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The inevitable QSAR renaissance
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Abstract QSAR approaches, including recent advances

in 3D-QSAR, are advantageous during the lead optimiza-

tion phase of drug discovery and complementary with

bioinformatics and growing data accessibility. Hints for

future QSAR practitioners are also offered.

Keywords QSAR � CoMFA � Lead optimization

Considering the many recent publications deploring vari-

ous inadequacies of current QSAR practices1 and outcomes

[1–8], as well as QSAR’s relative antiquity, the reader is

forgiven for any skeptical reaction to the title. Yet several

CADD groups at prestigious major and medium pharmas

whom I have recently encountered began discussions by

stating their intent to increase their proportion of QSAR

activities (while decreasing structure-based design). What

is going on?

The major cause of this sudden renewal of interest in QSAR

seems to be a major yet poorly met need—practical CADD

guidance for lead optimization. As the longest, most expen-

sive, and success-determining phase in most drug discovery

projects [9],2 one might suppose lead optimization to have

special need for guidance from CADD. Yet current CADD

methodology development activities tend much more to

address the earlier hit discovery and hit-to-lead phases. One

reason may be the much higher IP-based barrier between

methodology development and usage experience during lead

optimization. The data sets needed to validate any new meth-

odology’s value in practical LO situationsare far less available.

But probably a greater reason is that lead optimization

also poses a couple of demanding challenges to CADD

methodologies. The first is the nature of the candidate

structures. Earlier in drug discovery, the candidate structures

are rather dissimilar from one another, typically exhibiting at

least three orders of magnitude of differences among

experimental potencies. However, during lead optimization,

the candidates are much more similar, usually varying by

only one or two R-groups attached to a shared core.

Accordingly the variation in measured potencies is much

less, seldom much more than an order of magnitude. The

second challenge is the much greater number and variety of

the biological observables during lead optimization, all of

which need to be considered if a ranking of candidates is to

be meaningful. At the same time the pace of compound

synthesis is much greater. A synthetic chemist whose career

is currently dedicated to a lead optimization project does not

idly await lengthy computations.

Furthermore, opportunities for usefully applying QSAR

approaches across all phases of drug discovery are also
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1 What is meant here by ‘‘QSAR’’? In agreement with Martin [34,

p. 1] the distinctive characteristic of QSAR is its emphasis on

biological observations as the basis for CADD activities, in contrast

with the emphasis that (receptor) structure-based CADD places on

physics-based models. (Of course neither approach altogether ignores

the other’s focus!) Is ligand similarity then a branch of QSAR (or vice

versa)? Both approaches do emphasize biological observations for

making potency predictions, although they differently seek either

sufficiency or improvement in those potencies. (Pharmacophore

approaches, being ligand-based but structurally focused, seem a third

class of CADD methodologies).
2 Lead optimization costs, per new drug introduction, are the highest

of all, exceeding those of Phase II and III development because, being

earlier, they generate more dead-ends and tie up capital for longer.

More specifically, lead optimization accounts for 17% of total R&D

cost and around 50% of discovery cost, and may be the 3rd largest

opportunity area for overall R&D cost reduction.
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mushrooming, thanks to the plummeting costs of acquiring

and recording data points in multiplexed experiments, our

rapidly expanding appreciation of biological complexity,

and the inherent methodological symbioses between QSAR

and bioinformatics. To cite a current example of this

symbiosis, the most advanced approaches to mission-crit-

ical ‘‘off-target predictions’’ [10] routinely consider simi-

larities in both ligand and biological pathway properties.

Will we start regarding QSAR simply as that branch of

bioinformatics that addresses chemical structure selection,

in particular among ligands?

Promising methodological advances may also be a factor

in this renewed QSAR interest. While the pA50 [11] pre-

dictions of structurally ‘‘local’’ 3D-QSAR models seem

relatively reliable [2, 12],3 sufficient to help guide lead

optimization, the tedious and unavoidably subjective aspects

of aligning each structure to be predicted has severely lim-

ited 3D-QSAR’s practical applicability. However, the new

method of topomer CoMFA (whereby rule-generated

alignments are applied individually to fragments rather than

complete structures) [12] is surely among the simplest,

quickest, and most objective tools in today’s CADD kit. And

fortunately, the almost unprecedentedly accurate predictions

so far reported in lead optimization projects using ‘‘topomer

CoMFA’’, specifically a standard deviation of 0.6 between

predicted and found pA50’s, over 144 made-and-tested

compounds from four different organizations [13–16], if

continued, should further encourage its widespread appli-

cation. The exceptional speed and objectivity of the topomer

CoMFA protocol is also inspiring new methodological

opportunities, such as virtual screening for R-groups (see

footnote 3), with hits being accompanied by potency pre-

dictions, and ‘‘QSEA’’ [15, 17], which simplifies exploration

of a so far oft-neglected issue, how a specific QSAR varies

with its training set composition. Also emergent at this

writing is ‘‘template CoMFA’’ [18], which provides the

CADD expert with control over the conformation(s) used to

generate a 3D-QSAR, for example in the form of a receptor-

bound conformation, while retaining the desirable attributes

of topomer CoMFA.

Yet another massive development that favors usage of

QSAR, with its need for experimental results to drive its

hypothesis generation, is the growing capabilities of most

drug discovery organizations for making experimental

data, both public [19] and private, completely and readily

available, and in as many comparative formats as possible.

But what about those publications deploring QSAR

deficiencies? For the most part it is agreed that these dis-

appointments are caused more by faulty practice or unre-

alistic expectations than by fundamental deficiencies in the

QSAR approach. However it would be much harder to

reach a consensus on which practices are faulty, and the

recurring empirical dilemma—is my latest QSAR predic-

tion trustworthy enough to guide a critical project deci-

sion?—remains problematic. With these caveats, here are

some hints for the future QSAR practitioner, based on over

40 years of experience.

• A QSAR is simply a coherent structurally-based

summary of a particular set of biological observations,

hopefully revealing a pattern which helps to success-

fully guide a discovery team to a therapeutic goal. Yet

the still barely understood complexities of biological

processes, at molecular, cellular, and organism levels,

surely set unknowable boundaries—aka ‘‘activity

cliffs’’ [20]—on the extrapolability of any QSAR.

(And the highly multidimensional character of most

QSARs dictates that almost any worthwhile prediction

is an extrapolation [21].)

• Nevertheless, it is an empirical fact, as indicated above,

that QSAR predictions are often accurate enough to

benefit discovery. I believe this tendency to be evidence

for undiscovered regularities in biological phenomena

that physical and systems biology modeling will

eventually reveal. Yet meanwhile—if no drugs are

found, the entire discovery process is jeopardized. If

QSAR may help and is conveniently available,

shouldn’t it be tried?

• Each discovery team member is already considering the

same observations to seek the same goal, often

generating intuitive SARs similar to the current QSAR.

However, the now overwhelming quantity of such

observations suggests that a QSAR exercise may also

be increasingly useful in calling attention to outliers

and/or activity cliffs, to be scrutinized with the hope of

exploitation. Having available such a single and

relatively formal QSAR expression of the team’s

intuitive and varied SAR models makes the recognition

of an outlier more likely.

• Any particular QSAR is probably only one of many

statistically acceptable and perhaps equally plausible

alternative QSARs, considering for example the

thousands of possibly explanatory structural descriptors

that are available. Rapid detection and inclusion of an

‘‘activity cliff’’ observation, though perhaps immedi-

ately disappointing, may highlight a more productive

QSAR hypothesis.

• Statistical parameters have marginal relevance when

assessing the soundness of a QSAR prediction. For

example, choosing as ‘‘the model’’ simply the one

having the greatest q2 (or r2) value is little better than a

coin flip, considering the other uncertainties discussed

in previous hints.

3 ‘‘pA50’’ is used as an abbreviation for the log10 of any biological

potency measurement.
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• Also underappreciated is the strong dependence of q2/r2 on

the spread in the underlying biological potencies. More

informative is the entirely model –dependent standard

error in the potency predictions/fits which accompanies a

q2/r2. This consideration further implies that for QSAR

derivation a wide spread among the biological observa-

tions, though desirable, is far from mandatory.

• Furthermore, excessive dependence on q2 can seriously

impede the discovery of useful new hypotheses,

particularly when first encountering an ‘‘activity cliff’’.

The q2 ‘‘leave-out-and-predict’’ philosophy necessarily

suppresses any new hypothesis that is supported by

only one newly tested structure. And it would seem, the

higher a cliff, the more likely its q2 rejection.

• ‘‘Leave-one-out’’ cross-validation is also a misnomer in

most QSAR derivations, because most structural series

contain multiple instances of the more successful

R-groups, whose influence therefore cannot be erased

by omitting and predicting individual structures (see

footnote 3).

• Discovery projects seek better structures. Identifying a

structure which is then found to be superior, even if its

potency prediction is numerically relatively inaccurate,

is far more valuable than many accurate pA50 predic-

tions of potencies already achieved (see footnote 3).

Therefore judicious extrapolation of a QSAR seems

desirable rather than ‘‘dangerous’’.

• In general classical statistics is far too optimistic when

validating a QSAR, because its underlying assumptions

about data distributions are contradicted by the extraor-

dinarily heterogeneous nature of chemical structures

and mechanisms of biological response. Restricting the

structural scope of a QSAR should help, but the

distribution of ‘‘local’’ structural variations, within a

series undergoing lead optimization, is also unlikely to

be uniform.

• One tactic to consider for prediction validation is to

seek multiple QSAR models encompassing different

‘‘radii’’ of structural variation, with the goal of

detecting as many activity cliffs as possible. A predic-

tion that is reproduced by such a varying scope of

QSARs is more likely to be robust.

• More sophisticated means of ‘‘data mining’’—neural

nets, pattern recognition, support vector machines, even

mere non-linear regression—have been repeatedly tried

[22, 23] and abandoned, as too costly and/or unreliable.

The major exceptions, PLS [24], cross-validation/

bootstrapping [25], and recursive partitioning [26], are

relatively minor extensions of QSAR’s original multi-

ple linear regression [27–29]. It seems that biological

data are too fuzzy and alternative explanatory hypoth-

eses too numerous for QSAR to benefit from increased

model complexity.

• When selecting candidate explanatory structural

descriptors for use in a QSAR:

• Physics-based descriptors [30], for example 3D-

QSAR’s fields, are likely to produce the most robust

and useful models, for example capable of actively

generating and selecting among quite varied struc-

tural ideas. Other classes of descriptor are more or

less limited to passive discrimination among less

structurally varied ideas, generated by some exter-

nal process.

• Substructural descriptors, for example ‘‘2D finger-

prints’’, would seem the least reliable, because

biological receptors are affected only by the fields

and mechanical behaviors presented by a candidate

ligand, not by the underlying atomic connectivities

[31]. Yet, substructural descriptor similarity has

been a better predictor of biological similarity than

many 3D similarity metrics [32].

• Whenever the underlying biological observables

may depend on transport as well as receptor fit, such

as passive membrane penetration, ‘‘1D’’ descriptors,

such as log P, polar surface area, and pKa, should be

considered. Perhaps obvious, yet for example 3D-

QSAR models almost universally omit them [33].

Unfortunately QSAR’s relatively long history also sug-

gests that many of its future practitioners will be variously

hampered in learning from past experiences. The motiva-

tions to ‘‘turn off the brain and turn on the computer’’ will

not disappear and indeed are probably increasing. Thus it is

also my somewhat biased suggestion that in such hampered

situations topomer CoMFA may nevertheless be of some

benefit to a discovery process.
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