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Abstract

Background: A novel feature extraction technique, Relative-Brain-Signature

(RBS), which characterizes subjects’ relationship to populations with distinctive

neuronal activity, is presented. The proposed method transforms a set of Elec-

troencephalography’s (EEG) time series in high dimensional space to a space of

fewer dimensions by projecting time series onto orthogonal subspaces.

Methods: We apply our technique to an EEG data set of 77 abstinent alcoholics

and 43 control subjects. To characterize subjects’ relationship to the alcoholic

and control populations, one RBS vector with respect to the alcoholic and one

with respect to the control population is constructed. We used the extracted RBS

vectors to identify functional biomarkers over the brain of alcoholics. To achieve

this goal, the classification algorithm was used to categorize subjects into alco-

holics and controls, which resulted in 78% accuracy. Results and Conclusions:

Using the results of the classification, regions with distinctive functionality

in alcoholic subjects are detected. These affected regions, with respect to their

spatial extent, are frontal, anterior frontal, centro-parietal, parieto-occiptal, and

occipital lobes. The distribution of these regions over the scalp indicates that the

impact of the alcohol in the cerebral cortex of the alcoholics is spatially diffuse.

Our finding suggests that these regions engage more of the right hemisphere

relative to the left hemisphere of the alcoholics’ brain.

Introduction

A number of imaging modalities, each offering their own

advantages and disadvantages, have been employed to

investigate the functional and structural effects of alcohol

on the brain (Wit et al. 1990; Laakso et al. 2000; Pfeffer-

baum et al. 2001a; Enoch et al. 2008). Magnetic Reso-

nance Imaging (MRI) and functional MRI (fMRI) are

commonly used to explore structural and functional

changes in the brain of alcoholics (Hommer et al. 1996;

Pfefferbaum et al. 2001b; Tapert et al. 2001; Desmond

et al. 2003), respectively. fMRI measures brain’s neural

activity through its localized hemodynamic response and

provides high spatial resolution. Identifying abnormalities

in the brain function of alcoholics has been also

addressed by less expensive and more portable neuroi-

maging modality such as functional near Infrared Spec-

troscopy (fNIRS) (Villringer and Chance 1997; Amyot

et al. 2012; Bunce et al. 2013) which measures local

hemodynamic changes over the cerebral cortex (Felleman

and Van Essen 1991). On the other hand, the capability

of imaging modalities such as Magnetoencephalography

(MEG) (H€am€al€ainen et al. 1993) or electroencephalogra-

phy (EEG) (Niedermeyer and da Silva 2005) that are

capable of measuring neuronal activity directly with high

temporal resolutions (and low spatial resolution) has been

less explored. Electroencephalography, which captures

neuronal activity in the range of milliseconds can be
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employed to capture neural dysfunction that occur in the

short-lasting temporal window (Karamzadeh et al. 2013).

In particular, the Event-Related-Potentials (ERP) consist-

ing of a number of elicited peaks (ERP components),

manifest regional transient variations after a stimulus is

presented. These peaks are known to be related to a wide

variety of sensory, cognitive or motor events. Therefore,

they are commonly used to study a number of brain dys-

functions (Pfefferbaum et al. 2001b; Balan et al. 2002;

Mathalon et al. 2002). To capture brain potential impacts

of long-term alcohol consumption, analysis of ERP signals

has been bounded to the certain temporal windows of the

signals (such as P300 that occurs 300–500 ms after the

stimulus onset) (Begleiter and Porjesz 1999) or trans-

forming signals to the frequency domain to explore spe-

cific frequency ranges (Rangaswamy et al. 2002). These

studies attempt to study the characteristics of ERP’s

amplitude fluctuations (Bostanov 2004), power spectral

density (Musha et al. 1997), or time-frequency analysis

(Wang et al. 2004), to extract informative and discrimina-

tive features. A major challenge in EEG data analysis is its

high dimensionality. The high dimensionality of the EEG

data adds more complexity, increases the computational

time, and complicates the data analysis due to the phe-

nomenon called “curse of dimensionality” (Lotte et al.

2007). Although the aforementioned feature extraction

techniques reduce the dimensionality of the EEG signals,

yet the feature space corresponding to a single subject is

relatively high due to the large number of signals

recorded from the subject’s brain. Therefore, the EEG fea-

ture extraction is typically followed up by a channel selec-

tion procedure (Ansari Asl et al. 2007) that selectively

discards signals corresponding to certain channels of the

subjects’ EEG signals. Furthermore, the common EEG fea-

ture extraction techniques are not designed to include

attributes regarding the subject’s population association

into their process of feature extraction and solely extracts

information from individual’s EEG signals.

In this work, we introduce and validate a novel time

series feature extraction technique, Relative Brain Signa-

ture (RBS) that can be utilized to provide an effective

dimensionality reduction for ERP signals, which does not

require the typical channel selection procedure and

accounts for all the ERP signals. Furthermore, unlike

common feature extraction techniques that do not con-

sider subject’s population association in the procedure of

feature extraction, RBS technique obtains information

from subjects’ ERPs by investigating their relationship to

the given populations of the study. RBS combines vector

space analysis and orthogonal subspace projection to gen-

erate the feature vector that describes the relationship

between a subject and populations. We show that our

proposed technique can be used to identify the functional

biomarkers related to a specific population. We also pro-

vide a topographic map of the localized biomarkers.

Methods

Experimental paradigms and data
acquisition

We assessed our method of extracting RBS using an EEG

data set collected from two populations of alcoholic and

control subjects. These data were collected by the Neuro-

dynamics Laboratory, SUNY Downstate Medical Center,

(supported by NIH grants AA05524 and AA026686) from

a group of alcoholics and control subjects and was first

published in Zhang et al. (1995). The control group con-

sisted of 43 right-handed male (the data set originally

contained 45 subjects of which two subject data were

excluded to file errors and empty trials) subjects with an

age range of 19.4–38.6 years. The alcoholic group con-

sisted of 77 males with an age range of 22.3–49.8 years.

Alcoholic subjects were initially diagnosed due with alco-

hol abuse or dependence by the intake psychiatrist

according to the Diagnostic and Statistical Manual of

Mental Disorders-III (DSM-III) (Angold and Costello

1993) criteria as well as more advanced diagnosis tools.

Also a mini mental status examination (Bertolucci et al.

1994) was conducted on all subjects and no memory defi-

cit was observed. The alcoholic subjects had a history of

heavily drinking for a minimum of 15 years. At least

30 days before the start of the experiment alcoholic sub-

jects were hospitalized and fully detoxified.

Subjects were shown a series of object pictures chosen

from the 1980 Snodgrass and Vanderwart picture set

(Snodgrass and Vanderwart 1980). In this experiment,

two picture stimuli appeared in succession with a 1.6 sec

fixed interstimulus interval. The duration for the first

(S1) and second (S2) picture stimulus in each test trial

was 300 ms where the interval between each trial was

fixed to 3.2 sec. All the pictures were paired either as

matching or nonmatching conditions. For the matching

condition, subjects were presented identical stimuli (simi-

lar S1 and S2) and in the nonmatched condition S2 was

different from S1. Subjects were required to press a

mouse key in one hand for the matching condition and

press the mouse key in another hand for the nonmatching

condition. The data were captured by an EEG device with

64 electrodes of which two were mounted for Electroocu-

lography (EOG) and one nose electrode. We excluded

these three channels as well as one more channel that had

been used for grounding the subjects and only used data

from 60 electrodes. More information regarding the data

collection procedure can be found in reference (Zhang

et al. 1995).
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Population-specific-data set

The first step of our methodological approach is to con-

struct the Population-Specific-Data set (PSD). Population-

specific-data set is composed of the elements that are com-

puted by averaging the corresponding ERPs from the sub-

jects within the population. The subspace spanned by the

elements of the PSD provides generic brain functionality

for the corresponding population over certain areas of the

brain. We refer to the set of these subspaces generated by

every element of the PSD as Population-Specific-Subspace

(PSS).

In particular, suppose that there are n subjects that

belong to r distinct populations. Also, let’s assume that

for every subject, there are m ERPs, each a d-dimensional

time series. We denote the ith ERP of a subject by

ei ¼ ðeið1Þ ; eið2Þ ; . . .; eiðdÞ ÞT:
First, the r Population-Specific-Data sets (PSD) is com-

puted from the ERPs corresponding to the subjects in every

population. The PSD for population j shown as PSDj con-

tains m elements, where each element is a d-dimensional

time series. The ith element of the PSDj, fij ¼
ðfijð1Þ ; fijð2Þ ; . . .; fijðdÞ ÞT is obtained by averaging the ith ERPs

from the subjects that belong to population j as below:

fij ¼ ð1=njÞ
Xnj

k¼1
ei;k; (1)

where nj is the number of subjects in population of j and

ei,k is the ith ERP corresponding to the kth subject of

population j.

We consider the subspace (Halmos 1947) spanned by fij,

Sij ¼ spanðfijÞ ¼ fcfij : c 2 R; fij 2 PSDj and fij

¼ ð1=njÞ
Xnj

k¼1
ei;kg; (2)

as a set that represents a generic brain functionality for

the corresponding area of the brain. We show the set of

these subspaces generated by the elements of the PSDj by

PSSj. The subspace Sij is paired with another subspace

called orthogonal complement subspace (Halmos 1947).

S?ij ¼ fg : f :g ¼ 0 and f ; g 2 Rd and f 2 Sijg; (3)

which is composed of elements that are orthogonal and

dissimilar to the elements of Sij. Thus, the subspace S?ij
provides a generic representation for the brain functional-

ities with the maximum dissimilarity to the current

elements of PSSj.

Orthogonal complement projection

The second step of our approach is to project the ERPs

of a subject onto the orthogonal complement subspace of

the PSS elements. The existing orthogonality between Sij
and S?ij suggests that for the given population j, the affili-

ation of the ei to one of the other populations, say j0 6¼ j,

would be more evident once ei is projected onto S?ij .
Generally, the projection for an arbitrary vector in Rd

onto the orthogonal complement of the span(E)⊥ (E is

an arbitrary matrix) can be obtained by constructing a

projector

P ¼ I� EEþ; (4)

where E+ = (ETE�1 � ET represents the pseudo inverse of

E (Greville 1960). Also, EE+ will be idempotent (i.e.

((EE+)2 = EE+), and symmetric (i.e. (EE+)T = EE+)

(Heath 1997). By replacing

E ¼ f ij

Eþ andEEþ become

Eþ ¼ ðf ijÞTPd
k¼1 ðf ijÞ2ðkÞ

: (5)

EEþ ¼ f ijðf ijÞTPd
k¼1 ðf ijÞ2ðkÞ

: (6)

Hence, projector

P ¼ I� f ijðf ijÞTPd
k¼1ðf ijÞ2ðkÞ

: (7)

would project a given vector onto the

spanðf ijÞ? ¼ S?ij :

The projection of ei onto S?ij is given by

e?i ¼ Pei

To quantify the similarity of ei to the population j0 the
cosine similarity between the e?i and fi,j0 is computed as

oij0 ¼
f Tij0

jjf ij0 jj
� e?i
jje?i jj

; (8)

where ||�|| correspond to norm-2 of the vectors (Peressini

1967).

An RBS vector with respect to population j0 is com-

posed of m oij0 (i = 1; 2; . . .;m) components. A compo-

nent for specific i quantifies the similarity of an ERP of

the subject to the corresponding ith element of the PSDj0.

As it is explained in the Results section, we evaluate the

efficacy of RBS vectors by using its components in a clas-

sification procedure as feature vector to classify alcoholic

subjects from control subjects.
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Results

Constructing relative brain signature
vectors

As discussed in the method section, the data set contains

120 subjects of which 77 belong to alcoholic and 43

belong to the control populations. First, for every subject,

an ERP data set is constructed by averaging the EEG sig-

nals corresponding to every channel across all different

trials of the experiment. Then for every population, a

PSD, namely Alcoholic-PSD and Control-PSD, is con-

structed. Every element of the PSDs, Alcoholic-PSD and

Control-PSD, are computed by averaging the correspond-

ing ERPs from the subjects in the alcoholic and control

populations, respectively. The Alcoholic-PSD and Con-

trol-PSD is composed of 60 elements. We consider the

subspace spanned by an element of PSD (see Methods

section), which provides a generic brain functionality for

a specific region of the brain. We refer to the subspaces

generated by Alcoholic- and Control-PSDs as Alcoholic-

PSSs and Control-PSSs, respectively.

Our proposed RBS feature extraction technique obtains

information from subjects’ ERPs by considering their

relationship to both alcoholic and control populations.

First, the subject’s ERP is projected onto the orthogonal

complement subspace (see Methods section) associated

with the Alcoholic- and Control-PSS. The orthogonal

complement subspace of the Alcoholic-PSS (Control-PSS)

is a subspace in which elements illustrate distinctive func-

tionality from the elements of the Alcoholic-PSS (Con-

trol-PSS). Hence, projection of subject’s ERP onto the

orthogonal complement subspace related to Alcoholic-PSS

or Control-PSS contains transformed ERP components

that signify subject’s ERP association to the alcoholic or

control populations. Each ERP is projected onto the

orthogonal complement of the Alcoholic-PSS and onto

the orthogonal complement subspace of the Control-PSS.

To quantify the similarity of the projected ERP to the

opposite population, the cosine similarity (see Methods

section) between the projected ERP and the correspond-

ing element from alcoholic and control population’s PSS

element is computed. These two resulting scalars explain

the association of an ERP to the alcoholic and control

populations. Therefore, by applying this procedure to all

of the 60 ERPs two vectors of dimension 60 correspond-

ing to the alcoholic and control population, namely Alco-

holic-RBS and Control-RBS are generated. These vectors

are an ordered collection of 60 elements which are called

components. A component of the RBS vector depicts the

similarity of an ERP associated with an area of the brain

to the alcoholic or control population.

Relative-brain-signature vectors for an alcoholic and a

control subject are illustrated in Figure 1 by the dashed

line that connects the computed RBS vector components

for an alcoholic (Fig. 1A) and a control subject (Fig. 1B).

The component values, which quantify the connection

between an ERP and the alcoholic or control populations,

are shown in blue and red, respectively. The RBS compo-

nent value closer to one indicates a stronger association

(A) (B)

Figure 1. RBS vectors for an alcoholic and a control subject are illustrated. Two RBS vectors for an alcoholic subject and a control subject are

shown. The components of the RBS vectors, quantify the association of an ERP waveform and the alcoholic population (shown in blue) or to the

control population (shown in red). A positive value closer to 1, for a component of the RBS vectors indicates a stronger association to a certain

population whereas smaller positive values and the negative values suggest the corresponding ERP data are weakly associated with a population.

In A, majority of Alcoholic-RBS component values are significantly associated with the alcoholic population while for the Control-RBS component

values, majority of the ERPs were weakly associated with the control population. In B, Control-RBS component values illustrate a strong relation

to the control population while Alcoholic-RBS demonstrates weak association to the alcoholic population.
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to a certain population whereas smaller positive values

and negative values suggest that the corresponding ERP

of the subject is weakly associated with a population. It is

worth noting that the largest similarity values for the

Alcoholic-RBS of an alcoholic subject are expected to be

observed among the ERPs originating from the regions

with the foremost distinctive functionality due to pro-

longed alcohol effects.

Identifying Functionally Distinct Brain
Regions of Alcoholic Subjects

In this section, the areas of the alcoholics’ brain with dis-

tinct functional activity are identified using the RBS vec-

tors. These areas are detected by exploring the

corresponding brain regions associated with the RBS com-

ponents. Considering that larger component values for the

alcoholics’ Alcoholic-RBS components are expected to be

observed among the ERPs originated from the regions with

distinct functional activity. We are particularly interested in

identifying these components. A set of components for

which large association value to the alcoholic population

(i.e. large Alcoholic-RBS value) and small association value

to the control population (i.e. small Control-RBS values)

across alcoholic subjects is obtained. This set of component

is associated with a set of electrode positioned on the areas

of the brain with highest contribution in distinguishing

between the alcoholic and control subjects. We attempt to

determine these components through a classification proce-

dure for classifying alcoholics from the control subjects.

The classification procedure is composed of 60 classifica-

tion experiments. For every classification experiment, fea-

ture vectors with a certain size are constructed from a set of

RBS vector components. We compute the classification

accuracy for every classification experiment and select the

set of components for which the largest accuracy value is

obtained. The details of the ith (i = 1, 2, . . . 60) classifica-

tion experiment are explained in the following paragraph.

For a classification experiment, two-thirds of the alco-

holic and two-thirds of the control subjects are randomly

selected for training purposes and the rest of the subjects

are selected for the testing purposes.

To construct the feature vectors, RBS components are

weighted and sorted by using the RBS vector of the alco-

holic subjects within the training set, using equation (9),

Componentj ¼ maxj
Xl

k¼1

ðAlcoholic RBSÞK
ðControl RBSÞK

����
����

� �
;

�

j ¼ 1; 2; . . .60; l ¼ 51

� (9)

where “|�|” is the absolute value, and l is the number

of alcoholic subjects from the training set (i.e. since

two-thirds of the alcoholic subjects are used for training

the classifier, l = 51). For every subject, the RBS vectors

are resampled by keeping their first i ranked components

and discarding the rest of the components’ data (i.e. the

sampled vectors contain i elements). Then, feature vectors

for every subject are extracted by subtracting the resam-

pled Control-RBS from the resampled Alcoholic-RBS. It

is worth emphasizing that the components are ranked

and selected according to the RBS vectors of the alcoholic

subjects within the training set to avoid the double

dipping phenomenon (Kriegeskorte et al. 2009).

To classify the subjects using the constructed feature

vectors, Linear Discriminant Analysis (LDA) (Welling

2005) classification algorithm is employed. The general-

ization performance of every classification experiment is

assessed by random subsampling in which the process of

randomly partitioning subjects into training and testing

sets is repeated many times (1000 in this study). For

every classification experiment, we report accuracy, speci-

ficity, and sensitivity (Pang-Ning et al. 2006). The overall

accuracy, specificity, and sensitivity values for every classi-

fication experiment are determined by averaging the accu-

racy, specificity, and sensitivity values computed for every

run of the random subsampling procedure.

In Figure 2, performance of the LDA classification algo-

rithm is illustrated where different number of significant

components is used to generate feature vectors. A dot in

the dot-line of Figure 2A corresponds to the average classi-

fication accuracy for a feature vector constructed from

certain number of significant components. The dash lines

in Figure 2A represent the standard deviation for the

computed accuracy. Dots in the red and blue dot-lines in

Figure 2B denote the average specificity and average

sensitivity (respectively) for the corresponding significant

components used to construct the feature vector. Starting

with the first significant component, an accuracy of

0.67 � 0.06, specificity of 0.65 and sensitivity of 0.69 are

obtained. As it can be seen in Figure 2, when the top 11

significant components of the RBS vectors are used to gen-

erate the feature vectors, the average accuracy, specificity,

and sensitivity increase to their maximum values where

the graphs’ knee is formed. The highest classification accu-

racy value when the feature vector is constructed using the

first 11 significant components is 0.78 � 0.06 whereas the

highest specificity and sensitivity for the first 11 significant

components are 0.74 and 0.79, respectively.

In Figure 3, spatial distribution of the first 11 significant

components over the scalp is illustrated using EEGLAB

(Delorme and Makeig 2004). The red area corresponds to

the most significant component and the yellow strip

around the red determines the boundary of that region.

To investigate the consistency of the feature sets that

are employed for the classification experiments across the
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sampling iterations, we report the sets of components

with which feature vectors for the first 11 classification

experiments are constructed. Due to a slight variability in

the feature set across the 1000 iterations, the fraction of

times that a feature set has been used for a classification

experiment is denoted by a percentage value. As it is

show in Table 1, the feature sets selected for every classifi-

cation experiment across the 1000 iterations are consistent

(i.e. majority of the classifications have been performed

with the similar set of features) for all the reported classi-

fication experiments.

Discussion

Our proposed feature extraction approach of projecting

the ERPs onto the orthogonal subspaces of the control

and alcoholic populations has provided accurate details

regarding the subjects’ original population association.

We extracted two 60-dimensional RBS vectors for every

subject to characterize the relationship of the subject

to the two populations of alcoholic and control. As

Figure 1A illustrates, the Alcoholic-RBS component values

for an alcoholic subject signify a strong associated with

the alcoholic population while majority of the Control-

RBS component values of the ERPs, demonstrate a weak

association to the control population. In Figure 1B, the

Control-RBS component values for a control subject illus-

trate a strong link to the control population while Alco-

holic-RBS demonstrates a weak association to the

alcoholic population. It suggests that the RBS vectors can

potentially explain and distinguish the association of the

subject to different populations of a study. We were also

able to employ the RBS vectors to detect and visualize the

functionally distinct regions over the alcoholics’ brain.

Among these areas, we identified a set of distinct regions

from which the classification between alcoholic and

(A) (B)

Figure 2. Performance evaluation for LDA

classification between alcoholics and

control subjects. (A) The x-axis corresponds

to different number of significant

components used to generate the feature

vectors and the y-axis denotes the

accuracy. The dot-line corresponds to the

average classification accuracy and the

dash-lines represent the standard deviation

for the computed accuracy. (B) The x-axis

corresponds to different number of

significant components used to generate

the feature vectors. The red and blue dot-

lines denote the average specificity and

average sensitivity (respectively) for a

certain number of significant components

used to construct the feature vector.

Figure 3. Different views for the top 11 functionally distinct brain areas between alcoholic and control subject. The red area corresponds to the

most significant component and the yellow strip around the red determines the boundary of that region. These areas, with respect to their spatial

extent are frontal and anterior frontal, centro-parietal, parieto-occiptal, and occipital lobes.
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control subjects gained its maximum accuracy (Fig. 2A). In

other words, these regions represent the functionally

impaired regions of the alcoholics’ brain and can be used as

biomarkers to distinguish between alcoholic and control

subjects. Figure 3 provides scalp topography for these

regions which correspond to the first 11 significant compo-

nents. These areas, with respect to their spatial extent are

frontal and anterior frontal, centro-parietal, parieto-occip-

tal, and occipital lobes. The distribution of these regions

over the scalp indicates that the impact of the alcohol in

the cerebral cortex of the alcoholics is spatially diffuse. The

largest identified area (the centro-parietal area), engages

more regions of the frontal lobe and right hemisphere rela-

tive to the left hemisphere which complies with the findings

in other studies (Ellis and Oscar-Berman 1989; Zhang et al.

1997; Moselhy et al. 2001; Harris et al. 2008). The identi-

fied regions encompass a set of smaller areas that are

known to be affected by ingesting one or two drinks of

alcohol by social drinkers (Luchtmann et al. 2013). In other

words, it seems that impairments caused by one or two

(alcoholic) drink consumption by social drinkers targets

the same regions of the brain that have are affected in the

abstinent alcoholics.

We validated the efficacy of our novel technique, by

repeating the process of computing the RBS vector, with-

out projecting ERPs onto the orthogonal subspaces and

only quantified similarity of the subject’s ERP to the alco-

holic and control subspaces. Figure 4 shows the vectors

Table 1. Sets of EEG channels (RBS components) selected for the first 11 classification experiments across their 1000 sampling iterations.

Number of components used to

construct the feature set Selected components (EEG channel ID#)

Fraction of selection

(in percentage)

1 [17] 100%

2 [17, 21] 94%

3 [17, 21, 45] 90%

4 [17, 21, 45, 48] 90%

5 [17, 21, 45, 48, 38] 90%

6 [17, 21, 45, 48, 38, 57] 89%

7 [17, 21, 45, 48, 38, 57, 5] 89%

8 [17, 21, 45, 48, 38, 57, 5, 52] 88%

9 [17, 21, 45, 48, 38, 57, 5, 52, 53] 89%

10 [17, 21, 45, 48, 38, 57, 5, 52, 53, 29] 88%

11 [17, 21, 45, 48, 38, 57, 5, 52, 53, 29, 12] 89%

EEG, Electroencephalography’s; RBS, Relative-Brain-Signature.

(A) (B)

Figure 4. Process of computing RBS vectors without projecting signal onto the orthogonal subspaces and versus our proposed approach, for an

alcoholic subject. (A) Subject’s ERPs were not projected to the orthogonal subspaces and only similarity between subject’s ERP and its

corresponding ERP from Control-PSD and Alcoholic-PSD was computed. As demonstrated in a, very similar values of association to the alcoholic

and control populations were obtained across all of the components of the Alcoholic- and Control-RBS. (B) The RBS vectors for the same subject

were constructed by projecting the ERPs onto the orthogonal subspaces of the populations and then the similarity was computed. The computed

similarity vectors in a were not able to characterize subjects with respect to its original population association in comparison to the RBS vectors

illustrated in B.
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composed of these values for an alcoholic subject. For

computing similarity vectors, in Figure 4A, ERPs are not

projected onto the orthogonal subspaces and only the

similarity between a given ERP and its corresponding

ERP from Control- and Alcoholic-ERP is computed. As

demonstrated in Figure 4A, similar values of association

to the populations are obtained across all of the compo-

nents of the alcoholic- and control-similarity vectors. In

Figure 4B, the RBS vectors for the same subject are con-

structed by projecting the ERPs onto the orthogonal sub-

spaces of the populations and then the similarity is

computed. The computed similarity vectors (Fig. 4A) are

not able to characterize subjects with respect to its origi-

nal population association in comparison to the RBS vec-

tors illustrated in (Fig. 4B). This result verifies our

underlying assumption that the orthogonal complement

subspaces of a PSS element provides a generic domain to

represent distinctive brain functionality for populations

other than the population of PSS. It should be empha-

sized that in this work, when evaluating population asso-

ciation of a subject, we investigated the similarities and

dissimilarities for the entire period of the experiment and

disregarded exploring the similarities (or dissimilarities)

in the smaller temporal windows. However, our proposed

technique is not bounded to analysis of the ERPs for a

long period of time and can be used to reveal the poten-

tial dynamic pattern of an alcoholic’s distinctive areas.

Finally, it is worth mentioning that our approach

enables distinguishing between any numbers of popula-

tions and is not limited only to two populations. It may

also be used for intra-population classification given

enough meta-information regarding subjects within a

population. We will attempt to address this issue in our

future studies by collecting more information regarding

alcoholic subjects’ mental and physical health to perform

an intra-alcoholics classification experiment.
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