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Abstract: In this article, the behavior of various Pd ensembles on the PdAg(111) surfaces was sys-
tematically investigated for oxygen reduction reaction (ORR) intermediates using density functional
theory (DFT) simulation. The Pd monomer on the PdAg(111) surface (with a Pd subsurface layer) has
the best predicted performance, with a higher limiting potential (0.82 V) than Pt(111) (0.80 V). It could
be explained by the subsurface coordination, which was also proven by the analysis of electronic
properties. In this case, it is necessary to consider the influence of the near-surface layers when
modeling the single-atom alloy (SAA) catalyst processes. Another important advantage of PdAg
SAA is that atomic-dispersed Pd as adsorption sites can significantly improve the resistance to CO
poisoning. Furthermore, by adjusting the Pd ensembles on the catalyst surface, an exciting ORR
catalyst combination with predicted activity and high tolerance to CO poisoning can be designed.

Keywords: oxygen reduction reaction; DFT calculation; PdAg/Ag(111) surface alloy; single-atom
alloy; efficient catalyst

1. Introduction

The rapid development of human society increases the demand for energy, which
would then further exacerbate the environmental problems, such as climate change and air
pollution, caused by the consumption of non-renewable fossil fuels. Therefore, there is an
urgent need to develop clean, renewable, and high-capacity energy conversion/storage
technologies [1,2], such as the use of fuel cells, which is an efficient and promising energy
conversion technology with clean reaction products and zero greenhouse gas emissions [3].
However, the broad deployment of fuel cells is still a challenge due to the high cost and
sluggish oxygen reduction reactions (ORR) of cathode electrocatalysts [4,5]. Despite that
great efforts have been made to search for new ORR catalysts, the most effective catalysts
currently used for ORR are still pure platinum (Pt) and its alloys [6,7]. Many noble metal-
based catalysts, especially Pt-based electrocatalysts, are susceptible to inactivity due to
carbon monoxide (CO) poisoning. CO molecules block the reaction pathway by binding
tightly to the active site, thus limiting the overall efficiency of proton exchange membrane
(PEM) devices. In this case, the development of highly active, durable, and low-cost non-Pt
catalysts resistant to CO has attracted great interest [8–10].

To reach a feasible stage of practical and general use of PEM fuel cells, one of the
main obstacles is to develop a new catalyst at least as active as Pt-based metals, but
with a lower noble metal content. The relative composition and distribution of metallic
substances in bimetallic structures change as a result of the simultaneous presence of
various competing effects, i.e., electron ligand, strain, and ensemble effects [11]. Non-linear
changes in reactivity and selectivity are usually observed. In this case, it becomes important
to understand these various effects [12]. A promising strategy is to dope non-reactive host
materials with trace amounts of transition metal atoms as active centers, in order to form the
monomer of transition metal on the surface, the so-called single-atom alloy (SAA) [13,14].
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Generally speaking, the unique geometric properties of these SAA catalysts have improved
the selectivity and stability of hydrogen-related reactions, C–C coupling, oxygen reduction,
and CO2 reduction, as well as higher tolerance to catalytic poisoning [10,15–17].

Currently, palladium (Pd) is one of the most active transition metals with ORR activity
comparable to Pt in alkaline media, which exhibits similar catalytic behavior and long-
term durability [18–20]. A further advantage of Pd and its alloys is that it is considerably
cheaper and has higher CO tolerance [21,22]. Alloying Pd with cheaper non-reactive
host metals has been reported to be an effective strategy to improve its ORR activity and
make PEM more economical [23–25]. For the ORR in alkaline media, silver (Ag) shows
potential as a candidate to be used in bimetallic alloys with Pd due to its less-expensive
cost and base stability [26–28]. Although Ag is approximately ten times less active than
Pt atoms, previous experimental studies have shown that Ag-based bimetallic alloys have
enhancement in the ORR behavior [29–31]. Recently, the behavior of PdAg surface alloys
has been intensively investigated by experiments and theoretical calculations, especially in
the reactive gas conditions. For example, the composition of the near-surface region of a
Pd75%Ag25%(100) single crystal during CO oxidation under oxygen-rich conditions using
near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) confirms that the
amount of Pd in the surface region decreases with increasing temperature. CO causes Pd
segregation into the topmost surface layer [32]. The strong effects of reactive gases such as
CO or O2 on the alloy structure and composition were investigated by scanning tunneling
microscope (STM) and Fourier transform infrared spectroscopy (FTIR) to illustrate the
correlation of chemical properties with structural aspects of bimetallic surfaces of a given
composition at ambient pressure [33–35]. Theoretical calculations show that the driving
force for the structural reconstruction is the strong interaction of the surface Pd sites
with the adsorbed CO molecules, which changes the surface energy and leads to surface
segregation of Pd [36,37]. Therefore, the surface structure can be intentionally adjusted
by specific treatment of the catalyst in a special gas atmosphere. What is worthy of our
attention is the theoretical studies on the mechanism of the oxygen reduction reaction
in pure metals or bimetallic alloys under alkaline conditions, aiming to understand the
detailed thermochemical processes of the active site’s pair of adsorbed hydroxide reactants
and intermediates [38–43]. It is also proposed that predictors of catalyst activity can use
the oxygen binding energy as a descriptor [44,45]. The catalyst activity prediction based
on this descriptor has been shown to be in good agreement with experimental results [46].
Understanding the enhanced mechanisms behind the surface structure of alloy-based
catalysts can guide the discovery of optimal reactivity/selectivity/stability and obtain
promising catalysts for more complex systems. In this study, we will explore the possibility
of using site-specific local reactive modifications to break the usual scaling relationships
when designing new bimetallic catalysts for ORR. We follow the correlation mechanism of
ORR on fcc metal (111) surfaces in earlier works, where the ORR pathway involves four
proton–electron transfers and the reaction intermediates hydroperoxyl (OOH), oxygen (O),
and hydroxide (OH) [40,45]. We calculate the adsorbate binding energies to determine their
catalytic properties using the simple model suggested by Nørskov et al. [47]. Details of the
associative reaction pathway and DFT calculations are provided in the Method Section.

According to our previous simulation and experimental results [48], using a combined
casting and quenching strategy, PdAg alloy shows an obvious component segregation
corresponding to the depth from the surface. A significant amount of Ag is observed on
the first layer. The Pd atoms tend to disperse and form small clusters (monomer, dimer,
and trimer), which shows good agreement with the experimental evidence. The main aim
of this study is to investigate the catalytic activity of the special structures found in our
previous research. The Pd(Ag)(111) is the close-packed surface of the face-centered cubic
(fcc) crystal, and the (111) surface has the largest exposed area of Wulff shape [49]. As an
example of small Pd ensembles (such as monomers and dimers), a snapshot of the first-layer
structure of PdAg(111) with 50% Pd at 1200 K was shown in Figure S1 in the Supplementary
Materials. Compared to the SAA surface annealed by magnetron sputtering, this strategy
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also produces a second layer of Pd enrichment on the alloy surface. Obviously, the PdAg
SAA alloy prepared by the casting and quenching strategy is a potential candidate as
a new catalyst of fuel cells, and this unique distribution might play a key role in the
catalytic properties.

In this paper, a density functional theory (DFT) study on the reactivity and thermody-
namics effects of Pd ensembles on the PdAg(111) surface is presented to assess the effect of
different sizes and configurations on the ORR activity. To account for effects introduced by
subsurface Pd, we also investigated PdAg(111) surface alloys with a Pd subsurface layer
underneath. These different surface structures with ORR intermediates (OOH, O, and OH)
were considered using the limiting potential as a metric of activity to study their trends, as
influenced by the size of the Pd ensembles. Finally, we used the adsorption energy of CO
to assess the extent of CO poisoning on the surface of these alloys compared with Pt(111).

2. Method
2.1. Density Functional Theory Calculations

All the DFT calculations in this study were performed using the Vienna Ab-initio
Simulation Package (VASP) [50,51]. The projector-augmented wave (PAW) method was
applied to treat electron–ion interactions, and the Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional within the generalized gradient approximation (GGA) was employed
to describe the electron interactions with a cutoff energy of 500 eV [52,53]. All struc-
tures were fully relaxed until the energy and force reached the convergence thresholds
of 10−5 eV and 0.01 eV/Å. For the first Brillouin zone integration, the 25 × 25 × 25 and
5 × 5 × 1 Γ-centered k-point meshes were used at structure optimization for the bulk unit
cell and slab models, respectively. For the calculation of the electronic structure of the
surfaces, a k-point of 10 × 10 × 1 was used. The convergence of the results with respect to
all the above parameters was carefully checked.

The simulated bulk lattice parameters obtained for Pd, Pt, and Ag were 3.94 Å, 3.97 Å
and 4.15 Å, respectively, which are in good agreement with the experimental values of
3.89 Å (error: 1.3%), 3.92 Å (error: 1.3%), and 4.09 Å (error: 1.4%) [41,54]. The slabs were
separated by 20 Å of vacuum in the perpendicular z-direction to avoid interactions between
the two periodic units, and a dipole correction was applied. The surfaces were modeled
by a 5-layer (4 × 4) supercell. The bottom three layers of each slab were fixed with the
bulk lattice constant of the corresponding host metal (Ag, 4.15 Å), while the top two layers
and the adsorbed species were fully relaxed. A detailed illustration of the considered
structures is shown in Figure 1 for the various configurations. For the various structures
studied in this work, we have used the following notation: Pd1LAg(111) denotes a surface
alloy at the topmost layer and a Pd sublayer underneath. In the case of a surface alloy, a
certain number of Ag atoms (1–3 Ag atoms) at the topmost Ag overlayer of a Pd1LAg(111)
structure were replaced by Pd atoms. Note that, in our model (Figure 1C), the whole
second layer was completely replaced by Pd atoms to simulate the fact that Pd is highly
enriched in the second layer [48]. The pure metal surfaces (Ag(111), Pd(111), and Pt(111)
in Figure 1A) and modified Ag(111) surfaces that were replaced by Pd atoms only on the
first layer (Figure 1B) were also investigated to compare with the Pd1LAg(111) structures.
The formation energies of Pd ensembles (monomer (M), dimer (D), and trimer (T)) in
these structures were calculated to investigate their relative stability. Here, the ensemble
formation energy per Pd atom is given by:

E f =
[

EPdAg − EAg(111) + NPd

(
EAg−bulk − EPd−bulk

)]
/NPd (1)

where EPdAg, EAg(111), EAg−bulk, and EPd−bulk represent the total energies of PdX@Ag(111) or
PdX@Pd1LAg(111) (X = M, D, T1, T2, T3), pure Ag(111), bulk Ag (per atom), and bulk Pd (per
atom), respectively, and NPd indicates the number of Pd atoms in the calculated surfaces.



Nanomaterials 2022, 12, 1802 4 of 15

Nanomaterials 2022, 12, x 4 of 16 
 

 

where 𝐸 , 𝐸 ( ) , 𝐸 , and 𝐸  represent the total energies of 
PdX@Ag(111) or PdX@Pd1LAg(111) (X = M, D ,T1, T2, T3), pure Ag(111), bulk Ag (per atom), 
and bulk Pd (per atom), respectively, and 𝑁  indicates the number of Pd atoms in the 
calculated surfaces. 

 
Figure 1. Considered geometries in this work. (A) The pure metal surfaces, Ag(111), Pd(111), and 
Pt(111), (B) modified PdAg(111) surfaces on the first layer, (C) modified PdAg(111) surfaces with a 
Pd subsurface layer. Pd monomer (indicated as M), dimer (D), and trimer (T). The silver, cyan, and 
gray balls represent Ag, Pd, and Pt atoms, respectively. 

To identify the energetically most favorable configuration, various possible adsorp-
tion sites were considered, including the top (T), bridge (B), and hollow (H) sites for the 
adsorbates (i.e., O, OH, OH, and CO). All geometric structures were visualized by using 
the Atomic Simulation Environment (ASE) [55]. The charge density distribution was vis-
ualized using VESTA [56]. The Bader charges were calculated using the Bader Charge 
Analysis Code [57]. 

2.2. Oxygen Reduction Reaction 
The ORR pathway usually involves four electron transfers and at least three interme-

diates [46,58]. The associative reaction pathway is given by: 𝑂 +∗ +(𝐻 + 𝑒 ) →∗ 𝑂𝑂𝐻 (2)∗ 𝑂𝑂𝐻 + (𝐻 + 𝑒 ) →∗ 𝑂 + 𝐻 𝑂 (3)∗ 𝑂 + (𝐻 + 𝑒 ) →∗ 𝑂𝐻 (4)∗ 𝑂𝐻 + (𝐻 + 𝑒 ) →∗ +𝐻 𝑂 (5)

where * denotes the adsorption site for oxygen-containing intermediates. 
The computational hydrogen electrode (CHE) model was adopted to calculate the 

adsorption-free energies of the four-electron transfer step for ORR, which defined the 
chemical potential of a proton–electron pair (𝐻 + 𝑒 ) equal to half of the chemical poten-
tial of gaseous 𝐻  at pH = 0 in the electrolyte, 1 bar of 𝐻  in the gas at 298.15 K, and 0 𝑈  (where 𝑅𝐻𝐸 is the reversible hydrogen electrode) [59]. To avoid the use of 𝑂  elec-
tronic energy, which is difficult to determine accurately within standard GGA-DFT [60], 
we reference the experimental formation energy of 𝐻 𝑂 (4.92 eV) and DFT-calculated en-
ergies of 𝐻 𝑂  and 𝐻  molecules to deduce the binding energy of each intermediate, 
which was used as follows: 2𝐻 𝑂 → 𝑂 + 2𝐻 , Δ𝐺 = 4.92 eV (6)

The reaction-free energy of each elementary step was calculated as follows: Δ𝐺 = Δ𝐸 + Δ𝑍𝑃𝐸 + Δ∫ 𝐶 𝑑𝑇 − 𝑇Δ𝑆 (7)

Figure 1. Considered geometries in this work. (A) The pure metal surfaces, Ag(111), Pd(111), and
Pt(111), (B) modified PdAg(111) surfaces on the first layer, (C) modified PdAg(111) surfaces with a
Pd subsurface layer. Pd monomer (indicated as M), dimer (D), and trimer (T). The silver, cyan, and
gray balls represent Ag, Pd, and Pt atoms, respectively.

To identify the energetically most favorable configuration, various possible adsorption
sites were considered, including the top (T), bridge (B), and hollow (H) sites for the
adsorbates (i.e., O, OH, OH, and CO). All geometric structures were visualized by using the
Atomic Simulation Environment (ASE) [55]. The charge density distribution was visualized
using VESTA [56]. The Bader charges were calculated using the Bader Charge Analysis
Code [57].

2.2. Oxygen Reduction Reaction

The ORR pathway usually involves four electron transfers and at least three interme-
diates [46,58]. The associative reaction pathway is given by:

O2 + ∗+
(

H+ + e−
)
→ ∗OOH (2)

∗OOH +
(

H+ + e−
)
→ ∗O + H2O (3)

∗O +
(

H+ + e−
)
→ ∗OH (4)

∗OH +
(

H+ + e−
)
→ ∗+ H2O (5)

where * denotes the adsorption site for oxygen-containing intermediates.
The computational hydrogen electrode (CHE) model was adopted to calculate the

adsorption-free energies of the four-electron transfer step for ORR, which defined the
chemical potential of a proton–electron pair (H++ e−) equal to half of the chemical potential
of gaseous H2 at pH = 0 in the electrolyte, 1 bar of H2 in the gas at 298.15 K, and 0 URHE.
(where RHE is the reversible hydrogen electrode) [59]. To avoid the use of O2. electronic
energy, which is difficult to determine accurately within standard GGA-DFT [60], we
reference the experimental formation energy of H2O (4.92 eV) and DFT-calculated energies
of H2O. and H2 molecules to deduce the binding energy of each intermediate, which was
used as follows:

2H2O→ O2 + 2H2, ∆G = 4.92 eV (6)

The reaction-free energy of each elementary step was calculated as follows:

∆G = ∆E + ∆ZPE + ∆
∫

CPdT − T∆S (7)

where ∆E is the difference in DFT-calculated electronic energy, ∆ZPE is the zero-point
energy (ZPE) change, ∆

∫
CPdT is the enthalpy change, T is the absolute temperature (here,

T = 298.15 K), and ∆S is the entropy change for the reaction. All thermodynamic data
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were processed with VASPKIT code [61]. The adsorption-free energies were calculated
as follows:

∆G∗OOH = G∗OOH − G∗ − GOOH (8)

∆G∗O = G∗O − G∗ − GO (9)

∆G∗OH = G∗OH − G∗ − GOH (10)

where G∗, G∗OOH , G∗O, and G∗OH are the free energies of the clean substrate and the sub-
strate binding with ∗OOH, ∗O, and ∗OH, respectively. GOOH , GO, and GOH are the free en-
ergies of isolated gas molecules, which can be replaced by

(
2GH2O − 3

2 GH2

)
,
(
GH2O − GH2

)
,

and
(

GH2O − 1
2 GH2

)
, respectively. GH2O and GH2 are the energies of H2O and H2 in the

gas phase, where H2O(g) is considered at the vapor pressure of H2O(l) at 298.15 K.
The catalytic activities of ORR with different structures were estimated by determining

the theoretical thermodynamic limiting potential with ∗OOH, ∗O, and ∗OH as reaction
intermediates. The reaction-free energy of each elementary reaction step for electrochemical
oxygen reduction can be defined as the difference between two adjacent steps, shown
as follows:

∆G1 = G∗OOH − GO2 (11)

∆G2 = G∗O − G∗OOH (12)

∆G3 = G∗OH − G∗OOH (13)

∆G4 = GH2O − G∗OH (14)

The theoretical thermodynamic ORR limiting potential (UL) and overpotential (η),
which can be the measure of the activity of a catalyst, are then defined from the largest ∆G
among reactions (Equations (2)–(5)), as follows:

UL = −{∆G1/e, ∆G2/e, ∆G3/e, ∆G4/e}max (15)

η = 1.23 V−UL (16)

For ORR, the theoretical minimum half-cell potential is 1.23 V. A higher UL value
corresponds to a lower overpotential, η (1.23 V—UL), indicating improved theoretical
activity. The theoretical overpotential is able to be benchmarked by comparing it with that
of Pt(111), which has an η of 0.43 V [62]. Hence, the activity of a novel catalyst is considered
to be improved when it has η < 0.43 V (UL > 0.80 V). Note that η should not be compared
directly with the experimentally measured overpotential, which depends on the current
density [63]. Details of the adsorption energies, d-band centers, Bader charge, and atomic
structures are provided in the Supplementary Materials.

3. Results and Discussion
3.1. Reaction Profile and Calculated Overpotentials

To clarify the stability of the constructed structures, the formation energies, E f , of
Pd ensembles (monomer, dimer, and trimers) were investigated as shown in Table 1. All
formation energies were negative, indicating that it is thermodynamically possible to form
these ensembles [8]. Similar formation energies of Pd monomers and dimers on Ag(111)
(0.01 eV) and Pd1LAg(111) (0.02 eV) suggest that the formation of Pd monomers and dimers
should be almost equally favorable, which indicates that all kinds of ensembles could be
distributed on the PdAg surfaces at high temperatures. Note that according to the number
of Pd ensembles studied in previous MC simulations and experiments, the Pd monomers
surrounded by Ag atoms at low temperatures are numerically more than the dimers and
trimers. Therefore, the ORR overpotentials of PdM@Ag(111) and PdM@Pd1LAg(111) have a
greater influence on the catalytic performance [48].
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Table 1. The ensemble formation energies, E f , of all structures.

Active Site Model Ef (eV) Active Site Model Ef (eV)

PdM@Ag(111) −0.12 PdM@Pd1LAg(111) −0.08
PdD@Ag(111) −0.11 PdD@Pd1LAg(111) −0.06
PdT1@Ag(111) −0.09 PdT1@Pd1LAg(111) −0.04
PdT2@Ag(111) −0.10 PdT2@Pd1LAg(111) −0.04
PdT3@Ag(111) −0.10 PdT3@Pd1LAg(111) −0.04

Pd1LAg(111) −0.10

According to the Sabatier principle, as an efficient catalyst, the binding between the
active site and the reactants or the final products should not be too weak or too strong [40].
The reaction processes of the ORR intermediates on different surfaces were investigated
and summarized. The efficiency of catalysts is often qualitatively gauged by overpotential
(η) based on thermodynamics (lower η corresponds to greater predicted activity) [62].
Table 2 shows the overpotentials of all surfaces calculated using the formula in Equations
(11)–(14). The reaction on PdM@Pd1LAg(111) had the lowest η (η = 0.41 V). Some surfaces
had similar overpotential, such as PdD@Ag(111) (η = 0.42 V), PdM@Ag(111) (η = 0.46 V),
and PdD@Pd1LAg(111) (η = 0.47 V), especially on PdM@Pd1LAg(111), where they even
performed better. Due to the non-linear relationship between the adsorption energy and
overpotential, as shown in Table S1, it is hard to quantitatively point out the influence of
the Pd sublayer. However, it is obvious that the existence of the Pd sublayer significantly
changes the activity of the surfaces. The lower overpotentials of the modified structures
compared to pure Ag (0.62 V) in Table 2 are consistent with the realization that the surface
contains Pd atoms surrounded by Ag atoms, as reported in the experimental literature,
which maximizes the ability of the heteroatomic sites to amplify the activity of each Pd
atom, thus enhancing the ORR activity [24,26].

Table 2. The reaction-free energies of the four e− ORR reactions, as well as the corresponding
theoretical limiting potential and overpotential.

Active Site Model ∆G1(eV) ∆G2(eV) ∆G3(eV) ∆G4(eV) UL(V) η(V)

PdM@Ag(111) −0.768 −2.391 −0.977 −0.784 0.768 0.462
PdD@Ag(111) −0.832 −2.439 −0.840 −0.810 0.810 0.420
PdT1@Ag(111) −0.772 −2.520 −0.758 −0.871 0.758 0.472
PdT2@Ag(111) −0.756 −2.464 −0.847 −0.852 0.756 0.474
PdT3@Ag(111) −0.753 −2.490 −0.831 −0.846 0.753 0.477

PdM@Pd1LAg(111) −0.817 −2.262 −1.023 −0.817 0.817 0.413
PdD@Pd1LAg(111) −0.895 −2.390 −0.875 −0.760 0.760 0.470
PdT1@Pd1LAg(111) −0.937 −2.575 −0.619 −0.789 0.619 0.611
PdT2@Pd1LAg(111) −0.870 −2.505 −0.753 −0.792 0.753 0.477
PdT3@Pd1LAg(111) −0.878 −2.420 −0.868 −0.754 0.754 0.476

Pd1LAg(111) −0.685 −2.129 −1.282 −0.824 0.685 0.545

To understand the reaction on the four best-performing surfaces in more depth,
Figure 2 illustrates the ORR reaction profiles at various electrode potentials. It is obvi-
ous that all the reaction steps were downhill (negative free energy changes), implying a
facile reaction at U = 0 V, and the ORR reaction intermediates can spontaneously adsorb on
these structures. With the increasing electrode potential, the change of free energy became
less negative. At the voltage U = 1.23 V, both the O and OH hydrogenation reactions
became endothermic. Consequently, there is a highest electrode potential under which all
reaction steps along the reaction decreased the free energy. This limiting potential defines
the working potential of the electrocatalysts. Note that the potential-determining step (PDS)
on the four best-performing surfaces lies in the reduction of O-containing species: OOH
or OH. The PDS of ORR on the PdM@Pd1LAg(111), PdD@Pd1LAg(111), and PdD@Ag(111)
is located in the fourth elemental step (the reduction of OH to form the final production
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of H2O, Equation (5), and on the PdM@Ag(111) surface is the reduction of the O2 to form
OOH (Equation (2)).
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For the surfaces PdM@Ag(111), PdD@Ag(111), and PdM@Pd1LAg(111), these two
steps determined the same ORR potential, reflecting that both of them have a reactivity
close to optimal (∆G1 − ∆G4 = −0.0155 eV for PdM@Ag(111), ∆G1−∆G4 = −0.0220 eV for
PdD@Ag(111), and ∆G1−∆G4 = −0.0002 eV for PdM@Pd1LAg(111)). Generally, increasing
∆G for one of the steps will decrease ∆G for the other step due to the linear relations
between the adsorption energies. Suitable reaction energy barriers lead to lower over-
potential values and higher catalytic activity [64]. Interestingly, the adsorption of ∗OOH
being rate-limiting for PdM@Ag(111) reflects the fact that the surface binds the interme-
diates too weakly relative to the optimal ORR catalyst [40]. However, on the other hand,
the lower overpotential of PdM@Pd1LAg(111) than that of PdM@Ag(111) could also be
explained by the fact that the introduction of the Pd sublayer enhances the adsorption of
the intermediates.

Figure 3 shows details of the most favorable adsorption geometries of the ORR inter-
mediates (∗OOH, ∗O, and ∗OH) on the four best-performing surfaces (other surfaces are
shown in Figure S2). For each intermediate, we examined its optimized adsorption site at
various possible positions and then determined its lowest-energy adsorption conformation
on the surface. In Table S1 and Figure S2, the calculated lowest binding energies and site
preferences for various chemical species on the modified surfaces are listed. According to
previous studies, the surface inhomogeneity and valence rules of adsorption sites of SAA
thus exhibit unique catalytic properties, which can create new opportunities for designing
catalysts with excellent performance [65]. As can be seen in Figure 3, the adsorption of
intermediates mostly occurs at the bridge or hollow sites between the atoms of dissimilar
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metals. On SAA surfaces (Figure 3A,C), ∗OOH binds at the top-bridge site between the host
(Ag) and dopant (Pd) atoms. The ∗OOH adsorbate is tilted and therefore nearly parallel to
the surface. ∗OOH is bound to the surface through the interaction of the non-protonated O
atom with the dopant Pd atom. The protonated O atom is bound to only one host atom
close to the top site. For Pd dimer surfaces, ∗OOH prefers to adsorb in bridge sites and is
tilted at a different angle than in the case of the Pd monomer surface.
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For ∗O adsorbed on the surface, the only energetically most favorable conformation
is at the fcc site. On all surfaces except the two T1-type surfaces, ∗O is bound at sites
sharing the dopant–host atoms. For ∗OH, it binds to the hollow site. On the Ag(111)-
based surface, ∗OH prefers the fcc site with one dopant atom and two host atoms, but
on the Pd1LAg surface, it prefers the fcc site with two dopant atoms and one host atom.
Although we calculated different surface aggregates, it can be concluded that adsorption
always occurs on landmark structures, such as monoatomic and dimeric aggregates for
the adsorption process. Except for T1-type ensemble surfaces, ∗OH and ∗O absorbed on
T2- and T3-type surfaces have the same behavior as the dimer and monomer because of
similar structural features. The properties of the two T1-type Pd ensembles exhibit a pure
Pd(111) behavior, which is also verified again later on the adsorption energy of CO. This
decouples the binding strength of these fragments and thus defines a weakly correlated
scaling relationship. The binding sites of these adsorbates vary depending on the size of
the Pd ensembles, resulting in the decoupling of the adsorption strength.
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To investigate the effect of the electronic structure on the ORR activity of the surface,
partial density of states (PDOS) and charge density difference analysis of PdM@Pd1LAg(111)
were performed, as shown in Figure 4. The d-projected density of states of Pd atoms on the
PdM@Pd1LAg(111) and PdM@Ag(111) surfaces was significantly different from that on the
Pd(111) surface, which has a formation of a sharp peak near the Fermi level (lower part of
Figure 4A). Compared with the pure Pd surface, an obvious d-DOS shift on bimetal surfaces
was observed moving close to the Fermi level, which can contribute more electron density to
the metal-adsorbate and thus improve the reactivity. The peak of Pd on PdM@Pd1LAg(111)
was closer to the Fermi level than that of PdM@Ag(111). After oxygen adsorption, the
sharp peak of Pd on PdM@Pd1LAg(111) disappeared (upper part of Figure 4A). There was
a strong hybridization and splitting in the bonding and anti-bonding states between the
∗O and Pd atoms at about −0.20 and 0.41 eV, which indicates a strong interaction between
them. The high reactivity exhibited by the dopant Pd atom changes the site preference of
the adsorbates so that they are adsorbed in close proximity to the Pd atom. PDOS with O
atom adsorption showed surface–adsorbate interactions with contributions from the Pd
d-band. The O atom can draw more electrons from the Pd atom on the first layer of the
catalyst surface (Figure 4B, orange color indicates electron accumulation and blue indicates
electron depletion). It can be seen that the Pd atom in the second layer lost electrons, and
this electron transfer to the surface had more electron accumulation around the active center
of the Pd atom, thus facilitating the electron transfer between O and the catalyst surface.
The d-band center and Bader charge of the Pd atom in the slab models are summarized in
Table S2. The d-band center varied from −1.617 to −1.292 eV, and the four best-performing
surfaces had values of −1.545 eV (PdM@Ag(111)), −1.496 eV (PdD@Ag(111)), −1.329 eV
(PdM@Pd1LAg(111)), and −1.292 eV (PdD@Pd1LAg(111)), respectively. Since the d-band
center of these dopant Pd atoms is closer to the Fermi level compared to the same type of
substrate surface (Ag(111) or Pd1LAg(111)), it contributes more to the electron density of the
mixed metal-adsorbent band than the lower d-band, thus improving the reactivity. Bader
charge analysis also showed that the Pd atoms of the four surface models with high activity
received more electrons from host metal atoms, which also corroborates the better activity.
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Figure 4. Electronic structure properties of PdM@Pd1LAg(111). (A) PDOS plot for the Pd dopant atom
as well as the adsorbed O atom (top) and the selected Pd atom in PdM@Pd1LAg(111), PdM@Ag(111),
and Pd(111) (bottom). The position of the Fermi level is marked with the dashed line. (B) Isosurface
of charge density distribution for adsorbed O atom on the PdM@Pd1LAg(111) system. The charge
depletion and accumulation are depicted as cyan and orange colors, respectively. The isosurface
value is 0.002 e/Bohr3. The silver, cyan, and red balls represent Ag, Pd, and O atoms, respectively.

The ORR activity can be evaluated by the thermodynamic limiting potential, UL,
which depends on the surface binding energy of the reacting oxygen adsorbate. Thus, the
relationship between ∆G∗OH and the limiting potential, UL, of each fundamental process
of ORR can be described by a volcano diagram, where the system at the peak is the best
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system. Based on the correlation between the binding energies of surface ∗OH and ∗OOH
of different metals and their role in the thermodynamic limiting step of ORR, the orange
theoretical volcano shown in Figure 5 was obtained. It can be clearly found that the limiting
potential increased with ∆G∗OH and then decreased. When ∆G∗OH was smaller than 0.86 eV,
on the left side of the volcano, the ORR was limited by the strong ∗OH adsorption at the
metal center, which poisons the catalytic surface. When the ∗OH adsorption was weaker,
in turn, the reaction behaved better, as shown in Figure 5. The species to the right of 0.86 eV
on the X-axis illustrates the opposite situation, where the H2O molecule formed in the last
hydrogenation step evolved into the RDS, i.e., the adsorption step was thermodynamically
limited. In fact, only when ∆G∗OH was in a moderate range was the formation energy of
the intermediate species neither too strong nor too weak, thus obtaining a relatively low
overpotential [46]. As predicted, PdM@Pd1LAg(111) was shown to be closer to the peak of
the volcano curve and can be the ideal active catalyst. In this case, the ORR can reach high
catalytic performance. Unlike several existing experimental studies on the ORR reactions
of PdAg clusters or thin-film alloys [24,62,66,67], here, we simulated a model of SAA with
a special inner-layer structure which has been prepared by heat treatment combined with
quenching in our previous experiments. As can be seen from Figure 5, all the structures
had higher limiting potentials than pure Ag(111) (UL = 0.61 V), and PdM@Pd1LAg(111)
and PdD@Ag(111) were higher than pure Pd(111) (UL = 0.79 V), indicating a synergistic
enhancement between Pd and Ag, which can provide solution ideas for the design of
bimetallic catalysts. Note that the modified surface PdM@Pd1LAg(111) possesses limiting
potentials beyond that of pure Pt(111) and is an excellent candidate for an ORR catalyst,
where the influence of the inner layer plays an important role in the catalytic activity.
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3.2. Reduced CO Poisoning of the Catalyst

The above calculations indicate that the combination of Pd ensembles on the alloy
surfaces designed and prepared in our previous work (especially PdM@Pd1LAg(111))
exhibits a theoretical overpotential comparable to that of Pt(111). Pt-based catalysts are
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easily poisoned by CO impurity gas even at low concentrations, resulting in decreased
performance and a shortened service life. Most noble metal catalysts are susceptible to
poisoning by CO molecules due to their inherent strong CO chemisorption, while Pt
catalysts are highly susceptible to catalytic poisoning by CO. The adsorption energy of
CO on each surface was calculated, as shown in Figure 6. The CO chemisorption on
PdM@Ag(111) was the weakest compared to pure Pd(111) and Pt(111) surfaces. It can be
seen that the adsorption energies of all monomer and dimer structures were smaller than
those of the pure Pt(111) surface, indicating that these structures are more tolerant to CO
than the pure Pt(111) surface. Figure 7 shows that CO prefers to adsorb at the top site of the
monomer and the bridge site of the dimer, while none of the intermediates of the ORR prefer
to adsorb at these two sites, which would make the effect of CO weaker. The adsorption
energies of the Pd1LAg(111) surface were stronger than those of the PdX@Ag(111) surfaces
due to the substitution of the Ag atom in the second layer by Pd. The introduction of
the Pd layer made the overall CO adsorption energies stronger by a fixed value, but still
weaker than the adsorption energy on pure Pd(111) and pure Pt(111). The Pd trimer is
the structure that determined the lowest adsorption energy. The adsorption energy of
the PdT1@Pd1LAg(111) surface was close to that of pure Pd. Once the T1-type Pd trimers
are available in the PdAg surface, they become the most favorable adsorption sites (on
hollow sites). This ensemble effect is consistent with the experimental observation in [41].
Since the CO adsorption sites on the Pd monomer and dimer are at the top and bridge
sites, respectively, the adsorption sites of the ORR intermediates on the monomer and
dimer surfaces are ∗OOH at the top-bridge site (monomer) or bridge site (dimer), with
∗O and ∗OH at the hollow site. Therefore, the adsorption sites are not conflicting for
the intermediates (except for the ∗OOH on the Pd dimer surfaces), which will lead to an
increase in the catalysts’ surface resistance to poisoning.
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4. Conclusions

In this article, we systematically investigated the behavior of various Pd ensembles
on the PdAg(111) surfaces (with/without a Pd subsurface layer) for ORR intermediates.
The most favorable adsorption conformations of ∗OOH, ∗O, and ∗OH on each structure
were elucidated. A tendency of ORR intermediates to have different adsorption sites at
different ensemble sizes was found. Furthermore, using the CHE model, the free energy
profiles of whole ORR pathways were estimated and analyzed. The results showed that
PdM@Pd1LAg(111) had the best predicted performance, with a higher limiting potential
(0.82 V) than Pt(111) (0.80 V), which could be explained by the subsurface coordination.
It could also be proven by the analysis of the electronic properties. In this case, it is
necessary to consider the influence of the near-surface layers when modeling the SAA
catalyst processes. Another important advantage of PdAg SAA is that atomic-dispersed
Pd as adsorption sites can significantly improve the resistance to CO poisoning. The best
surface in terms of resistance to CO poisoning was PdM@Ag(111) with a single Pd atom.
Furthermore, due to the wide variation of adsorption energy on these bimetallic surfaces, it
is possible to precisely modulate the adsorption energy by adjusting the Pd surface content,
combining activity with high tolerance to CO poisoning, which could constitute an exciting
and ideal combination.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12111802/s1, Table S1: The free energies of the adsorption
of ORR intermediates in eV on all active site models; Table S2: d-band center and Bader charge of Pd
atom at the first layer of all models; Figure S1: MC snapshots of the atomic structure of PdAg(111)
with 50% Pd at 1200 K; Figure S2: Top view of the atomistic structures of all ORR intermediates on all
considered surfaces.
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