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Stem cell development depends on post-transcriptional regulation mediated
by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998;
Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family
RBPs are highly conserved post-transcriptional regulators that are critical for stem cell
maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains
of PUF proteins recognize a family of related sequence motifs in the target mRNAs,
yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009;
Wang et al., 2018). The C. elegans germline is a simple and powerful model system
for analyzing regulation of stem cell development. Studies in C. elegans uncovered
specific physiological roles for PUFs expressed in the germline stem cells ranging from
control of proliferation and differentiation to regulation of the sperm/oocyte decision.
Importantly, recent studies started to illuminate the mechanisms behind PUF functional
divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in
germline stem and progenitor cells (SPCs) and discusses the factors accounting for their
distinct biological functions. PUF proteins are conserved in evolution, and insights into
PUF-mediated regulation provided by the C. elegans model system are likely relevant
for other organisms.

Keywords: germline, C. elegans, pumilio and fem-3-binding factor, RNA regulation, stem cells

INTRODUCTION

Post-transcriptional regulation of gene expression governs the rate of protein production through
the control of key steps in mRNA life cycle. In eukaryotes, RNA-binding proteins (RBPs) play
critical roles in mRNA biogenesis, stability, function, transport, and cellular localization essential
for post-transcriptional regulation (Glisovic et al., 2008). RBPs expressed in stem cells contribute to
the regulation of stem cell self-renewal and differentiation (Zhang et al., 1997; Forbes and Lehmann,
1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013), while misregulation of RBP activity
can lead to tumors (Rezza et al., 2010; Degrauwe et al., 2016). Post-transcriptional regulation in
stem cells relies on the combined activities of many RBPs (Eckmann et al., 2004; Arvola et al., 2017).
Investigating the basic mechanisms of RBP function in stem cells will advance our understanding
of abnormal post-transcriptional regulation relevant to human diseases, such as cancer.

Pumilio and FBF family RBPs are highly conserved eukaryotic posttranscriptional regulators
(Wickens et al., 2002; Quenault et al., 2011). The name of this family comes from the first
identified PUF proteins, Pumilio in D. melanogaster and fem-3-binding factor (FBF) in C. elegans.
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PUF proteins control diverse biological processes including
oogenesis (Parisi and Lin, 1999), organelle biogenesis (García-
Rodríguez et al., 2007), neuronal function (Mee et al., 2004), and
memory formation (Dubnau et al., 2003; Zhang et al., 2017).
In addition to these roles, PUF proteins share an evolutionarily
conserved role in stem cell maintenance. Mutation of Pumilio
induces loss of female germline stem cells in Drosophila due to
differentiation to cystoblasts and then egg chambers (Lin and
Spradling, 1997; Forbes and Lehmann, 1998). Similarly, loss of
PUF proteins in C. elegans results in germline stem cells entering
meiosis and undergoing spermatogenesis (Zhang et al., 1997;
Crittenden et al., 2002; Haupt et al., 2019b) and knockdown of
planarian homolog DjPum by RNA interference induces loss of
totipotent stem cells called neoblasts (Salvetti et al., 2005). In
mammals, PUM proteins contribute to stem cell maintenance
across multiple tissues (Shigunov et al., 2012; Naudin et al., 2017;
Zhang et al., 2017).

Canonical PUF proteins are characterized by a conserved
RNA-binding domain (Pumilio homology domain, PUM-HD)
with eight consecutive α-helical PUM repeats (Zamore et al.,
1997; Zhang et al., 1997; Wang et al., 2001; Hall, 2016).
Crystal structures of the classical PUM-HD uncover a crescent
arrangement of PUM repeats. Single-stranded RNA binds to
the inner concave surface of PUM-HD. Typically, one PUM
repeat contacts one RNA base. A five-amino-acid motif in the
second alpha helix of a PUM repeat determines the sequence
specificity of RNA base recognition (Wang et al., 2002; Cheong
and Hall, 2006; Campbell et al., 2014). Three key residues
in the motif directly interact with RNA, thus comprising
the tripartite recognition motifs (TRMs) (Wang et al., 2002;
Campbell et al., 2014; Hall, 2016). Although individual PUF
proteins preferentially associate with RNA motifs of distinct
lengths and sequences, the canonical target motifs share the core
UGU triplet (Lu et al., 2009; Wang et al., 2018).

Pumilio and FBF proteins control stability and translation
of their target mRNAs by binding to their 3’UTRs (Zamore
et al., 1997; Zhang et al., 1997). The best-documented mechanism
of PUF-mediated regulation is through deadenylation of the
target mRNAs that results in translational repression or mRNA
decay (Wreden et al., 1997; Goldstrohm et al., 2006; Kadyrova
et al., 2007; Van Etten et al., 2012; Weidmann et al., 2014).
Alternatively, PUFs can interfere with recognition of cap
structure by translation initiation factors through directly
binding to the cap (Cao et al., 2010) or through recruiting
cap-binding cofactors (Cho et al., 2005, 2006). Additionally,
PUFs might attenuate translational elongation through an
interaction with Argonaute family proteins (Friend et al., 2012).
For all PUFs investigated to date, high-throughput approaches
have suggested a large number of putative regulatory targets.
Putative PUF-regulated transcripts have been identified in
yeast, Drosophila, C. elegans, and humans by using RIP (RNA
Immunoprecipitation)-Chip, RIP-seq, and CLIP (Cross-linking
immunoprecipitation)-seq (Gerber et al., 2004, 2006; Morris
et al., 2008; Hafner et al., 2010; Prasad et al., 2016; Porter et al.,
2019). The conservation of a number of PUF targets between
nematodes and other species including humans was first reported
in a microarray study (Kershner and Kimble, 2010) and then

confirmed and expanded by CLIP-seq analysis (Prasad et al.,
2016; Porter et al., 2019). The shared PUF target mRNAs are
enriched for biological process GO terms such as cell cycle, cell
division, and nuclear division. Cell cycle regulation is central
to stem cell maintenance (Boward et al., 2016), and mRNA
target conservation reflects PUF proteins’ ancient role in stem
cell maintenance.

The C. elegans germline is a powerful model that revealed
many aspects of PUF protein function in germline stem cells.
Ten PUF proteins identified in C. elegans are clustered into
4 subfamilies: PUF-8/9, FBF-1/2, PUF-3/11/4, and PUF-5/6/7
(Wickens et al., 2002; Stumpf et al., 2008; Hubstenberger et al.,
2012; Liu et al., 2012). Five of these PUF proteins, FBF-1 and FBF-
2, as well as PUF-8, PUF-3, and PUF-11 are enriched in germline
stem cells and support stem cell maintenance (Crittenden et al.,
2002; Lamont et al., 2004; Ariz et al., 2009; Racher and Hansen,
2012; Voronina et al., 2012; Haupt et al., 2019b), yet each is
functionally distinct. In-depth studies of C. elegans germline PUF
proteins provided novel insights into the mechanisms mediating
this functional specialization. This review provides an overview
of C. elegans germline stem cells and focuses on the contribution
of PUF-8, FBF-1, and FBF-2 to germline stem and progenitor
cell function, since PUF-3 and PUF-11 are less well-studied. We
then discuss recent advances in uncovering the determinants that
mediate the divergence of PUF biological functions.

C. elegans GERMLINE, A POWERFUL
MODEL FOR STEM CELL STUDIES

Overall Structure of C. elegans Germline
The C. elegans germline is a simple but very powerful model
system for studying stem cell biology (Figure 1A). C. elegans
can exist as hermaphrodites or males, and in this review, we are
focusing on hermaphrodites, although mechanisms regulating
germline stem cells are similar in the two sexes. A C. elegans
adult contains two symmetric U-shaped germlines. Most of the
C. elegans germline, except for late oocytes, is a syncytium,
where individual germ cells have an opening to a central shared
cytoplasmic core (Hirsh et al., 1976). Although germ cells have
access to continuous cytoplasm, the communication between
cells is limited and neighboring germ cells can be seen at distinct
stages of cell cycle or differentiation. Similar to the germlines
of other organisms, the C. elegans germline is maintained by a
population of proliferative stem cells in the stem cell niche at
its distal end (Figure 1A; Pazdernik and Schedl, 2013). When
progenitor cells leave the niche, they enter meiosis followed by
differentiation into sperm during larval development and into
oocytes in adulthood. Maintenance of stem and progenitor cells
(SPCs) in the mitotic zone is critical for C. elegans germline
development and worm fertility.

Germline Stem and Progenitor Cells
The proliferative zone of the C. elegans germline extends about 20
cell diameters from the distal tip, and contains cells in a mitotic
cell cycle and cells that have entered meiotic S-phase (Crittenden
et al., 2006; Jaramillo-Lambert et al., 2007; Fox et al., 2011).
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FIGURE 1 | Schematic of C. elegans hermaphrodite germline and RNA
binding protein network downstream of GLP-1/Notch. (A) C. elegans germline
development is supported by continuous SPC proliferation promoted by
GLP-1/Notch signaling from the DTC (Pazdernik and Schedl, 2013).
Progenitors enter meiosis when they reach the transition zone, and later
differentiate into sperm and oocytes. Several types of RNA granules reside in
germ cells and facilitate germ cell development and embryogenesis.
(B) Downstream of GLP-1/Notch, FBFs maintain SPC proliferation by
repressing the expression of GLD-1, GLD-2, and GLD-3 that inhibit SPC
proliferation and promote differentiation (Kimble and Crittenden, 2007 and
references in sections “RNA-Binding Protein Network Downstream of
GLP-1/Notch” and “PUF Function in Maintaining Germline SPCs”).

Unlike other stem cell systems with distinct stem cells and transit
amplifying cells, the proliferative zone contains developmentally
equivalent cells (Fox and Schedl, 2015). In this review, we
collectively refer to the cells that have not entered meiosis as
SPCs. The C. elegans germline SPC zone is maintained within
a niche formed by a single mesenchymal cell, called the distal
tip cell (DTC), which caps the distal end of the germline and
extends its cytoplasmic processes proximally (Kimble and White,
1981; Crittenden et al., 2006; Byrd et al., 2014). The DTC
preserves the mitotic identity and promotes mitotic division
of SPCs through the canonical GLP-1/Notch signaling that
is highly conserved in most multi-cellular organisms (Austin
and Kimble, 1987). Loss-of-function mutations of GLP-1/Notch
signaling components such as the receptor glp-1, ligands lag-
2 and apx-1, and downstream transcriptional targets lst-1 and
sygl-1 cause germline stem cells to enter meiosis prematurely,
which is similar to the DTC removal (Kimble and White, 1981;
Austin and Kimble, 1987; Henderson et al., 1997; Nadarajan
et al., 2009; Kershner et al., 2014). By contrast, germ cells of the
glp-1(oz112gf) gain-of-function mutant with constitutive GLP-
1 signaling fail to exit from the mitotic cell cycle leading to
tumorous germlines (Berry et al., 1997).

RNA-Binding Protein Network
Downstream of GLP-1/Notch
Post-transcriptional control is a widespread mechanism
for regulating gene expression in the C. elegans oogenic

germline (Merritt et al., 2008). Downstream of GLP-1/Notch,
germline stem cell development is regulated by a network of
posttranscriptional regulators that includes a large number of
RBPs, a subset of which is shown in Figure 1B. FBF-1 and
FBF-2, PUF family RBPs expressed in the distal germline,
control stem cell maintenance and sex fate (Zhang et al., 1997;
Crittenden et al., 2002). Additionally, four RNA regulators,
including three GLD proteins and NOS-3, act in two parallel
pathways that inhibit mitosis and promote meiosis (Kimble and
Crittenden, 2007). GLD-1 (a KH-motif RBP) and NOS-3 (Nanos
protein family member) form a translational repression pathway
(Hansen et al., 2004), while the cytoplasmic poly(A) polymerase
formed by the complex of GLD-2 [the poly(A) polymerase
enzyme] and GLD-3 (a homolog of Bicaudal-C RBP) constitutes
a translational activation pathway (Eckmann et al., 2004).

Cytoplasmic Organization of RNA
Regulation
Many RBPs that mediate post-transcriptional regulation of germ
cell development are found enriched at cytoplasmic foci called
RNA granules. Germ cells have a number of RNA granule
subtypes (Figure 1A), including germ granules or P granules
in C. elegans, processing bodies, and stress granules (Voronina
et al., 2011). The processing bodies and stress granules are
distributed throughout the cytoplasm in somatic cells as well as
in germ cells (Boag et al., 2005; Noble et al., 2008; Hubstenberger
et al., 2017; Lechler et al., 2017). By contrast, P granules are
perinuclear cytoplasmic RNA granules specific to germ cells
and present throughout germline development, excluding mature
sperm (Strome and Wood, 1982). All PUF proteins expressed
in the C. elegans germline are found in RNA granules (Noble
et al., 2008; Ariz et al., 2009; Voronina et al., 2012; Haupt et al.,
2019b). PUF-5 colocalizes with processing body components
(Noble et al., 2008), PUF-8 and FBF-2 localize to P granules
(Ariz et al., 2009; Voronina et al., 2012; Wang et al., 2016), and
the identities of RNA granules containing FBF-1 or PUF-3 and
PUF-11 are currently unknown.

REGULATORY ROLES OF PUF
PROTEINS IN C. elegans GERMLINE
STEM AND PROGENITOR CELLS

PUF Function in Maintaining Germline
SPCs
Germline stem cells are maintained by promoting proliferation
and/or inhibiting cell death and differentiation. FBF-1 and FBF-
2 are redundantly required for maintaining germline SPCs in
adult hermaphrodites since a C. elegans double mutant for
both FBFs lose their germline stem cells by 24 h after the last
larval stage (Crittenden et al., 2002). Several FBF targets have
been proposed to contribute to FBFs’ role in SPC maintenance
(Figure 2A). First, FBFs are suggested to repress expression
of MPK-1, a homolog of Mitogen-activated protein kinase
(MAPK)/ERK, and mpk-1 mRNA contains two FBF binding
elements in its 3’UTR (Lee et al., 2007a). This repression was
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FIGURE 2 | The multiple functions of FBFs and PUF-8 in C. elegans germline
SPCs. (A) PUF-8 acts redundantly with MEX-3 to facilitate GLP-1 signaling
(Ariz et al., 2009). Downstream of GLP-1/Notch, FBFs promote germline SPC
proliferation by repressing cell cycle regulators, meiotic mRNAs, and mpk-1
MAP kinase (Crittenden et al., 2002; Lee et al., 2007a; Kalchhauser et al.,
2011). (B) FBFs act with GLD-2, GLD-3 complex to promote SPC meiosis by
activating GLD-1 expression (Suh et al., 2009). PUF-8 facilitates meiosis by
repressing LET-60/RAS (Vaid et al., 2013), while FBFs repress mpk-1. The
contribution of mpk-1 repression by FBFs to regulation of SPC proliferation
and differentiation is discussed in section “PUF Function in Inhibiting Mitotic
Cell Fate of SPCs and Promoting Differentiation.” (C) PUF-8 controls the
sperm/oocyte switch by acting redundantly with FBF-1 to repress fog-2
(Bachorik and Kimble, 2005). FBF proteins control the sperm/oocyte switch by
acting with NOS-3 to repress fem-3 (Kraemer et al., 1999; Arur et al., 2011) as
well as by repressing fog-1 and possibly fog-3 (Thompson et al., 2005). Both
PUF-8 and FBF-1 cooperate with LIP-1 to repress MPK-1 activity in SPCs,
dpMPK-1 refers to a diphosphorylated active form of MPK-1 (discussion and
references in section “PUF Function in Controlling the Sperm/Oocyte Decision
in Germline Mitotic Zone”). dpMPK-1 promotes spermatogenesis, although
specific relevant substrates are yet unknown. (D) PUF-8 maintains germ cell
fate by repressing somatic transcription factor PAL-1 (Mainpal et al., 2011).

hypothesized to be important for stem cell maintenance since
RNAi-mediated knockdown of mpk-1 increased the number of
mitotic germ cells, while promoting MPK-1 activity by a Ras gain-
of-function mutation let-60(n1046) decreased the number of
mitotic germ cells (Lee et al., 2006). Similarly, MAPK repression
is observed to promote self-renewal of embryonic stem cells and
skeletal muscle stem cells (Burdon et al., 1999; Bernet et al.,
2014). However, in addition to repressing MPK-1, FBFs repress
the expression of its negative regulator, MAPK inactivating
phosphatase LIP-1 (Lee et al., 2006). Therefore, an fbf mutation
would derepress both MPK-1 and LIP-1 that inhibits MAPK
activity and thus might not result in abnormal activation of MPK-
1 in SPCs. Instead, such mutation would result in a sensitized
background that might deregulate MPK-1 following additional
genetic lesions. Regulation of MAPK by PUF homologs appears
conserved in evolution, and was also documented in human
embryonic stem cells as well as in mouse spermatocytes

(Lee et al., 2007a; Chen et al., 2012). Second, FBFs promote self-
renewal of germline stem cells by repressing expression of CKI-2
(Kalchhauser et al., 2011), a Cyclin-dependent kinase inhibitor
that regulates cell cycle entry/exit decisions (Buck et al., 2009).
Removing cki-2 partially rescues the germline stem cell depletion
phenotype in fbf-1 fbf-2 double mutant adult hermaphrodites
(Kalchhauser et al., 2011), suggesting that repression of cki-2
is not the only mechanism by which FBFs promote stem cell
proliferation. CIP/KIP family cyclin-dependent kinase inhibitors
are conserved targets of PUF proteins as they were found to be
regulated by PUFs in mouse embryos and human cells (Kedde
et al., 2010; Lin et al., 2019). Interestingly, genes encoding diverse
cell cycle regulators, beyond cki-2 and its homologs, are enriched
among target mRNAs pulled down with FBFs as well as PUF
proteins from other organisms (Hafner et al., 2010; Kershner
and Kimble, 2010; Chen et al., 2012; Prasad et al., 2016; Porter
et al., 2019), suggesting a conserved mechanism of PUF-mediated
control of cell proliferation. Third, FBFs prevent premature
meiotic entry of SPCs by inhibiting expression of target mRNAs
that encode differentiation-promoting regulators, such as GLD-
1 (Crittenden et al., 2002), GLD-2 (Millonigg et al., 2014), and
GLD-3 (Eckmann et al., 2004), as well as structural components
of meiotic chromosomes, such as HTP-1,-2 orthologs of human
HORMAD1 and 2 (Merritt and Seydoux, 2010).

PUF-8 promotes germline SPC proliferation by acting
redundantly with a KH domain-containing RBP MEX-3
(Figure 2A; Ariz et al., 2009). This function might be explained
by PUF-8-dependent translational control of cell cycle regulators,
but the analysis of GLP-1/Notch receptor in the mutant
germlines uncovered mislocalization of GLP-1 protein (Ariz
et al., 2009). It appears that PUF-8 facilitates translation of
the endoplasmic reticulum protein FARL-11 that is required
for GLP-1 membrane localization (Maheshwari et al., 2016),
suggesting another potential mechanism of PUF-8 promoting
SPC proliferation.

PUF Function in Inhibiting Mitotic Cell
Fate of SPCs and Promoting
Differentiation
In addition to facilitating stem cell maintenance, both FBFs
and PUF-8 were unexpectedly found to limit stem cell numbers
by promoting stem cell exit from mitosis and differentiation
(Figure 2B). The GLP-1/Notch signaling within the distal niche
maintains the mitotic cell fate of germline SPCs (Hansen and
Schedl, 2006; Kimble and Crittenden, 2007). Temperature-
sensitive glp-1(gf) mutant animals with excessive GLP-1 activity
have slightly enhanced proliferation of germline SPCs at the
permissive temperature, and produce tumorous germlines at
the restrictive temperature (Berry et al., 1997; Pepper et al.,
2003; Wang et al., 2012). Interestingly, puf-8 knockout strongly
enhances germ cell over-proliferation of several glp-1(gf) mutants
at the permissive temperature. This suggests that puf-8 might
inhibit mitotic cell fate of SPCs through negatively regulating the
GLP-1/Notch signaling or by functioning parallel to it (Racher
and Hansen, 2012). One relevant target mRNA for PUF-8-
mediated inhibition of the mitotic cell fate is C. elegans RAS
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homolog LET-60. Loss of puf-8 promotes accumulation of both
endogenous LET-60 and a GFP:H2B reporter under the control
of the let-60 3’UTR in mitotic germ cells as well as in early
meiotic cells, suggesting direct regulation of let-60 by PUF-8
(Vaid et al., 2013). Increased levels of LET-60 in puf-8 mutant are
not sufficient to ectopically activate MPK-1 in SPCs (Vaid et al.,
2013). However, additional loss of LET-60 negative regulator
gap-3 in the puf-8; gap-3 double mutant leads to activation of
MPK-1 throughout the germline, abnormal mitotic proliferation,
and tumorous germlines (Vaid et al., 2013). Interestingly, tumor
formation in this genetic background was dependent on MAPK
signaling and was repressed by RNAi-mediated depletion of
MAPK pathway components (Vaid et al., 2013). It appears that
MAPK activation doesn’t always cause the proliferative response
of SPCs, since the presence of activated MPK-1 in a different
double mutant background (fbf-1; lip-1) fails to elicit abnormal
proliferation (Lee et al., 2007a). This brings up a question whether
MAPK signaling promotes SPC proliferation (Lee et al., 2006)
or differentiation (Vaid et al., 2013). Analysis of null mutants in
lin-45/RAF, mek-2/MEK, and mpk-1/ERK suggested that MAPK
components are not essential for SPC maintenance, but each
leads to a decrease in SPC numbers especially as animals age
(Lee et al., 2007b). Additionally, null mutants in lin-45/RAF,
mek-2/MEK, and mpk-1/ERK enhance premature meiotic entry
defect of a temperature-sensitive glp-1 loss-of-function allele at
the permissive temperature, suggesting that MAPK signaling
promotes SPC proliferation (Lee et al., 2007b). On the other
hand, RNAi depletion of mpk-1 increased SPC numbers (Lee
et al., 2006). The null mutations and RNAi treatment might
not affect gene function with the same efficiency, and disparate
results obtained by the two approaches might point to the critical
differences in specific levels and developmental dynamics of
MAPK activity underlying each phenotype. Considering this,
regulation of multiple genes affecting the levels of MPK-1-
mediated signaling by FBFs and PUF-8 (Lee et al., 2006, 2007a;
Vaid et al., 2013) might allow SPCs to maintain precise control of
MPK-1 activity during development.

Genetic evidence suggests that FBFs act to promote meiotic
entry of SPCs through the GLD-2, GLD-3 genetic pathway
(Crittenden et al., 2002). GLD-1, NOS-3 and GLD-2, GLD-
3 are the two main pathways that redundantly promote SPC
meiotic entry (Figure 1B; Kimble and Crittenden, 2007). In
the absence of gld-1, FBFs are no longer required to sustain
germline proliferation and the gld-1; fbf-1 fbf-2 mutant worms
have tumorous germline with all mitotic cells (Crittenden
et al., 2002). This tumorous germline phenotype is similar to
the tumors observed in gld-1; gld-2 and gld-1; gld-3 mutants
(Kadyk and Kimble, 1998; Eckmann et al., 2004), suggesting
a possibility that FBF proteins function through the GLD-
2, GLD-3 genetic pathway to promote meiotic entry. Direct
interaction of FBF with GLD-3 that might underlie this function
is discussed further in section “Protein Cofactors That Change
PUF Regulatory Outcome.”

The fact that PUF proteins appear to regulate both
proliferation and differentiation is enigmatic and has promoted
several interpretations. For example, PUF-8 represses some
mRNAs associated with proliferation while facilitating expression

of other targets promoting proliferation in the same cells. As
a result, it is possible that the overall effect of PUF-8 on
germline proliferation is minor, and it acts to fine-tune SPC
proliferation rather than as an all-or-none switch specifying stem
cell fate. In a similar vein, functional annotation of mRNAs co-
isolated with FBFs suggests that they associate with and repress
mRNAs required for both differentiation as well as cell cycle
progression of germ cells (Prasad et al., 2016; Porter et al.,
2019). One intriguing interpretation is that this allows FBFs to
simultaneously control the rate of both SPC proliferation and
differentiation, thus maintaining the balance between these two
cell fates. In order to maintain stem cell numbers over time, their
self-renewal needs to be matched with differentiation (Morrison
and Kimble, 2006). In C. elegans, SPC homeostasis is controlled at
a population level, where some progenitor cells are lost through
differentiation, while other cells proliferate, with both outcomes
observed at the same frequency (Kimble and Crittenden, 2007).
Although C. elegans SPCs proliferate continuously, the rate of
SPC proliferation changes during development and is responsive
to environmental conditions and nutrition (Hubbard et al., 2013).
Simultaneous control of SPC proliferation and differentiation
by FBFs might work to match the output of the stem cell
compartment to the proliferative demands of the germline, while
keeping the two fates in a balance.

PUF Function in Controlling the
Sperm/Oocyte Decision in Germline
Mitotic Zone
The mechanism underlying sperm/oocyte decision has been a
long-standing question in all animals (Casper and Van Doren,
2006; Kimble and Page, 2007). In C. elegans hermaphrodites,
germlines first produce sperm and then oocytes, but it is still
not clear when, where, and how the sperm/oocyte switch is
executed. As recently reviewed (Zanetti and Puoti, 2013), the
germline sex determination is executed through an elaborate
pathway involving more than 30 regulators for sperm or oocyte
specification, part of which is shown in Figure 2C. These
regulators, including GLD-1, TRA-1 (GLI transcription factor
homolog; Hodgkin, 1987), and FOG-1 (feminization of the
germline, a member of cytoplasmic polyadenylation element
binding protein family; Jin et al., 2001) are expressed in the
proximal mitotic region and transition zone, suggesting that
the commitment of germ cells to the sperm or oocyte fate
might occur in distal germline. Studies of sex determination
in a temperature-sensitive fog-1 mutant suggested that germ
cells might become committed to the sperm or oocyte fate
when they enter meiosis (Barton and Kimble, 1990). Further
analysis of sex determination in puf-8; lip-1 worms that permit
chemical manipulation of the sperm/oocyte decision supported
these earlier conclusions by mapping the sex fate determination
to the progenitor cells moving proximally to transition zone
(Morgan et al., 2013). PUF-8, FBF-1, and FBF-2 contribute to the
control of the sperm/oocyte decision by regulating expression of
sex-determination regulators (Figure 2C).

FBF-1 and FBF-2 are redundantly required for controlling
the sperm/oocyte switch. Nematodes mutant for individual fbf
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genes produce both sperm and oocytes, but the fbf double
mutants fail to switch from spermatogenesis to oogenesis
and only produce sperm (Zhang et al., 1997). The two
FBF paralogs promote oogenesis by repressing several target
mRNAs including fem-3, fog-1, and possibly fog-3 that are
positive regulators for sperm fate decision (Zhang et al.,
1997; Thompson et al., 2005). Additionally, Nanos homolog
NOS-3 physically interacts with FBF proteins and participates
in the FBF-mediated sperm/oocyte switch through forming
a regulatory complex that represses the translation of fem-
3 mRNA (Kraemer et al., 1999; Arur et al., 2011). The
binding between NOS-3 and FBF-1 is disrupted by MPK-
1/ERK-dependent phosphorylation of NOS-3 to limit formation
of the functional complex to the distal germline (Arur et al.,
2011). Lastly, functional splicing machinery promotes efficient
sperm/oocyte switch (Kerins et al., 2010), and a combination
of fbf single mutants and splicing factor knockdown results
in enhanced germline masculinization, suggesting that the
splicing machinery facilitates FBF function in sex determination
(Novak et al., 2015).

PUF-8 and FBF-1 also redundantly promote the germline
sperm/oocyte switch (Bachorik and Kimble, 2005). A mutation
in puf-8 results in a low percentage of germlines that develop
excess sperm and fail to switch to oogenesis, whereas most
of the fbf-1 puf-8 double mutants result in germlines with
a failed sperm/oocyte switch. GLD-1 and FOG-2 proteins
can physically interact (Clifford et al., 2000), and both
are required for the sperm fate determination (Jan et al.,
1999; Clifford et al., 2000; Hu et al., 2019). The dramatic
increase in FOG-2 protein abundance in fbf-1 puf-8 double
mutants and rescue of oogenesis in fbf-1 puf-8; fog-2 triple
mutants suggests that FBF-1 and PUF-8 function upstream
of FOG-2 in the sex determination pathway (Bachorik and
Kimble, 2005). In addition, PUF-8 acts redundantly with
MEX-3 to promote the sperm/oocyte switch (Ariz et al.,
2009). Although puf-8; mex-3 mutant germlines have severe
proliferation defects and never produce any gametes, 34%
of puf-8; mex-3(+/-) mutant worms produce only sperm
(Ariz et al., 2009). This suggests that MEX-3 contributes to
the sperm/oocyte switch in the absence of PUF-8, although
the relevant regulatory targets have not yet been identified
(Ariz et al., 2009).

One of the many functions of MAPK/ERK signaling pathway
in C. elegans is to promote the sperm fate (Lee et al., 2007b).
Therefore, regulation of MPK-1 activity by PUF-8 and FBF-
1 reviewed above contributes to germline sex determination.
Hyperactivation of MPK-1 and excessive spermatogenesis were
observed in puf-8; lip-1 as well as in fbf-1; lip-1 genetic
backgrounds (Morgan et al., 2010; Sorokin et al., 2014). In
these genetic backgrounds, spermatogenesis was dependent
on MPK-1 activity and repressed by a small molecule MEK
inhibitor U0126 (Morgan et al., 2010; Sorokin et al., 2014).
Activation of MPK-1 in fbf-1; lip-1 genetic background likely
results from the loss of FBF-mediated repression of mpk-1
translation and the loss of LIP-1-mediated post-translational
inhibition of MPK-1 (Lee et al., 2007a). On the other
hand, PUF-8 limits ERK activity by repressing LET-60/RAS

(Vaid et al., 2013), and the puf-8; lip-1 double mutant results in
hyperactivation of MPK-1/ERK at meiotic entry in the transition
zone (Morgan et al., 2013).

PUF-8 Function in Protecting Germ Cell
Fate
In multicellular animals, diverse factors and mechanisms,
including posttranscriptional regulation, contribute to the
maintenance of germ cell fate and protect germ cells from
reprograming toward somatic cells (Strome and Updike, 2015).
To protect germ cell identity, PUF-8 suppresses the expression of
pal-1 in germline stem cells of C. elegans (Figure 2D; Mainpal
et al., 2011). PAL-1 is a somatic homeodomain transcription
factor that activates transcription of its downstream targets such
as hlh-1 (Hunter and Kenyon, 1996; Lei et al., 2009). In turn, hlh-1
encodes the myogenic regulatory factor HLH-1/MyoD homolog
that is normally expressed in the embryonic muscle lineage
(Krause et al., 1990). Depletion of puf-8 results in derepression of
PAL-1 in germline SPCs and PAL-1-dependent misexpression of
HLH-1 in germ cells (Mainpal et al., 2011). These findings suggest
that PUF-8 protects germline SPCs from the impact of somatic
differentiation factors such as PAL-1.

MECHANISMS BEHIND FUNCTIONAL
DIVERGENCE OF PUF PROTEINS

The highly conserved RNA-binding domain of canonical PUF
family proteins recognizes stereotypical consensus binding sites
in target mRNAs (Wang et al., 2018). Yet, as reviewed in the
previous section, individual PUF proteins have clearly distinct
regulatory functions. In C. elegans germline stem cells, activities
of multiple PUF proteins combine to promote many aspects of
healthy stem cell function. This made C. elegans germline an
excellent model to probe the mechanisms mediating functional
specialization of PUFs. Here we will survey the recent insights
into the mechanisms specifying unique non-redundant aspects of
RNA regulation mediated by FBF-1, FBF-2, and PUF-8.

Structural Differences in RNA-Binding
Domains Determine the Specificity of
Binding RNA
All canonical PUF proteins contain a highly conserved RNA-
binding domain, PUF domain (also known as PUM-HD), with
eight consecutive α-helical repeats. Crystal structures of the
PUM-HDs from different organisms bound to short target
RNA motifs revealed that the PUM-HD forms a crescent shape
molecule with eight α-helical repeats (Edwards et al., 2001; Wang
et al., 2001, 2002, 2009; Zhu et al., 2009). Mutational analysis
of Drosophila Pumilio revealed the amino acids mediating
contacts with the mRNA and protein partners (Zamore et al.,
1997; Wharton et al., 1998; Sonoda and Wharton, 1999, 2001).
Subsequent structural studies of Drosophila, C. elegans, and
mammalian PUFs extended the genetic and biochemical data
and have identified the TRMs that contact RNA on the concave
surface as well as the sites on the convex surface that interact
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with protein partners (Edwards et al., 2001; Wang et al., 2002,
2009; Campbell et al., 2014; Bhat et al., 2019; Qiu et al., 2019).
Differences in the PUF RNA-binding domains result in distinct
RNA motifs bound by PUF homologs.

In vitro biochemical studies using isolated PUF domains
found that C. elegans FBFs bind to the same RNA motif, a 9-
nt motif (5′-UGURHHAUA-3′; Bernstein et al., 2005; Opperman
et al., 2005; Campbell et al., 2012), while PUF-8 recognizes an
8-nt motif (5′-UGUANAUA-3′; Opperman et al., 2005; Bhat
et al., 2019). Crystal structures of FBF and PUF-8 PUM-
HDs in complex with their preferred RNA oligonucleotides
uncovered RNA-binding modes for each protein. FBF’s PUM
repeats R8-R6 bind to the 5′-UGU sequence and PUM repeats
R1–R3 bind to the AUA-3′ element. The purine in the fourth
position is recognized by PUM repeat R4, while bases in
positions five and six turn away from the RNA-binding surface.
Interactions between base five and the protein depend on the
identities of the fourth and fifth bases, and base six does
not interact with PUM-HD at all (Wang et al., 2009). By
comparison, PUF-8’s PUM repeats R8-R5 bind to the 5′-UGUA
sequence, while PUM repeats R3-R1 bind to the AUA-3′ sequence
with central fifth base stacked with the fourth base and not
recognized by the protein (Bhat et al., 2019). Distinct binding
site preferences between FBFs and PUF-8 are expected to result
in specific mRNA populations associated with these proteins.
FBF-1 and FBF-2 share most of their target mRNAs, which
has been demonstrated by immunoprecipitation followed by
CLIP-seq analyses (Prasad et al., 2016; Porter et al., 2019).
Initial characterization of PUF-8 target mRNAs was carried
out through a pull-down with recombinant protein followed
by micro-array analysis (Mainpal et al., 2011). Although PUF-
8 target data is less extensive than those available for FBFs,
several notable observations emerge. A number of PUF-8 targets
are also present in FBF target lists and some, such as ubc-6,
are regulated by both PUF-8 and FBFs (Mainpal et al., 2011;
Prasad et al., 2016). However, overall the mRNAs bound to
PUF-8 and FBFs are largely distinct. While further studies will
determine the extent of PUF-8’s targets overlapping with those
of FBFs, these initial results provide an attractive model of
specifying distinct but redundant functions of FBFs and PUF-8
in the germline.

If distinct binding preferences of PUF proteins underlie
the differences in their function, one might expect to elicit
functional changes in PUFs through changing the RNA-binding
interface. Recent structural study revealed that the RNA-binding
preference of FBF-2 can be changed to become similar to
that of PUF-8 through mutations in TRM of PUM repeat
R5 (Bhat et al., 2019). The FBF-2 R5 variant was tested
for its ability to mediate a PUF-8-specific function, namely
promoting SPC differentiation in a genetic background of a
temperature-sensitive glp-1(gf) mutation. While 98% of glp-
1(gf) germlines with the wild-type FBF-2 developed tumors
upon puf-8 knockdown, over-proliferation was only observed
in 36% germlines expressing FBF-2 R5 variant (Bhat et al.,
2019). This partial rescue supports the importance of PUF
domain RNA-binding preference in specifying function, but it
still remains to be determined whether FBF-2 R5 variant truly

elicits its new effect through associating with and regulating
PUF-8 targets in vivo.

Protein Cofactors That Change RNA
Target Preference
While determination of in vivo FBF targets confirmed FBF
preferential association with mRNAs containing canonical FBF-
binding element identified in vitro, many of the identified targets
did not contain the canonical motif, suggesting that FBF binding
specificity may be altered in vivo (Prasad et al., 2016; Porter
et al., 2019). Biochemical and structural studies of PUFs in
complex with their partner proteins revealed that several PUF
interacting partners can affect the RNA-binding affinity and
specificity of PUF proteins (Figures 3A,B). Crystal structure of
Nanos-Pumilio-RNA complex from Drosophila suggested that
Nanos embraces Pumilio and RNA, contributes to sequence-
specific contacts, and increases Pumilio affinity for hunchback
mRNA (Weidmann et al., 2016; Malik et al., 2019). By contrast,
association of Pumilio with mothers against dpp (mad) mRNA
requires Bam and Bgcn proteins, but not Nanos (Malik et al.,
2019). In C. elegans, both FBF proteins physically interact
with CPB-1, a cytoplasmic polyadenylation element binding
protein (Luitjens et al., 2000; Menichelli et al., 2013). The assay
investigating binding of FBF-2 PUF domain to target mRNA in
the presence of a 40-amino-acid fragment of CPB-1 outside of the
RNA-binding domain demonstrated that association with CPB-
1 fragment alters FBF’s preference for specific RNA sequences
(Campbell et al., 2012; Menichelli et al., 2013). Additional FBF
interaction partners include novel proteins SYGL-1 and LST-1
that are required for FBF-dependent target mRNA repression in
germline SPCs (Kershner and Kimble, 2010; Brenner and Schedl,
2016; Shin et al., 2017; Haupt et al., 2019a). Using SEQRS (in vitro
selection, high-throughput sequencing of RNA, and sequence
specificity landscapes), analysis of RNA-binding preference of
FBF-2 PUF domain bound to a 150-amino-acid LST-1 fragment

FIGURE 3 | Modification of FBF biological activity though interactions with
protein partners. (A) On its own, FBF PUF domain binds to target mRNAs
containing a canonical 9-nt motif (Wang et al., 2009; Bhat et al., 2019; Qiu
et al., 2019). (B) FBF PUF domain’s RNA-binding specificity can be influenced
by interactions with protein partners such as CPB-1 (Menichelli et al., 2013)
and LST-1 (Qiu et al., 2019). (C) FBFs can repress target mRNAs by recruiting
deadenylase complex (Goldstrohm et al., 2006; Suh et al., 2009). (D) FBFs
can promote mRNA polyadenylation by interacting with the poly(A)
polymerase complex (Eckmann et al., 2002; Suh et al., 2009).
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containing one of FBF-binding sites revealed a distinct RNA-
binding specificity of the FBF-2/LST-1 complex (Qiu et al., 2019).
Crystal structure of FBF-2 in complex with a 24-amino-acid
fragment of LST-1 and an 8-nucleotide RNA oligo isolated by
in vitro selection showed that FBF-2 PUF domain changes its
RNA-binding mode to 1:1 association of PUM repeats R4-R5 with
GA in positions four and five (Qiu et al., 2019). However, the
structural basis for the changes in the RNA-binding specificity is
not entirely clear since association with LST-1 peptide appeared
to weaken FBF-2 affinity for all tested target sequences (Qiu
et al., 2019). Further studies are necessary to understand whether
association with full-length LST-1 has similar effects on FBF-2
binding to its targets.

Protein Cofactors That Change PUF
Regulatory Outcome
Pumilio and FBF proteins lack enzymatic activity and often
mediate their regulatory influence by recruiting specific cofactors
to their target mRNAs (Sonoda and Wharton, 1999, 2001;
Eckmann et al., 2002; Cho et al., 2005, 2006; Goldstrohm et al.,
2006; Kadyrova et al., 2007; Suh et al., 2009; Friend et al.,
2012). PUF proteins typically reduce expression of their targets
by repressing translation or promoting RNA decay (Wreden
et al., 1997; Olivas and Parker, 2000; Crittenden et al., 2002;
Goldstrohm et al., 2006; Cao et al., 2010; Weidmann and
Goldstrohm, 2012). This repressive function of PUF proteins
in C. elegans and other species can be mediated by CCR4-
NOT deadenylase that promotes RNA deadenylation and decay
(Figure 3C), and FBF-1, FBF-2, and PUF-8 all bind deadenylase
enzyme CCF-1 (Goldstrohm et al., 2006; Suh et al., 2009). One
alternative repressive mechanism suggested for FBFs relies on
PUF domain interaction with Argonautes resulting in attenuated
translational elongation (Friend et al., 2012).

In several cases, PUF proteins appear to activate translation:
FBFs are suggested to promote GLD-1 expression in
spermatogenic germline as well as translation of EGL-4
in neurons, while PUF-8 facilitates translation of FARL-
11 in germline SPCs (Kaye et al., 2009; Suh et al., 2009;
Maheshwari et al., 2016). A search for cofactors of FBFs
uncovered an interaction with poly(A) polymerase complex
identifying one potential mechanism for translational activation
(Figure 3D; Eckmann et al., 2002; Kimble and Crittenden,
2007). FBFs interact with the GLD-3 subunit of GLD-3/GLD-2
cytoplasmic poly(A) polymerase complex (Eckmann et al.,
2002). FBFs also interact with the GLD-2 subunit in the
RNA-independent manner, and this interaction is facilitated
by formation of a larger complex including GLD-3 (Suh
et al., 2009). Interaction with GLD-3 does not affect FBFs
binding to their target mRNA, and is instead hypothesized to
switch the regulatory outcome from repression to activation
(Wu et al., 2013).

It is still unknown what cofactors are required for PUF-8-
mediated translational activation. Since FBF interacts with GLD-
3 via its conserved RNA-binding domain (Wu et al., 2013),
it is possible that PUF-8 RNA-binding domain might interact
with GLD-3 as well. Additionally, a recent study found that

PUF-8 promotes accumulation of several of its target mRNAs
through interaction with mRNA processing/export machinery
components, such as the nuclear cap-binding protein NCBP-2
(Pushpa et al., 2013).

Distinct PUF Localization
FBF-1 and FBF-2 are nearly identical in primary sequence,
share most of the target mRNAs (Prasad et al., 2016; Porter
et al., 2019), and function redundantly in maintaining germline
SPCs. Nevertheless, they differentially affect germline SPC zone
size as fbf-2 mutant maintains a larger SPC zone than the fbf-
1 mutant (Lamont et al., 2004). In addition, FBF homologs
have different effects on their target mRNAs: FBF-1 promotes
the clearance of target mRNAs required for meiosis out of
the mitotic region, whereas FBF-2 sequesters target mRNAs
while preventing their translation (Voronina et al., 2012).
These differences correlate with FBFs’ localization to distinct
RNA granules. FBF-2 localizes to P granules and requires
P granule integrity for its activity, while FBF-1 localizes to
perinuclear RNA granules adjacent to P granules and its
activity does not require P granule integrity (Voronina et al.,
2012). P granule localization of FBF-2 requires interaction
with a small protein DLC-1, dynein light chain 1 (Wang
et al., 2016). DLC-1 directly interacts with FBF-2, but not
with FBF-1, by binding to several sites outside of FBF-2 RNA-
binding domain where FBF-1 and FBF-2 sequences diverge
(Wang et al., 2016).

Similar to FBF-2, PUF-8 localizes to P granules as determined
by co-immunostaining of PUF-8:GFP and P granule component
PGL-1 (Ariz et al., 2009). However, the requirement of P granules
for PUF-8 function has not been evaluated so far. Additionally,
PUF-8 has been shown to localize to the nuclear cortex, where
it has been proposed to interact with the nuclear mRNA export
machinery and promote the export of several germline mRNAs
(Pushpa et al., 2013).

CONCLUSION

Pumilio and FBF family RBPs have evolved as essential
post-transcriptional regulators of stem cell development in
eukaryotes. PUF-mediated RNA regulation is achieved through
recognizing target mRNAs and subsequently changing their rates
of degradation or translation. Three PUF proteins, PUF-8, FBF-
1 and FBF-2, expressed in C. elegans germline mitotic region
are required for many aspects of germline SPCs development,
and each facilitates specific aspects of SPC function. Studies in
C. elegans resulted in considerable advances in understanding
the mechanisms behind diverse biological activities of PUFs
as shown in Figure 3. The next challenge to the field is to
uncover the mechanisms directing PUF protein’s choice of
specific cofactors and influencing PUFs’ function as negative or
positive translational regulators in stem cells.

fem-3-binding factors’ association with CPB-1 and LST-1
affects FBF affinity and selectivity toward their target mRNAs.
CPB-1 and LST-1 are expressed at different developmental
stages, with CPB-1 expressed in differentiating spermatogenic
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cells (Luitjens et al., 2000) and LST-1 expressed in stem cells
(Shin et al., 2017). Their stage-specific association with FBFs
might result in a shifting repertoire of FBF regulatory targets
across development. Both CPB-1 and LST-1 appear to bind
to the same site on FBF RNA-binding domain. Interestingly,
this binding site is also shared by GLD-3, a protein that
doesn’t affect FBF target selection, but rather might change FBF
regulatory outcome from translational repression to translational
activation. Since GLD-3 becomes expressed as SPCs transition
to meiosis, it is unclear whether GLD-3 competes with LST-
1 for binding to FBFs. In the future, it would be important
to understand the mechanisms regulating PUF association with
their cofactors. In yeast, nutrient-responsive phosphorylation of
PUF protein Puf3p at the N-terminal low complexity region
can switch the fate of its target mRNAs from degradation to

translation (Lee and Tu, 2015), suggesting a possibility that post-
translational modifications can provide an additional layer of
regulation that affects PUF protein activity.
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