
����������
�������

Citation: Lehotay-Kéry, P.; Kiss, A.

Membrane Clustering of Coronavirus

Variants Using Document Similarity.

Genes 2022, 13, 1966. https://

doi.org/10.3390/genes13111966

Academic Editor: Piero Fariselli

Received: 7 October 2022

Accepted: 24 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Membrane Clustering of Coronavirus Variants Using
Document Similarity
Péter Lehotay-Kéry 1 and Attila Kiss 1,2,*

1 Department of Information Systems, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
2 Department of Informatics, J. Selye University, 945 01 Komárno, Slovakia
* Correspondence: kiss@inf.elte.hu

Abstract: Currently, as an effect of the COVID-19 pandemic, bioinformatics, genomics, and biological
computations are gaining increased attention. Genomes of viruses can be represented by character
strings based on their nucleobases. Document similarity metrics can be applied to these strings to
measure their similarities. Clustering algorithms can be applied to the results of their document
similarities to cluster them. P systems or membrane systems are computation models inspired by
the flow of information in the membrane cells. These can be used for various purposes, one of them
being data clustering. This paper studies a novel and versatile clustering method for genomes and
the utilization of such membrane clustering models using document similarity metrics, which is not
yet a well-studied use of membrane clustering models.

Keywords: document similarity; Doc2Vec; MinHash; genome; bioinformatics; COVID; coronavirus;
clustering; P systems; membrane computing

1. Introduction

Deoxyribonucleic acid (DNA) is a complex molecule consisting of nucleotides. It contains
genetic information. Nucleotides consist of three components: nucleobases, a sugar called
deoxyribose, and a phosphate group. There are four kinds of nucleobases: adenine, cytosine,
guanine, and thymine. The list of the nucleobases of the chromosomes of individuals
and species is contained in the genome sequences. These genomes are stored as strings,
composed of the first characters of the nucleobases. In the case of a DNA genome, these are
‘A’, ‘C’, ‘G’, and ‘T’ [1].

In this paper, we use text similarity metrics, such as Doc2Vec and MinHash, to calculate
the similarity of virus genomes. Text similarity metrics can be used to assign vectors to
texts and then measure their distances in the vector space. The first step in our experiments,
was to study how well these metrics can be used to calculate the similarity or difference of
genomes. Then with the use of a membrane clustering algorithm, we calculated regular and
hierarchical clusterings of coronavirus variants. The algorithm first determines centroids
in the space, one for each cluster. Then by using some evolutional rules—in our case the
Particle Swarm Optimization (PSO)—we calculated the next configuration in each round until
a given number of steps was taken. In the second step of our experiments, we presented
the clusters of viral genomes that were created by our method. At the end of the paper,
the method was also compared with the usage of K-Means. The advantages of using our
proposed algorithm are shown by comparing the clustering validity indexes of the clusters
produced by our proposed method and by K-Means.

The paper is arranged as follows. Section 2 presents some previous studies that are
related to this paper, including studies about the usage of document similarity metrics in the
comparison of genomes, the clustering of genomes, or membrane computing or membrane-
based clustering. In Sections 3.1–3.4 the similarity metrics that we used are presented. In
Sections 3.5 and 3.6 the concepts related to clustering algorithms and membrane systems

Genes 2022, 13, 1966. https://doi.org/10.3390/genes13111966 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13111966
https://doi.org/10.3390/genes13111966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-0884-4297
https://orcid.org/0000-0001-8174-6194
https://doi.org/10.3390/genes13111966
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13111966?type=check_update&version=1

Genes 2022, 13, 1966 2 of 18

are presented. Then, we present previous studies that we have built upon in this paper in
Sections 3.7. In Section 4 we present the new methods added to our algorithm that were
used to cluster genomes and we also describe how we experimented with these methods.

In more detail, Section 4.1 discusses how we used the similarity metrics to measure
the similarity of genomes. Then, Section 4.2 presents our hierarchic membrane clustering
method, the experiments, and how we connected this method with the genome similarity
results. Sections 5.1 and 5.2 contain the evaluation of using the described similarity metrics
on genomes. Then, Sections 5.3 and 5.4 describe the clustering results we obtained with
our membrane clustering methods on genomes, including a comparison with the results of
another clustering algorithm. The final conclusions are gathered in Section 6. Furthermore,
in Section 6, possibilities are suggested for future research.

2. Related Works

In this section, we gathered some studies that are related to this paper. First, we
present some studies discussing genome similarity metrics. In [2], the authors designed
and implemented SimilarityAtScale, a communication-efficient distributed algorithm for
computing the Jaccard similarity among pairs of large datasets. They packaged their routines
in a tool called GenomeAtScale, which combines the proposed algorithm with tools for
processing input sequences.

The authors of [3] introduced the MinHash Alignment Process (MHAP) for overlap-
ping noisy, long reads using probabilistic, locality-sensitive hashing. In [4], the authors
introduced Mash, extending the MinHash dimensionality-reduction technique to include a
p value significance test and a pairwise mutation distance. Their method reduced sequence
sets and large sequences to small, representative sketches, from which global mutation
distances can be rapidly estimated.

The authors of [5] introduced the containment MinHash approach, for estimating the
Jaccard index of sets of different sizes by leveraging another probabilistic method, Bloom
filters for fast membership queries. In [6], the authors introduced Mashtree, which uses
min-hash values to cluster genomes into trees using the neighbor-joining algorithm.

The authors of [7] proposed an automatic feature learning approach to avoid explicit
and predefined feature extraction. The proposed approach is based on the adaptation of two
extensively used natural language processing techniques, namely Word2Vec and Doc2Vec.
In [8], the authors applied an unsupervised sequence embedding technique (Doc2Vec) to
represent protein sequences as rich feature vectors with a low dimensionality. Training a
Random Forest (RF) classifier through a training dataset that covers known PPIs (protein–
protein interactions) between humans and all viruses, they obtained excellent predictive
accuracy that outperformed various combinations of machine learning algorithms and
commonly-used sequence encoding schemes.

Considering the related studies in the field of coronavirus genome studies, the authors
of [9] proposed a method for predicting coronavirus disease 19 (COVID-19). They intro-
duced similarity features to distinguish COVID-19 from other human coronaviruses. In [10],
the authors created a protocol for the analysis and phylogenetic clustering of SARS-CoV-2
genomes using an open-source tool, Nextstrain, for real-time interactive visualization of
genome sequencing data.

Next, we present some related studies that discuss clustering methods. First we
discuss genome clustering and then membrane-based clustering. The authors of [1] sum-
marized the biological background of the clustering and classifying of genomes. Then
they presented the mathematical models used to analyze documents containing natural
languages, such as string distances and the n-gram technique. They also analyzed the
language of DNA text. In the end, they used all these technologies to introduce the cluster-
ing of genomes. In [11], the authors presented algorithms using nucleotide n-grams that
required no preprocessing steps such as sequence alignment—which solved the problems
of classification and hierarchical clustering of isolates—to determine the family of genomes

Genes 2022, 13, 1966 3 of 18

and where the given genome belongs. They also introduced a new distance measure
between n-gram profiles.

Based on [12], P systems, also known as membrane systems, a class of distributed parallel
computing models was widely used to solve clustering problems. An improved PSO-based
(Particle Swarm Optimization) clustering algorithm inspired by a tissue-like P system was
introduced in this paper. The proposed clustering algorithm adopted the tissue-like P
system structure, which contains a loop of cells. A group of candidate cluster centers was
represented by an object in the cells. Communication and evolution rules were also adopted
in this approach. A local neighborhood topology was built using the communication rules,
by virtue of the loop structure of cells. This increased the diversity of objects in the system
and promoted the co-evolution of the objects. The different PSO-based evolution rules are
also used to evolve poor objects and common objects, respectively.

In [13], the authors introduced a variant of a tissue-like P system with active mem-
branes for the clustering process in the calculation of the density of data points using the
K-nearest neighbors and Shannon entropy. The authors of [14] proposed an improved
spectral clustering algorithm based on a cell-like P system. Instead of the K-Means algorithm
they used the bisecting K-Means algorithm. To improve the spectral clustering, as the
framework of this algorithm, they constructed a cell-like P system. The efficiency of the
bisecting K-Means is improved by the maximum parallelism of the P system.

A summary of the analyzed literature can be seen in Table 1. Many of the related
studies mention the variety of their dataset as a limitation of their study. Usually, this
means that many of the methods were only validated on given genomes or they were
not validated outside the field of computational biology. Some of the related studies also
mention the lack of improved database construction. In this paper, we still focus on a given
set of genomes as the dataset because our method has previously been validated on other
kinds of data outside the field of computational biology in our previous works. These
studies also analyzed the utilization of different database management systems as data
sources [15,16].

Table 1. Literature summary table.

Author Title Finding

Besta (2020) Communication-efficient jaccard similarity for high-
performance distributed genome comparisons

SimilarityAtScale computes the Jaccard sim-
ilarity among pairs of large datasets.
GenomeAtScale combines this with se-
quence processing.

Berlin (2015) Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing MHAP for overlapping reads.

Ondov (2016) Mash: fast genome and metagenome distance esti-
mation using MinHash

Mash for MinHash dimensionality-
reduction, to reduce sequence
sets and large sequences to small,
representative sketches.

Koslicki (2019) Improving MinHash via the containment index
with applications to metagenomic analysis

Containment MinHash estimating Jaccard
index using Bloom filters.

Katz (2019) Mashtree: a rapid comparison of whole genome
sequence files

Mashtree using MinHash to cluster genomes
into trees.

Oubounyt (2018) Deep learning models based on distributed feature
representations for alternative splicing prediction

Feature learning, avoiding explicit and pre-
defined feature extraction.

Yang (2020)
Prediction of human–virus and protein–protein in-
teractions through a sequence embedding-based
machine learning method

Representing protein sequences as Doc2Vec
vectors and training RF covering PPIs be-
tween humans and viruses.

Genes 2022, 13, 1966 4 of 18

Table 1. Cont.

Author Title Finding

Arslan (2021)
COVID-19 prediction based on genome
similarity of human SARS-CoV-2 and bat
SARS-CoV-like coronavirus

Introducing similarity features to
distinguish COVID-19 from other
human coronaviruses.

Jolly (2021) Computational analysis and phylogenetic cluster-
ing of SARS-CoV-2 genomes

A protocol for the analysis and clustering
of SARS-COV-2 genomes.

Tomović (2006) n-Gram-based classification and unsupervised hier-
archical clustering of genome sequences

New distance measure between
n-gram profiles.

Gao (2018) An improved PSO-based clustering algorithm in-
spired by tissue-like P system

Using a local neighborhood topology, in-
creasing the diversity and co-evolution of
objects in the P system.

Jiang (2019) A density peak clustering algorithm based on the K-
nearest Shannon entropy and tissue-like P system

A P system variant for the calculation of
density points using the K-nearest neighbors
and Shannon entropy.

Zhang (2019) An improved spectral clustering algorithm based
on cell-like P system

Improved efficiency of K-Means in spectral
clustering using the maximum parallelism
of the P system.

3. Materials and Methods
3.1. Cosine Similarity

Cosine similarity is a similarity measure between two sequences of numbers or vectors.
It is the cosine angle between two cardinal vectors of an inner product space. The similarity
belongs to the interval of [−1, 1]. Proportional vectors have a similarity of 1, orthogonal
vectors have a similarity of 0, and opposite vectors have a similarity of −1. They are
especially used in a positive space, where the result is between [0, 1]. If the vectors are
orthogonal, then they are dissimilar and if the unit vectors are parallel, then they are
ultimately similar.

This corresponds to the cosine which is null when the components are perpendicular
and maximum when the components span a zero angle. Given the vectors A and B, cos (θ),
the Cosine similarity is represented using a dot product and magnitude, as

sim = cos (θ) =
A · B

‖ A ‖‖ B ‖ . (1)

where

A · B =
n

∑
i=1

AiBi (2)

and

‖ A ‖‖ B ‖ =
√

n

∑
i=1

A2
i

√
n

∑
i=1

B2
i (3)

3.2. Jaccard Similarity

The dissimilarity and similarity of two sets can be measured with the Jaccard similarity,
which is usually used to find documents that are textually similar. It is defined by the size
of the intersection divided by the size of the union of two sets:

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (4)

where 0 ≤ J(A, B) ≤ 1. If A and B sets are both empty, then their similarity is J(A, B) = 1 [17].

Genes 2022, 13, 1966 5 of 18

3.3. MinHash

The similarity of two sets can be calculated rapidly by MinHash, as introduced in [18].
It can be applied to large-scale clustering problems, for example, clustering documents
based on their similarity of sets of words or detecting duplicate web pages. Similarly, we
are going to use it to cluster genomes based on the similarity of their sets of n-grams.

Let A and B be two subsets of set U. The minimal member of any set S with regard to
h ◦ perm (the member x of S with the minimal value of h(perm(x)) is defined as hmin(S),
where perm is a random permutation of the elements of U and h is a hash function mapping
the members of U to individual numbers. Applying hmin on A and B both assuming there
is no hash conflict, hmin(A) and hmin(B) values are equal if and only if among all elements
of A ∪ B, the A ∩ B intersection contains the minimum hash value element. The probability
of this case is:

Pr[hmin(A) = hmin(B)] = J(A, B) (5)

3.4. Word2Vec and Doc2Vec

An open-source tool was introduced in [19] for natural language processing that is
called Word2Vec. It proposes effective algorithms to represent words as word embeddings
that are N-dimensional real vectors. It is also used to measure the similarity of words. The
algorithm uses a simple neural network model with a single hidden layer. Taking a large
text as input, the algorithm assigns a vector for each distinct word, creating a vector space
consisting of hundreds of dimensions. Similar context words are located close to each other
in the vector space. These vectors are selected cautiously so that the mathematical function
Cosine similarity can state the semantic similarity between the words that are represented
by vectors. It has two models, continuous bag-of-words (CBOW) and Skip–Gram.

Doc2Vec is an extension of Word2vec that was proposed in [20]. It constructs embed-
dings regardless of documents of any lengths. It also uses a vector called Paragraph ID
(or doc ID). Two algorithms are used to calculate Doc2Vec. One is similar to the CBOW
model, called Distributed Memory version of Paragraph Vector (PV-DM). The other one is
called Distributed Bag of Words version of Paragraph Vector (PV-DBOW), which is similar
to Skip-Gram.

In this paper, we used Skip-Gram, which converts each word into a feature vector using
Word2Vec. Then it calculates the average of these vectors, resulting in the Doc2Vec vectors.
Their length is the same as the length of Word2Vec vectors. Formally:

D2V =
W2V(w1) + · · ·+ W2V(wn)

n
(6)

where W2V(wi) represents the ith word’s W2V vector and n is the number of vectors.

3.5. Clustering Algorithms

The objective of clustering algorithms is, by using a function of goodness, to discover
groupings of a specified data set, where each data point of the set belongs to a group.
In such a cluster, the similarity—in our case document similarity—of the members is
maximized, while in separate groups, the similarity of the points is as low as possible. To
solve this clustering problem, many distinct approaches exist (centroid-based, density-
based, connectivity-based), each bearing its strong points.

At the end of the paper, we are going to compare our clustering algorithm with K-
Means [21]. This algorithm partitions a set of n data vectors x0, ..., xn ∈ X into k disjoint
clusters that are described by the mean c0, ..., ck ∈ C of the samples contained in the cluster.
The algorithm clusters the samples by minimizing the sum of squares in each cluster:

n

∑
i=0

min
cj∈C

(||xi − cj||2) (7)

Genes 2022, 13, 1966 6 of 18

The goodness of clustering can be measured by multiple methods. In this paper, we
are going to use the Davies–Bouldin index [22] and the Silhouette coefficient [23] to compare
the results of our membrane-based clustering method with the results of K-Means.

The Davies–Bouldin index is the average similarity of each cluster with its most similar
cluster. This similarity is the ratio of the distances of the points within the cluster and the
distances of the points between the clusters. This means that clusters that are less dispersed
and further apart result in a better score.

The Silhouette coefficient is measured using two values: for each sample, a is the mean
intra-cluster distance and b is the mean nearest cluster distance. With these values, the
coefficient is calculated in the following way:

(b− a)/ max(a, b) (8)

3.6. Membrane Computing

Various types of membranes delimit the parts in a membrane system or P system. Mem-
branes keep together certain chemicals and allow other chemicals to pass selectively in
biology and chemistry. These systems take the form of a certain structure. A cell-like
membrane system takes the form of a tree, while a tissue-like membrane system takes the
form of an arbitrary graph. These structures consist of parallel computing units called cells.

Evolution rules are contained in the regions defined by these cells. These rules delin-
eate the calculations in the system as a sequence of transitions between the states of the
system. A multiset of objects is also contained in a region. When the system takes a step in
the computation, it chooses non-deterministically, in a maximally parallel manner from all
the available rules.

The system reaches a new state or configuration when a step is applied. Furthermore,
when there is no possibility for any transitions, meaning there are no rules in any of the
cells that could be applied, the calculation terminates. After the system halts, the result of
the computation may be defined by the state of a specific cell [24].

In the case of the clustering task, an object is going to be a vector containing the
potential cluster centroids. The evolution rules are going to move these centroids of the
objects of each cell in each step until a given number of steps. The centroids start from an
initial state randomly chosen from the data points to be clustered.

3.7. Our Approach from Our Previous Works

We partially used the same membrane clustering method that we used in two of our
previous studies [15,16]. In the first study, we were experimenting with membrane-based
clustering on data points stored in PostgreSQL DBMS. We also validated our clustering
using the Davies–Bouldin index, the Silhouette coefficient, and the Calinski–Harabasz index.
In this current paper, we are going to use the input parameters as we have found them to
be optimally set in this previous work.

In our second previous study, we performed some experiments using greater datasets
stored in NoSQL DBMSs: Redis and MongoDB. We evaluated the running time, storage
size, and memory usage of these systems in combination with our algorithm. The detailed
description of the algorithm and equations that we used in this study can also be found in
that paper.

4. Experiments and the Algorithm

In this paper, we added the document similarity underneath our algorithm and a
hierarchical system above it. In this section, we walk through these extensions and explain
our experiments.

4.1. Experiments on Using Doc2Vec and MinHash

In the first two experiments, we performed simple tests where we calculated the
distance of the Doc2Vec and MinHash vectors of three viruses: Human Coronavirus 229E,

Genes 2022, 13, 1966 7 of 18

Human Coronavirus NL63, and Hepatitis C. We wanted to create associations between smaller
parts of the text. In order to do this, we wanted to split these lines into smaller parts of size
m. We will call these elements m-grams from now on.

Next, we trained the model. For this, we simply used every genome we had on every
m size we wanted to analyze. We used the trained model to calculate the vectors for two
genomes and then used Cosine distance to obtain their similarity. Euclidean distance could
also be used and would have produced roughly the same results.

For MinHash, we used the same examples that we tried in the previous model with
Jaccard similarity.

4.2. Hierarchic Membrane Clustering

In the following section, we describe our hierarchic membrane clustering method and
the four experiments we created to evaluate it using Doc2Vec and MinHash. The following
elements are going to be used in the pseudo codes:

• c—a cluster containing a list of vectors.
• t—threshold, the size of clusters we want to create.
• memb_clust—our original membrane clustering algorithm described in detail in [16].
• docs—a list of documents or, in our case, genomes.
• m—the size of the m-grams.
• doc2vec_model—creates the Doc2Vec model described in [20] and in Section 3.4.
• read_genome—reads the m-grams of a document or genome of size m.
• create_vect—creates the vector of a genome based on the model.
• cos_dist—the distance of two vectors, as described in Section 3.1.
• normalize—normalizes a vector.

Hierarchical clustering differs from regular clustering in that a cluster can become
part of another cluster. Our hierarchical membrane clustering recursively calls our original
membrane clustering method, splitting a greater clustering result c of the previous clustering
round into two (or N) branches until all clusters contain only a maximal number of samples,
which is smaller than the t threshold.

Pseudo code for hierarchical membrane clustering:

FUNCTION hierarchic_memb_clust(c, t)
result = memb_clust(c)
FOR each c IN result DO
IF size(c) > t
hierarchic_memb_clust(c)

END

For example, in the experiments using hierarchical clustering, we created clusters
containing two elements and divided the greater clusters into two parts in each round.

As it can be seen in Section 5, we were experimenting with the usage of document
similarity metrics with our clustering in four ways.

Our first idea was to represent each virus as a vector with Doc2Vec and run the
clustering algorithm on the results. To achieve this we first needed to be able to obtain the
vector for just one genome. Then we applied this algorithm to all genomes docs and stored
their vectors in a list. Here, we used a fixed m for the m-grams.

Pseudo code for the first experiment:

FUNCTION clust_doc2vec(docs, m)
model = doc2vec_model(docs)
FOR each doc IN docs DO
genome = read_genome(doc, m)
vect = create_vect(model, genome)
ADD vect TO vectors

Genes 2022, 13, 1966 8 of 18

hierarchic_memb_clust(vectors)
END

For our second experiment, we did the same thing, but instead of selecting a specific m
m-gram size, we concatenated the vectors for each size, thus trying to obtain as much stored
information as possible. A workflow of this second experiment can be seen in Figure 1. The
workflow for the first experiment would be similar, but with only creating one m-gram list
for each genome.

Figure 1. Workflow of the second experiment.

Pseudo code for the second experiment:

FUNCTION clust_doc2vec(docs)
model = doc2vec_model(docs)
FOR each doc IN docs DO
FOR each m DO
genome = read_genome(doc, m)
vector = create_vect(model, genome)
ADD vect TO vector_of_genome

ADD vector_of_genome TO vectors
hierarchic_memb_clust(vectors)

END

In the next two experiments, we applied the tested metrics to all pairs of genomes
with fixed m. So the final output for each genome is a vector containing its similarity to
each other genome. First, we tried this with Doc2Vec.

Pseudo code for the third experiment:

FUNCTION clust_cos_dist(docs, m)
model = doc2vec_model(docs)
FOR each d1 IN documents DO
FOR each d2 IN documents DO
g1 = read_genome(d1, m)
g2 = read_genome(d2, m)
v1 = create_vect(model, genome1)
v2 = create_vect(model, genome2)
dist = cos_dist(v1, v2)
norm_dist = normalize(dist)
ADD norm_dist TO distances

ADD distances TO distances_list
hierarchic_memb_clust(distances_list)

END

In the last experiment for our hierarchic clustering, we used the same methodology
but with MinHash and Jaccard similarity. A workflow of this third and the last experiments
can be seen in Figure 2.

Genes 2022, 13, 1966 9 of 18

Figure 2. Workflow of the third and fourth experiments.

5. Results

In this section, we present the results that we obtained with the methods described
in Section 4. We used the NCBI reference sequences (RefSeq) [25] and The European nucleotide
archive [26] databases to collect the genomes used in the following.

5.1. Evaluation of Using Doc2Vec

We examined the ways text similarity metrics can be used to examine the similarity of
genomes, with most attention focused on the viruses described in Section 4.1. For Doc2Vec,
we used Gensim’s implementation [27].

In Table 2, we calculated the distance of Human Coronavirus 229E–Hepatitis C (denoted
as C1), Human Coronavirus NL63–Hepatitis C (denoted as C2), and Human Coronavirus 229E–
Human Coronavirus NL63 (denoted as C3). The metric goes from 0 to 1 and the smaller
number means that the two genomes are more similar. We wanted to determine the ideal m-
gram size. The distance between the two Corona variants must be smaller than the distance
between Corona and Hepatitis C virus. So we calculated the difference between the distances
too: in column C1–C3 the difference between the first and third column and in column
C2–C3 the difference between the second and the third column. In Table 3, we calculated
the running times for the calculations of the above and the average in seconds for each m.

Based on the test results that can be seen in Table 2 we found that the ideal m is 14
in this case since there we can see the two Corona variants to be the closest to each other
compared to the Hepatitis C virus. Usually based on other experiments, for other data, m
between 3 and 14 gives valid results. Below that the genomes are too uniform, above that
there are too many unique sequences, and the similarity between genomes is too close to 0.

Considering only the scores, m = 14 seems to be the best. If we also consider the
running times in Table 2, we can also see that with the increasing m, the running time
decreases. In this experiment with m = 14, our score and running time are also fine.
However, if under other circumstances, such as using other data, a smaller m is found to
be optimal; therefore, we can conclude that it is possible to increase the m for a smaller
running time, if needed, until 14, since the scores are usually still valid between the range
of 3 and 14.

Genes 2022, 13, 1966 10 of 18

Table 2. Distance scores (229E-Hepa (C1), NL63-Hepa (C2), and NL63-229 (C3)) of the Doc2Vec
vectors of the three viruses and the differences of these distances (C1–C3 and C2–C3) using different
m-gram sizes.

m-Gram Size 229E-Hepa (C1) NL63-Hepa (C2) NL63-229 (C3) C1–C3 C2–C3

1 0.0002123 0.0004236 0.0000394 0.0001729 0.0003842
2 0.3399463 0.3453034 0.0001016 0.3398448 0.3452018
3 0.3695712 0.4787790 0.0276033 0.3419679 0.4511757
4 0.0587197 0.0909740 0.0077233 0.0509964 0.0832507
5 0.0191701 0.0352157 0.0032254 0.0159447 0.0319903
6 0.0110183 0.0153024 0.0034113 0.0076070 0.0118911
7 0.0123603 0.0196021 0.0015012 0.0108591 0.0181009
8 0.0460361 0.0572509 0.0020966 0.0439395 0.0551543
9 0.1026353 0.0958337 0.0105982 0.0920371 0.0852355
10 0.0347726 0.0402217 0.0138344 0.0209382 0.0263873
11 0.0728078 0.0809851 0.0123689 0.0604389 0.0686163
12 0.0049008 0.0044417 0.0007218 0.0041789 0.0037199
13 0.0048270 0.0083499 0.0008653 0.0039617 0.0074846
14 1.0547185 0.8462670 0.2651407 0.7895779 0.5811264
15 0.0053818 0.0038288 0.0004694 0.0049124 0.0033594
16 0.0023146 0.0034332 0.0001939 0.0021207 0.0032393

Table 3. Running times at the calculation of the distance scores (229E-Hepa (C1), NL63-Hepa (C2),
and NL63-229 (C3)) of the Doc2Vec vectors of the three viruses and the average of these running times
in seconds using different m-gram sizes.

m-Gram Size 229E-Hepa (C1) NL63-Hepa (C2) NL63-229 (C3) Average

1 0.8970317 0.3545133 0.3972148 0.5495866
2 0.4256047 0.4640406 0.4402194 0.4432882
3 0.1884928 0.1884540 0.2870301 0.2213256
4 0.1834050 0.5818737 0.3334340 0.3662376
5 0.1832464 0.2470372 0.2526913 0.2276583
6 0.1697437 0.1836954 0.2287966 0.1940786
7 0.1392266 0.1728073 0.2169918 0.1763419
8 0.1332747 0.1487379 0.2123267 0.1647798
9 0.1160918 0.1238680 0.2051878 0.1483825
10 0.0983900 0.0994981 0.1786392 0.1255091
11 0.0305363 0.0213676 0.0325485 0.0281508
12 0.0218683 0.0311976 0.0345565 0.0292075
13 0.0247284 0.0213287 0.0489603 0.0316725
14 0.0102822 0.0124120 0.0124389 0.0117110
15 0.0299261 0.0334483 0.0347533 0.0327092
16 0.0193578 0.0229860 0.0361347 0.0261595

5.2. Evaluation of Using MinHash

To experiment with MinHash, we used the implementation of datasketch [28].
The results can be seen in Table 4. The metric still goes from 0 to 1, but the higher

it is the more similar the two genomes are. Based on this experiment, m between 5 and
8 provided the correct results, because it measured a bigger similarity between the two
Corona variants compared to the similarity of the Hepatitis C and a Corona variant. However,
when m < 5 and when m > 8, the results seem incorrect in most cases. With these m values,
sometimes greater or equal similarity was measured between the Hepatitis C and a Corona
variant than between the two Corona variants. Furthermore, when m > 8, it started to
measure 0 distances between the different genome sequences.

Genes 2022, 13, 1966 11 of 18

We measured the running times again in Table 5. However, when m < 2 and when
m > 10 Doc2Vec is faster, we would not use these values anyway considering the distance
scores. Overall the running times are smaller for m between 5 and 8 in the case of MinHash,
where we received the best scores. However, these running times are bigger than the
running time with m = 14 when using Doc2Vec, which we would use as a value giving
valid results. Furthermore, when m > 10, the running times with Doc2Vec are smaller.

Table 4. Similarity scores (229E-Hepa (C1), NL63-Hepa (C2), and NL63-229 (C3)) of the MinHash of the
three viruses and the differences of these distances (C1–C3 and C2–C3) using different m-gram sizes.

m-Gram Size 229E-Hepa (C1) NL63-Hepa (C2) NL63-229 (C3) C3–C1 C3–C2

1 1.0000000 1.0000000 1.0000000 0.0000000 0.0000000
2 0.9375000 0.9062500 0.8437500 −0.0937500 −0.0625000
3 0.9687500 0.9609375 0.9921875 0.0234375 0.0312500
4 0.9921875 0.9921875 0.9843750 −0.0078125 −0.0078125
5 0.6406250 0.6640625 0.8437500 0.2031250 0.1796875
6 0.1875000 0.2265625 0.5000000 0.3125000 0.2734375
7 0.0390625 0.0390625 0.2421875 0.2031250 0.2031250
8 0.0078125 0.0156250 0.0625000 0.0546875 0.0468750
9 0.0078125 0.0000000 0.0000000 −0.0078125 0.0000000
10 0.0000000 0.0000000 0.0156250 0.0156250 0.0156250
11 0.0156250 0.0234375 0.0390625 0.0234375 0.0156250
12 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
13 0.0078125 0.0078125 0.0312500 0.0234375 0.0234375
14 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
15 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
16 0.0078125 0.0000000 0.0312500 0.0234375 0.0312500

Table 5. Running times at the calculation of the similarity scores (229E-Hepa (C1), NL63-Hepa (C2),
and NL63-229 (C3)) of the MinHash of the three viruses and the average of these running times in
seconds using different m-gram sizes.

m-Gram Size 229E-Hepa (C1) NL63-Hepa (C2) NL63-229 (C3) Average

1 0.8962874 0.7013130 0.6866167 0.7614057
2 0.3641375 0.2303220 0.3430197 0.3124931
3 0.2314856 0.1512294 0.1601725 0.1809625
4 0.2043768 0.1776504 0.1927966 0.1916079
5 0.1548510 0.0950320 0.0955275 0.1151368
6 0.1273663 0.0809898 0.0784282 0.0955948
7 0.0987748 0.0653925 0.0646084 0.0762586
8 0.0836217 0.0639499 0.0647426 0.0707714
9 0.0778825 0.0552873 0.0717265 0.0682988
10 0.1202149 0.0506465 0.0780083 0.0829566
11 0.1021783 0.0861990 0.0821483 0.0901752
12 0.1009907 0.0745528 0.0727619 0.0827685
13 0.0592558 0.0629678 0.0499611 0.0573949
14 0.0672873 0.0362306 0.0339905 0.0458361
15 0.0513617 0.0357769 0.0331476 0.0400954
16 0.0549223 0.0350066 0.0339571 0.0412953

Genes 2022, 13, 1966 12 of 18

5.3. Creating Clusters Using Hierarchic Membrane Clustering

The next thing we wanted to do is to find a way to efficiently sort multiple viruses into
clusters. We used the methods described in Section 4.2. Here this first experiment did not
bring satisfying results, so we have omitted the results from this paper.

Our second experiment could effectively distinguish the murine hepatitis variants
from other viruses. It could also collect bovine coronavirus variants into the same cluster,
with the exception of one variant. It could collect the influenza variants also in the same
cluster. It successfully distinguished SARS CUHK variants from other variants and viruses.
Furthermore, in the end, it collected many other SARS variants in the same clusters. It
could also collect SARS Sin variants into the same cluster correctly. Furthermore, it also
nearly clustered the West Nile variants correctly, but in the end was unsuccessful.

Sample clusters:

[[’Duck adenovirus’, ’Human Coronavirus NL63’],
[’Murine hepatitis MHV-A59 C12’, ’Murine hepatitis ML-10’],
[’Murine hepatitis 2’, ’Murine hepatitis Penn97-1’]]

[[’Bovine coronavirus BCoV-ENT’, ’Bovine coronavirus Mebus’],
[’Bovine coronavirus Quebec’]]

[[’Bovine coronavirus BCoV-LUN’, ’Cowpox’, ’Vaccinia’], [’Variola’]]

[[’InfluenzaA’, ’InfluenzaB’], [’RotaVirus’]]

[’SARS CUHK-Su10’, ’SARS CUHK-W1’]]

[[’Galveston’, ’Onyong-nyong’, ’Ross River’, ’SARS civet007’, ’SARS ZJ01’,
’WestNile1’], [’Hepatitis C genotype 1’, ’SARS civet010’, ’WestNile2’]]

[[’SARS HKU-39849’, ’SARS Tor2’, ’SARS TW1’, ’SARS Urbani’],
[’SARS Sin2500’, ’SARS Sin2677’, ’SARS Sin2679’, ’SARS Sin2748’,
’SARS Sin2774’]]

For the third experiment, after running some tests, we obtained a good clustering of
the viruses using m = 11 in our membrane-based hierarchical clustering. In given moments
it could separate influenza and West Nile variants from the others. It could collect the SARS
Sin variants together, except for one variant. It collected murine hepatitis variants in one
cluster, except one variant. Furthermore, it collected the bovine coronavirus variants into one
cluster, except one. It also clustered SARS CUHK variants correctly.

Genes 2022, 13, 1966 13 of 18

Sample clusters:

[[’Avian infectious brochitis’, ’Human coronavirus 229E’, ’SARS ZJ01’,
’Turkey coronavirus MG10’], [’Variola’]],

[[’Bovine coronavirus BCoV-ENT’, ’Bovine coronavirus Mebus’,
’Human Coronavirus HKU1’], [’Bovine coronavirus Quebec’,
’Human Coronavirus NL63’]],

[[’Duck adenovirus’, ’SARS civet010’, ’SARS HKU-39849’, ’SARS Tor2’],
[’SARS Sin2500’, ’SARS Sin2677’, ’SARS Sin2679’, ’SARS Sin2774’]],

[’SARS TW1’, ’SARS Urbani’],

[[’Murine hepatitis 2’, ’Murine hepatitis Penn97-1’, ’Porcine diarrhea’],
[’Murine hepatitis MHV-A59 C12’]],

[[’Murine hepatitis ML-10’, ’SARS civet007’], [’SARS Sin2748’]],

[[’SARS BJ01’], [’SARS CUHK-Su10’, ’SARS CUHK-W1’]],

[’Bovine coronavirus BCoV-LUN’],

[’Cowpox’, ’Vaccinia’],

[’WestNile1’, ’WestNile2’],

[’Ross River’],

[’Galveston’, ’Hepatitis C genotype 1’],

[’Onyong-nyong’],

[’InfluenzaA’, ’InfluenzaB’],

[’RotaVirus’]

Here, in the last experiment we used the same methodology, but with MinHash set
to m = 8. It collected SARS Sin variants and other SARS variants into the same cluster. It
could also distinguish between murine hepatitis variants and distinguish the SARS CUHK
variants into the same clusters. However, it was not successful with the other viruses:

Sample clusters:

[[’Galveston’, ’Human coronavirus 229E’, ’SARS BJ01’],
[’Murine hepatitis MHV-A59 C12’, ’SARS ZJ01’, ’WestNile2’]],

[[’Hepatitis C genotype 1’, ’Onyong-nyong’, ’SARS civet007’],
[’SARS CUHK-Su10’, ’SARS CUHK-W1’]],

[[’Murine hepatitis 2’, ’Murine hepatitis ML-10’,
’Murine hepatitis Penn97-1’],
[’WestNile1’]],

[[’SARS civet010’, ’SARS Sin2500’, ’SARS Sin2677’, ’SARS Sin2679’,
’SARS Sin2748’, ’SARS Sin2774’],
[’SARS HKU-39849’, ’SARS Tor2’, ’SARS TW1’, ’SARS Urbani’]]

Genes 2022, 13, 1966 14 of 18

Overall, the first and fourth attempts with the similarity matrices produced the worst
results; most clusters were essentially random. We did not obtain a satisfying result with
MinHash in the end, so in the following, we used Doc2Vec.

The results of the second and the third Doc2Vec tests with correct m parameters were
mostly correct with one or two viruses out of order. We continued with these parameters in
the last tests.

5.4. Comparison of our Membrane Based Approach with K-Means

We evaluated the performance of the clustering results based on two clustering validity
indices: the Davies–Bouldin index and the Silhouette coefficient and compared our results with
the results received with K-Means. We used the implementation of sklearn [29]. First, we
presented what indexes we reached with our membrane-based clustering and K-Means on
the results of the third Doc2Vec test with m = 11.

We present the best Daves–Bouldin indexes that we obtained for the different number of
clusters with the membrane configuration that we used to reach the scores, compared to the
indexes we reached with K-Means in Table 6. In the case of the Daves–Bouldin index, a lower
value means better clustering. It can be seen that we found at least one configuration for
each number of clusters where we could reach a better index than the index produced by
K-Means. The average index reached with our method is also much better. Based on these
results, with the increasing number of clusters, the clustering became better and better. Our
method with 14 clusters produced the best results.

Table 6. Davies–Bouldin scores of the K-Means and the Membrane clustering with the different number
of clusters and m-gram size of 11 and using different membrane configurations. The Better scores are
bold in the table.

Clusters Steps Cells Objects Membrane K-Means

6 7 11 8 0.8324 1.4146
7 3 10 9 0.9717 1.2747
8 2 11 9 0.8068 1.2404
9 3 11 6 0.9664 1.0890
10 2 11 8 0.8110 1.2967
11 2 10 9 0.7900 1.3230
12 2 10 8 0.8159 1.0650
13 5 11 6 0.8198 1.0837
14 7 11 7 0.7652 0.9753
15 4 8 6 0.8162 0.9583
16 5 10 7 0.7743 0.9807

average 0.83 1.15

In Table 7, the best Silhouette indexes can be seen that we reached, similarly to Table 6.
In the case of the Silhouette index, a higher value means better clustering. It can be seen
that we found at least one configuration for the most number of clusters where we could
reach a better index than the index produced by K-Means, but not for all number of clusters.
The average value reached with our method is also not as much better as with the Davies–
Bouldin index. Based on these results, with decreasing number of clusters, the clustering
became better and better. Our method with six clusters produced the best result.

Similar to the clustering of the results of the third Doc2Vec test with m = 11, we will
now discuss which indexes we obtained in the second Doc2Vec test with m set between 4
and 16.

First, we present the best Daves–Bouldin indexes that we reached for the different
number of clusters with the membrane configuration that we used to reach the scores,
compared to the indexes we reached with K-Means in Table 8. It can be seen that we found
at least one configuration for the most number of clusters where we could reach a better

Genes 2022, 13, 1966 15 of 18

index than the index produced by K-Means. Compared to the previous experiment, this
experiment showed that not increasing the number of clusters led to better clustering.
Moreover, K-Means with 9–10 clusters found very good clusterings, with 9 clusters being
the best in this experiment, while our algorithm performed the worst with these cluster
numbers. Furthermore, it can be seen that the resulting values and averages are better than
the resulting values of the previous experiment with a fixed m.

Table 7. Silhouette scores of the K-Means and the membrane clustering with the different number of
clusters and m-gram size of 11 and using different membrane configurations. The Better scores are
bold in the table.

Clusters Steps Cells Objects Membrane K-Means

6 8 10 6 0.3437 0.3431
7 8 11 7 0.3411 0.3304
8 4 8 8 0.3219 0.3161
9 3 11 6 0.3235 0.3172
10 5 11 6 0.3256 0.3236
11 5 11 6 0.2892 0.3031
12 6 9 8 0.3011 0.2945
13 7 8 7 0.3083 0.2499
14 4 8 8 0.2508 0.2503
15 4 8 6 0.2695 0.2359
16 3 9 6 0.2384 0.2378

average 0.3011 0.2910

Table 8. Davies–Bouldin scores of the K-Means and the membrane clustering with the different number
of clusters and m between 4 and 16 and using different membrane configurations. The Better scores
are bold in the table.

Clusters Steps Cells Objects Membrane K-Means

6 6 11 8 0.8471 0.9975
7 4 8 8 0.8413 0.8618
8 2 11 9 0.7800 0.8202
9 3 7 6 0.9402 0.7239
10 5 9 5 0.8748 0.6684
11 4 8 8 0.7226 0.9235
12 7 11 7 0.8516 0.8887
13 5 11 7 0.7441 0.8155
14 3 8 6 0.7625 0.8215
15 3 8 6 0.7499 0.7617
16 7 11 7 0.7254 0.7727

average 0.8035 0.8232

We present the best Silhouette scores that we obtained for the different number of
clusters with the membrane configuration that we used to reach the scores, compared to
the indexes we reached with K-Means, in Table 9. It can be seen that we found at least one
configuration for the most number of clusters where we could reach a better index than
the index produced by K-Means, but not for all number of clusters. Furthermore, although
we produced better values with more cluster numbers, the average with K-Means was
still better. Again, the best clusterings resulted in nine clusters both with our method and
the K-Means. Moreover, our method with nine clustersled to the best clustering in this
experiment. Furthermore, it can be seen that the resulting values here are better than the
resulting values of the previous experiment with a fixed m.

Genes 2022, 13, 1966 16 of 18

Table 9. Silhouette scores of the K-Means and the membrane clustering with the different number of
clusters and m between 4 and 16 and using different membrane configurations. The Better scores are
bold in the table.

Clusters Steps Cells Objects Membrane K-Means

6 6 11 8 0.4079 0.4069
7 5 7 8 0.4396 0.4452
8 4 7 8 0.4483 0.4385
9 5 8 9 0.4513 0.4437
10 5 9 5 0.4130 0.4467
11 8 9 6 0.3916 0.3839
12 9 10 7 0.3932 0.3894
13 7 10 8 0.3821 0.3802
14 4 7 8 0.3832 0.3745
15 2 11 6 0.3819 0.3733
16 7 8 5 0.3473 0.3707

average 0.4035 0.4048

6. Discussion
6.1. Conclusions

We examined various methods and algorithms in the process of clustering genomes.
First, we evaluated the usage of Doc2Vec and MinHash and how they can be used to measure
the distance between genomes. After that, we applied our hierarchical membrane clustering
method to the results of the similarity metrics and validated the results using virus genomes.
Then, we compared our membrane clustering method with K-Means and evaluated their
clustering results using the Silhouette coefficient and the Davies–Bouldin index.

In the end, we can conclude that our membrane clustering method can be effectively
used to cluster virus genomes because it reached good scores compared to K-Means. We
also found that our clustering methods worked better with Doc2Vec than with MinHash.

6.2. Limitations

To achieve better results compared to rival solutions, as a basis for clustering al-
gorithms, evolutionary optimization methods were utilized, including Particle Swarm
Optimization (PSO), Red Fox Optimization (RFO), Polar Bear Optimization (PBO), Chimp Op-
timization Algorithm (ChOA), or even a combination of these as their frameworks [30–33].
Making further experiments and evaluations comparing these heuristics was not in the
scope of this paper, so we used PSO, which we already had built into our membrane cluster-
ing approach in our previous studies and are described in Section 3.7. However, in future
studies, this aspect could also be evaluated in more detail.

We evaluated the clustering performance of our method, but it could still be ex-
amined and improved in other aspects. For example, since membrane systems are par-
allel models, the running time of our algorithm could be improved in a distributed or
multi-threaded environment.

It would be also interesting to examine and test the usage of classification models
to classify genomes such as Decision Trees, Support Vector Machines, Random Forests, or
Neural Networks.

Furthermore the accuracy of the algorithm could also be tested on larger data sets,
for example using other kinds of coronaviruses such as MERS [34] and SARS-CoV [35]. It
would also be interesting to try our algorithm and these models not only on virus genomes
but on bacteria or other species to inspect how these longer genome sequences affect the
running time, memory usage, etc.

Genes 2022, 13, 1966 17 of 18

Author Contributions: Conceptualization, P.L.-K. and A.K.; methodology, P.L.-K. and A.K.; software,
P.L.-K.; validation, P.L.-K. and A.K.; investigation, P.L.-K. and A.K.; writing—original draft prepa-
ration, P.L.-K. and A.K.; writing—review and editing, P.L.-K. and A.K.; supervision, A.K.; project
administration, A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the ÚNKP-21-3 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research, Development and
Innovation Fund. This research was also supported by grants of the “Application Domain Specific
Highly Reliable IT Solutions” project that has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed under the Thematic
Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We used the NCBI reference sequences (RefSeq) [25] and The European
Nucleotide Archive [26] databases to collect the genomes used in this paper.

Acknowledgments: Special thanks to Dániel Szabó, who contributed to the paper by helping in the
implementation of the software.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

COVID19 Coronavirus Disease 19
DNA Deoxyribonucleic acid
MHAP MinHash Alignment Process
RF Random Forest
PPIs protein–protein interactions
CBOW continuous bag-of-words
PV-DM Distributed Memory version of Paragraph Vector
PV-DBOW Distributed Bag of Words version of Paragraph Vector
D2V Doc2Vec
W2V Word2Vec
DBMS Database Management System
SQL Structured Query Language
PSO Particle Swarm Optimization
RFO Red Fox Optimization
PBO Polar Bear Optimization
ChOA Chimp Optimization Algorithm

References
1. Bolshoy, A.; Volkovich, Z.; Kirzhner, V.; Barzily, Z. Genome Clustering: From Linguistic Models to Classification of Genetic Texts;

Springer Science & Business Media: Berlin, Germany, 2010; Volume 286.
2. Besta, M.; Kanakagiri, R.; Mustafa, H.; Karasikov, M.; Rätsch, G.; Hoefler, T.; Solomonik, E. Communication-efficient jaccard

similarity for high-performance distributed genome comparisons. In Proceedings of the 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, 18–22 May 2020; pp. 1122–1132.

3. Berlin, K.; Koren, S.; Chin, C.S.; Drake, J.P.; Landolin, J.M.; Phillippy, A.M. Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing. Nat. Biotechnol. 2015, 33, 623–630. [CrossRef]

4. Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and
metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [CrossRef]

5. Koslicki, D.; Zabeti, H. Improving MinHash via the containment index with applications to metagenomic analysis. Appl. Math.
Comput. 2019, 354, 206–215. [CrossRef]

6. Katz, L.S.; Griswold, T.; Morrison, S.S.; Caravas, J.A.; Zhang, S.; den Bakker, H.C.; Deng, X.; Carleton, H.A. Mashtree: A rapid
comparison of whole genome sequence files. J. Open Source Softw. 2019, 4, 1762. [CrossRef]

7. Oubounyt, M.; Louadi, Z.; Tayara, H.; Chong, K.T. Deep learning models based on distributed feature representations for
alternative splicing prediction. IEEE Access 2018, 6, 58826–58834. [CrossRef]

http://doi.org/10.1038/nbt.3238
http://dx.doi.org/10.1186/s13059-016-0997-x
http://dx.doi.org/10.1016/j.amc.2019.02.018
http://dx.doi.org/10.21105/joss.01762
http://dx.doi.org/10.1109/ACCESS.2018.2874208

Genes 2022, 13, 1966 18 of 18

8. Yang, X.; Yang, S.; Li, Q.; Wuchty, S.; Zhang, Z. Prediction of human-virus protein-protein interactions through a sequence
embedding-based machine learning method. Comput. Struct. Biotechnol. J. 2020, 18, 153–161. [CrossRef]

9. Arslan, H. COVID-19 prediction based on genome similarity of human SARS-CoV-2 and bat SARS-CoV-like coronavirus. Comput.
Ind. Eng. 2021, 161, 107666. [CrossRef]

10. Jolly, B.; Scaria, V. Computational analysis and phylogenetic clustering of SARS-CoV-2 genomes. Bio-Protocol 2021, 11, e3999.
[CrossRef] [PubMed]

11. Tomović, A.; Janičić, P.; Kešelj, V. n-Gram-based classification and unsupervised hierarchical clustering of genome sequences.
Comput. Methods Programs Biomed. 2006, 81, 137–153. [CrossRef] [PubMed]

12. Gao, T.; Liu, X.; Wang, L. An improved PSO-based clustering algorithm inspired by tissue-like P system. In International Conference
on Data Mining and Big Data; Springer: Cham, Switzerland, 2018; pp. 325–335.

13. Jiang, Z.; Liu, X.; Sun, M. A density peak clustering algorithm based on the K-nearest Shannon entropy and tissue-like P system.
Math. Probl. Eng. 2019, 2019, 1713801. [CrossRef]

14. Zhang, Z.; Liu, X. An improved spectral clustering algorithm based on cell-like P system. In International Conference on Human
Centered Computing; Springer: Cham, Switzerland, 2019; pp. 626–636

15. Tarczali, T.; Lehotay-Kéry, P.; Kiss, A. Membrane clustering using the postgresql database management system. In Proceedings of
SAI Intelligent Systems Conference; Springer: Cham, Switzerland, 2020; pp. 377–388

16. Lehotay-Kéry, P.; Tarczali, T.; Kiss, A. P System–Based Clustering Methods Using NoSQL Databases. Computation 2021, 9, 102.
[CrossRef]

17. Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol. 1912, 11, 37–50 [CrossRef]
18. Broder, A.Z. On the resemblance and containment of documents. In Proceedings of the Compression and Complexity of

SEQUENCES 1997 (Cat. No. 97TB100171), Salerno, Italy, 13 June 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 21–29.
19. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
20. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on

Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.
21. MacQueen, J. Classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July1967; pp. 281–297.
22. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 2, 224–227. [CrossRef]
23. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
24. Păun, G.; Rozenberg, G. A guide to membrane computing. Theor. Comput. Sci. 2002, 287, 73–100. [CrossRef]
25. Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of

genomes, transcripts and proteins. Nucleic Acids Res. 2007, 35, D61–D65. [CrossRef]
26. Leinonen, R.; Akhtar, R.; Birney, E.; Bower, L.; Cerdeno-Tárraga, A.; Cheng, Y.; Cleland, I.; Faruque, N.; Goodgame, N.; Gibson, R.

The European nucleotide archive. Nucleic Acids Res. 2010, 39, D28–D31. [CrossRef]
27. Rehurek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop

on New Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; pp. 45–50.
28. Zhu, E.; Markovtsev, V. Ekzhu/Datasketch: First Stable Release. 2017. Available online: http://ekzhu.com/datasketch/index.

html (accessed on 27 October 2022).
29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
30. Kennedy, J. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston,

MA, USA, 2010. [CrossRef]
31. Połap, D. Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death

mechanism. Symmetry 2017, 9, 203. [CrossRef]
32. Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [CrossRef]
33. Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [CrossRef]
34. Zhou, Y.; Yang, Y.; Huang, J.; Jiang, S.; Du, L. Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding

domain. Viruses 2019, 11, 60. [CrossRef]
35. Liu, H.-L.; Yeh, I.-J.; Phan, N.N.; Wu, Y.-H.; Yen, M.-C.; Hung, J.-H.; Chiao, C.-C.; Chen, C.-F.; Sun, Z.; Jiang, J.-Z. Gene signatures

of SARS-CoV/SARS-CoV-2-infected ferret lungs in short-and long-term models. Infect. Genet. Evol. 2020, 85, 104438. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.csbj.2019.12.005
http://dx.doi.org/10.1016/j.cie.2021.107666
http://dx.doi.org/10.21769/BioProtoc.3999
http://www.ncbi.nlm.nih.gov/pubmed/34124300
http://dx.doi.org/10.1016/j.cmpb.2005.11.007
http://www.ncbi.nlm.nih.gov/pubmed/16423423
http://dx.doi.org/10.1155/2019/1713801
http://dx.doi.org/10.3390/computation9100102
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/S0304-3975(02)00136-6
http://dx.doi.org/10.1093/nar/gkl842
http://dx.doi.org/10.1093/nar/gkq967
http://ekzhu.com/datasketch/index.html
http://ekzhu.com/datasketch/index.html
http://dx.doi.org/10.1007/978-0-387-30164-8_630
http://dx.doi.org/10.3390/sym9100203
http://dx.doi.org/10.1016/j.eswa.2020.114107
http://dx.doi.org/10.1016/j.eswa.2020.113338
http://dx.doi.org/10.3390/v11010060
http://dx.doi.org/10.1016/j.meegid.2020.104438
http://www.ncbi.nlm.nih.gov/pubmed/32615317

	Introduction
	Related Works
	Materials and Methods
	Cosine Similarity
	Jaccard Similarity
	MinHash
	Word2Vec and Doc2Vec
	Clustering Algorithms
	Membrane Computing
	Our Approach from Our Previous Works

	Experiments and the Algorithm
	Experiments on Using Doc2Vec and MinHash
	Hierarchic Membrane Clustering

	Results
	Evaluation of Using Doc2Vec
	Evaluation of Using MinHash
	Creating Clusters Using Hierarchic Membrane Clustering
	Comparison of our Membrane Based Approach with K-Means

	Discussion
	Conclusions
	Limitations

	References

