0.3239	0.025*
C3	0.5510(2)	0.66506 (18)	0.34899 (16)	0.0199 (4)
H3A	0.4794	0.5884	0.3014	0.024*
C4	0.6238 (2)	0.64553 (19)	0.47793 (16)	0.0209 (4)
H4A	0.5468	0.6757	0.4930	0.025*
C5	0.6883 (3)	0.5032 (2)	0.51937 (18)	0.0277 (4)
H5A	0.6075	0.4384	0.4603	0.033*
H5B	0.7105	0.4842	0.5932	0.033*
C6	0.8554 (3)	0.5040 (2)	0.53581 (18)	0.0276 (4)
H6A	0.9543	0.4871	0.6174	0.033*
H6B	0.8519	0.4386	0.4853	0.033*
C7	0.7572 (2)	0.7867 (2)	0.32282 (17)	0.0242 (4)
C8	0.4448 (2)	0.79295 (19)	0.29760 (16)	0.0233 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.02472 (16)	0.01767 (16)	0.01900 (16)	-0.00126 (9)	0.01509 (13)	-0.00144 (9)
O1	0.0461 (9)	0.0229 (7)	0.0333 (8)	-0.0087 (6)	0.0323 (7)	-0.0060 (6)
O1W	0.0740 (12)	0.0193 (8)	0.0271 (8)	-0.0025 (7)	0.0282 (8)	-0.0008 (6)
O2	0.0791 (12)	0.0378 (9)	0.0462 (10)	-0.0240 (8)	0.0541 (10)	-0.0165 (7)
O2W	0.0263 (8)	0.0363 (8)	0.0347 (8)	-0.0067 (6)	0.0159 (7)	0.0062 (7)
O3	0.0255 (7)	0.0237 (7)	0.0278 (7)	0.0043 (6)	0.0133 (6)	-0.0037 (6)
O3W	0.0423 (9)	0.0299 (8)	0.0340 (8)	0.0112 (6)	0.0316 (7)	0.0079 (6)
O4	0.0431 (9)	0.0399 (9)	0.0229 (8)	0.0156 (8)	0.0050 (7)	-0.0029(7)
O4W	0.0385 (9)	0.0376 (9)	0.0319 (8)	0.0052 (7)	0.0184 (7)	0.0049 (7)
O5	0.0211 (6)	0.0202 (7)	0.0193 (6)	0.0001 (5)	0.0143 (5)	-0.0006 (5)
C1	0.0207 (9)	0.0226 (10)	0.0260 (10)	0.0009 (8)	0.0171 (8)	-0.0017 (8)
C2	0.0252 (10)	0.0199 (9)	0.0236 (9)	-0.0014 (7)	0.0187 (8)	-0.0033 (7)
C3	0.0211 (9)	0.0180 (9)	0.0221 (9)	-0.0022 (7)	0.0143 (8)	-0.0024 (7)
C4	0.0207 (9)	0.0222 (9)	0.0246 (9)	-0.0016 (8)	0.0166 (8)	0.0004 (8)
C5	0.0328 (11)	0.0224 (10)	0.0317 (11)	-0.0002 (8)	0.0221 (10)	0.0059 (8)
C6	0.0273 (10)	0.0221 (10)	0.0304 (10)	0.0055 (8)	0.0168 (9)	0.0031 (8)
C7	0.0283 (10)	0.0266 (10)	0.0245 (10)	-0.0051 (8)	0.0200 (9)	-0.0036 (8)
C8	0.0235 (10)	0.0246 (10)	0.0220 (10)	0.0015 (8)	0.0144 (9)	0.0010 (8)

Geometric parameters (Å, °)

2.0631 (14)	O5—C1	1.459 (2)
2.0691 (15)	O5—C4	1.462 (2)
2.0728 (15)	C1—C6	1.526 (3)
2.0849 (13)	C1—C2	1.542 (3)
2.0948 (13)	C1—H1A	0.9800
2.1510 (13)	C2—C7	1.526 (3)
1.271 (2)	C2—C3	1.578 (2)
0.8500	C2—H2A	0.9800
0.8500	C3—C8	1.529 (3)
1.241 (2)	C3—C4	1.540 (3)
0.8499	С3—НЗА	0.9800
0.8500	C4—C5	1.526 (3)
1.276 (2)	C4—H4A	0.9800
0.8501	C5—C6	1.547 (3)
0.8499	C5—H5A	0.9700
1.236 (2)	С5—Н5В	0.9700
0.8500	С6—Н6А	0.9700
0.8499	С6—Н6В	0.9700
93.29 (6)	C7—C2—C1	110.07 (15)
173.18 (6)	C7—C2—C3	116.49 (15)
93.48 (6)	C1—C2—C3	101.13 (14)
85.86 (6)	С7—С2—Н2А	109.6
92.85 (6)	C1—C2—H2A	109.6
	2.0631 (14) 2.0691 (15) 2.0728 (15) 2.0849 (13) 2.0948 (13) 2.1510 (13) 1.271 (2) 0.8500 0.8500 1.241 (2) 0.8499 0.8500 1.276 (2) 0.8501 0.8499 1.236 (2) 0.8500 0.8499 93.29 (6) 173.18 (6) 93.48 (6) 85.86 (6) 92.85 (6)	2.0631(14) $05-C1$ $2.0691(15)$ $05-C4$ $2.0728(15)$ $C1-C6$ $2.0849(13)$ $C1C2$ $2.0948(13)$ $C1H1A$ $2.1510(13)$ $C2C7$ $1.271(2)$ $C2C3$ 0.8500 $C3C4$ 0.8500 $C3C4$ 0.8500 $C3C4$ 0.8499 $C3H3A$ 0.8500 $C4C5$ $1.276(2)$ $C4H4A$ 0.8501 $C5C6$ 0.8499 $C5H5B$ 0.8500 $C6H6A$ 0.8499 $C6H6B$ $93.29(6)$ $C7C2C1$ $173.18(6)$ $C7C2C3$ $93.48(6)$ $C1C2H2A$ $92.85(6)$ $C1C2H2A$

O2W—Co1—O1	92.92 (6)	C3—C2—H2A	109.6
O3—Co1—O3W	93.90 (6)	C8—C3—C4	110.57 (15)
O1W—Co1—O3W	90.60 (6)	C8—C3—C2	116.27 (15)
O2W—Co1—O3W	86.92 (6)	C4—C3—C2	101.03 (14)
O1—Co1—O3W	176.55 (5)	С8—С3—НЗА	109.5
O3—Co1—O5	87.97 (5)	С4—С3—НЗА	109.5
O1W—Co1—O5	176.73 (5)	С2—С3—НЗА	109.5
O2W—Co1—O5	85.32 (5)	O5—C4—C5	102.24 (14)
O1—Co1—O5	90.25 (5)	O5—C4—C3	101.68 (13)
O3W—Co1—O5	86.30 (5)	C5—C4—C3	110.98 (15)
C7—O1—Co1	125.88 (12)	O5—C4—H4A	113.6
Co1—O1W—H1WA	129.4	C5—C4—H4A	113.6
Co1—O1W—H1WB	118.7	C3—C4—H4A	113.6
H1WA—O1W—H1WB	110.5	C4—C5—C6	101.94 (15)
Co1—O2W—H2WA	127.3	С4—С5—Н5А	111.4
Co1—O2W—H2WB	118.7	С6—С5—Н5А	111.4
H2WA—O2W—H2WB	109.9	C4—C5—H5B	111.4
C8—O3—Co1	122.32 (12)	С6—С5—Н5В	111.4
Co1—O3W—H3WA	130.7	H5A—C5—H5B	109.2
Co1—O3W—H3WB	117.5	C1—C6—C5	101.65 (15)
H3WA—O3W—H3WB	102.8	С1—С6—Н6А	111.4
H4WA—O4W—H4WB	105.2	С5—С6—Н6А	111.4
C1—O5—C4	95.99 (13)	С1—С6—Н6В	111.4
C1O5Co1	114.26 (10)	С5—С6—Н6В	111.4
C4—O5—Co1	114.80 (10)	H6A—C6—H6B	109.3
O5—C1—C6	102.04 (14)	O2—C7—O1	122.60 (18)
O5—C1—C2	102.20 (14)	O2—C7—C2	118.71 (17)
C6—C1—C2	110.60 (16)	O1—C7—C2	118.60 (15)
O5—C1—H1A	113.6	O4—C8—O3	123.07 (18)
C6—C1—H1A	113.6	O4—C8—C3	119.02 (17)
C2—C1—H1A	113.6	O3—C8—C3	117.81 (16)
O3—Co1—O1—C7	-63.86 (16)	C1—C2—C3—C4	-1.55 (16)
O1W—Co1—O1—C7	-156.95 (17)	C1—O5—C4—C5	56.17 (15)
O2W—Co1—O1—C7	109.42 (16)	Co1	176.41 (10)
O5—Co1—O1—C7	24.09 (16)	C1—O5—C4—C3	-58.60 (15)
O1W—Co1—O3—C8	140.00 (15)	Co1—O5—C4—C3	61.65 (14)
O1—Co1—O3—C8	47.38 (15)	C8—C3—C4—O5	-87.05 (16)
O3W—Co1—O3—C8	-129.17 (15)	C2—C3—C4—O5	36.63 (16)
O5—Co1—O3—C8	-43.02 (15)	C8—C3—C4—C5	164.82 (15)
O3—Co1—O5—C1	101.16 (11)	C2—C3—C4—C5	-71.49 (17)
O2W—Co1—O5—C1	-77.59 (12)	O5—C4—C5—C6	-33.84 (17)
O1-Co1-O5-C1	15.31 (12)	C3—C4—C5—C6	73.92 (18)
O3W—Co1—O5—C1	-164.80 (12)	O5—C1—C6—C5	35.70 (17)
O3—Co1—O5—C4	-8.38 (11)	C2—C1—C6—C5	-72.42 (18)
O2W—Co1—O5—C4	172.87 (11)	C4—C5—C6—C1	-1.04 (18)
O1—Co1—O5—C4	-94.23 (11)	Co1—O1—C7—O2	174.77 (16)
O3W—Co1—O5—C4	85.66 (11)	Co1—O1—C7—C2	-8.7 (3)
C4—O5—C1—C6	-56.90 (15)	C1—C2—C7—O2	126.16 (19)
Co1—O5—C1—C6	-177.57 (11)	C3—C2—C7—O2	-119.5 (2)

supplementary materials

C4—O5—C1—C2	57.57 (15)	C1—C2—C7—O1	-50.5 (2)
Co1—O5—C1—C2	-63.10 (14)	C3—C2—C7—O1	63.9 (2)
O5—C1—C2—C7	89.68 (16)	Co1—O3—C8—O4	-151.18 (17)
C6—C1—C2—C7	-162.30 (15)	Co1—O3—C8—C3	32.4 (2)
O5—C1—C2—C3	-34.10 (16)	C4—C3—C8—O4	-140.06 (19)
C6—C1—C2—C3	73.92 (17)	C2—C3—C8—O4	105.6 (2)
C7—C2—C3—C8	-1.1 (2)	C4—C3—C8—O3	36.5 (2)
C1—C2—C3—C8	118.14 (16)	C2—C3—C8—O3	-77.9 (2)
C7—C2—C3—C4	-120.82 (16)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2W—H2WB···O4W	0.85	2.06	2.872 (2)	160.
O4W—H4WB…O5	0.85	2.60	3.0316 (19)	113.
O1W—H1WA···O4 ⁱ	0.85	1.88	2.716 (2)	169.
O1W—H1WB···O4W ⁱⁱ	0.85	2.00	2.789 (2)	153.
O2W—H2WA…O1 ⁱⁱⁱ	0.85	1.87	2.7168 (19)	171.
O3W—H3WB···O2 ^{iv}	0.85	1.84	2.688 (2)	173.
O4W—H4WB⋯O2 ^{iv}	0.85	2.09	2.916 (2)	164.
O3W—H3WA···O3 ^v	0.85	1.85	2.6969 (19)	178.
O4W—H4WA···O3W ^{vi}	0.85	2.35	3.112 (2)	149.

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+2, *y*+1/2, -*z*+3/2; (iii) -*x*+2, -*y*+2, -*z*+1; (iv) *x*, -*y*+3/2, *z*+1/2; (v) -*x*+1, -*y*+2, -*z*+1; (vi) -*x*+2, *y*-1/2, -*z*+3/2.

