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A B S T R A C T

Persistent neural activity associated with working memory (WM) lasts for a limited time duration. Current theories suggest that its termination 
is actively obtained via inhibitory currents, and there is currently no theory regarding the possibility of a passive memory-loss mechanism that 
terminates memory persistent activity. Here, we develop an analytical-framework, based on synaptic strength, and show via simulations and fitting 
to wet-lab experiments, that passive memory-loss might be a result of an ionic-current long-term plateau, i.e., very slow reduction of memory 
followed by abrupt loss. We describe analytically the plateau, when the memory state is just below criticality. These results, including the plateau, 
are supported by experiments performed on rats. Moreover, we show that even just above criticality, forgetfulness can occur due to neuronal noise 
with ionic-current fluctuations, yielding a plateau, representing memory with very slow decay, and eventually a fast memory decay. Our results 
could have implications for developing new medications, targeted against memory impairments, through modifying neuronal noise.

1. Introduction

In many daily activities, such as maintaining telephone number digits, a small amount of information can be held and used 
even after the stimulus vanishes [1]. According to many physiological studies, the neural basis of this working memory (WM) 
ability, relates to persistent firing of the neurons [1,2]. The phenomenon, termed persistent activity, was recorded in animal models 
showing neurons with sustained elevated firing rates, after the stimulus disappeared [3–6]. The mechanism of persistent activity 
is often associated with the intrinsic properties of the neurons themselves where ionic currents keep the spiking [7,8], or with 
connectivity within the neural circuit as a self-sustained network state [2,9]. However, it is not fully known, in particular for the 
self-sustained network state model, what finally terminates the persistent activity. While currently it is suggested that active addition 
of external inhibitory currents terminates the persistent activity [9], we suggest here a new mechanism where WM persistent activity 
is spontaneously terminated due to internal passive mechanisms of either passive stochastic or passive deterministic environments. Based 
on a self-sustained network state model, the Hopfield model [10,11], that describes the effect of synaptic strength on ionic-current, 
we provide an analytical description for spontaneous passive memory loss.

The self-sustained network state mechanism simulates WM persistent activity by analyzing the averaged firing rate, specifically 
analyzing the averaged firing rate vs. synaptic strengths [2,12,13]. Using those models, the persistent activity (WM) of a consistent 
firing rate could be achieved. However, describing the firing rate vs. synaptic strengths in a model is complex and cannot be studied 
analytically. In those models the average firing rate is obtained as the inverse of the average first passage time, and the equations 
are solved using numerical integration, hence analytical expressions cannot be formulated. In the present work, we base our analysis 
on an alternative representation of the WM model, that is on the ionic current vs. synaptic strengths (instead of the firing rate). Based 
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Fig. 1. Memory phase diagram. The phase diagram in 𝜔-space obtained from Eq. (5). The blue and the red continuous lines represent the steady states solutions, 
while the dashed green line represents an unstable solution separating between the two basins of attraction. Note that according to Eq. (4), the value of 𝜔(𝑁 − 1) is 
actually the mean synaptic weight. See also the fixed points and stability analysis in Fig. S3 (Supplementary).

on a simple current model, the Hopfield network model, we could perform a detailed mathematical analysis, which leads us to novel 
understandings of the persistent activity termination conditions.

The existing electrophysiological studies, using Hopfield network model, suggest that the mechanism to terminate WM is based on 
inhibition currents [9,14]. In these studies the persistent activity is analyzed using a phase diagram of the current vs. the afferent stimu-

lating current. Using this modeling, the persistent activity appears as a current plateau, i.e. having approximately constant high values 
for a long time before it decays. However, in order to terminate the plateau, that represent the loss of memory, an inhibitory current 
must be added to the model. Here we suggest natural mechanisms that terminate the persistent activity without using inhibitory 
currents. In contrast to earlier studies, we propose here to analyze the behavior of the current vs. synaptic strengths (instead of current 
vs. the afferent stimulating current). In this case our alternative approach leads us to develop a theory suggesting a new mechanism 
in which the WM persistent activity terminates passively, and hence elucidates the yet unknown aspects of forgetfulness. Our results 
suggest that persistent activity shows a plateau behavior that ends spontaneously, without the need of active inhibition currents. 
Specifically, we suggest two spontaneous mechanisms for forgetfulness based either on: (i) deterministic dynamics properties when 
converging slowly from an unstable to a stable state. This we find to emerge in the Hopfield network model, causing the current to 
very slowly decrease (almost constant) in a plateau fashion, which finally decays to zero abruptly or (ii) natural neuronal noise that 
we introduce into the Hopfield network modeling, which we find to enable forgetfulness abruptly after a period of persistent activity.

Our WM analysis, is supported by results of electrophysiological experiments in young and old rats, measured by excitatory post-

synaptic potentials (EPSP) [15], provoking long-term potentiation (LTP). LTP is a phenomenon that describes long lasting increase 
of the EPSP after stimulation. Many aspects of LTP are still unknown, and the common belief is that LTP is the physiological ba-

sis of memory that accompanies plasticity in synaptic connections [15] - which are represented by the synaptic strength 𝜔 in our 
modeling. There are many indications that LTP cannot act according to the same mechanism as long term memory (LTM) that lasts 
years, mainly as LTP never lasts more than couple of weeks (usually few days) [15]. Thus, LTP is an excellent candidate having 
much in common with persistent activity, due to its persistent electrophysiological activity characteristics [16]. Moreover, we show 
resemblance between the dynamics of LTP and the persistent activity of Hopfield network model in Fig. 2 d and Fig. 3 d. While it is 
yet unknown how to describe the relation between the time duration of LTP experiments and average synaptic strength 𝜔, our frame-

work here suggests such analytical relationship and demonstrates it for aged and young rats as observed in the EPSP experiments. 
Specifically, our calculation of 𝜔 suggests that LTP protocol, in both young and aged rats, produces weak synaptic strength.

2. Theoretical background

A common model of WM persistent activity is based on sustained excitation activity of highly connected neuronal cells. This 
concept was introduced in the Hopfield model [10,11], which describes the variables as the neuronal membrane potential [11] or 
current [9,14]. The WM persistent activity model was formalized as [9,14],

𝜏
d𝐼𝑖
d𝑡

= −𝐼𝑖 +
∑
𝑗≠𝑖

𝑤𝑖𝑗 ln
(
𝐼𝑗

𝐶

)
𝜃

(
𝐼𝑗

𝐶
− 1

)
+ 𝐼Aff , (1)

where 𝐼𝑖 represents the current in neuron 𝑖 and 𝜏 is the time constant. Here, 𝜃(𝑥) is the Heaviside step function, determining an 
excitation threshold 𝐶 , where only above 𝐶 the current of neuron 𝑗 impacts neuron 𝑖. 𝐼Aff is the external current excitation, which is 
obtained by an external stimulation (e.g., sensory stimulation). In Eq. (1), 𝑤𝑖𝑗 represents the interaction strength (synaptic strength) 
between neurons 𝑖 and 𝑗, constructed as a complete graph (each neuron is connected to all neurons).

We hypothesize here that the weights 𝑤𝑖𝑗 vary with a value that is imprinted by the neurons’ individual characteristics. Moreover, 
we assume that 𝑤𝑖𝑗 depends also upon the strength of the external stimulation, specifically, high external input yields high neuronal 
connections 𝑤𝑖𝑗 . Therefore, our analysis here will be, in contrast to earlier approaches, based on a memory phase diagram in the 
𝜔-space as shown in Fig. 1, where 𝜔 is the average over all weights 𝑤𝑖𝑗 .

Next, we analyze Eq. (1) using a Mean-Field (MF) approximation [17] by replacing the varying interaction term by an averaged 
2

quantity, and by that we obtain a single equation for the average current (see Supplementary Section S.2). Specifically, in order to 
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execute complex tasks such as memory, the brain neurons become highly connected [18–20], with networking properties close to a 
complete graph, which makes the MF solution more accurate. The obtained single MF equation is

𝜏
d𝐼
d𝑡

= −𝐼 +𝜔(𝑁 − 1) ln
(
𝐼

𝐶

)
𝜃

(
𝐼

𝐶
− 1

)
+ 𝐼Aff , (2)

where

𝐼 = 1
𝑁

𝑁∑
𝑗=1

𝐼𝑗 , (3)

and with defining 𝜔 as

𝜔 = 1
𝑁(𝑁 − 1)

∑
𝑗≠𝑖

𝑤𝑖𝑗 . (4)

Thus, 𝐼 is the average current across the neurons (Eq. (3)), and 𝜔 is the average interaction weight between neurons (Eq. (4)).

Concerning memory, it is of importance to study the sustained current when 𝐼Aff = 0, using,

𝜏
d𝐼
d𝑡

= −𝐼 +𝜔(𝑁 − 1) ln
(
𝐼

𝐶

)
𝜃

(
𝐼

𝐶
− 1

)
. (5)

We next track the fixed points of Eq. (5) by setting d𝐼∕d𝑡 = 0, which yields three solutions for the average current 𝐼 as a function 
of the average weight 𝜔: two stable solutions and one unstable solution. The 𝜔-space splits into two areas. Indeed, Fig. 1 (see also 
Fig. S3 in Supplementary) shows exactly this: small values of 𝜔 yield a single dormant state (red), whereas large 𝜔 yields three fixed 
points (including two steady states, active (blue) and dormant (red)). We assume that the active state enables the existence of a 
persistent activity (i.e., WM) for large enough 𝜔, while for small 𝜔 the memory cannot stay for long (no-activity).

Next we find the critical (tipping) point (𝜔𝑐, 𝐼𝑐 ) of the transition from no-activity to persistent activity, while noticing that this 
point is a junction of a stable fixed point (continuous blue line in Fig. 1) and an unstable one (dashed green line). This requirement 
yields (see Supplementary Section S.4),

𝜔𝑐 =
𝑒 ⋅𝐶
𝑁 − 1

, 𝐼𝑐 = 𝑒 ⋅𝐶. (6)

We conclude, from Eqs. (2) - (6), that 𝜔 > 𝜔𝑐 is the condition for the creation of persistent activity, otherwise the memory is not 
preserved and the current decays to zero, hence the range of 𝜔 < 𝜔𝑐 is a non-activity region.

In the following analyses we explore the impact of the interaction (synaptic) weights on the fundamental temporal memory 
characters through theoretical and simulation results as well as experimental wet-lab studies. The experimental wet-lab relates our 
theory to hippocampal of anesthetized young and aged rats model [15]. Note that using hippocampal model is a widely accepted 
paradigm of simple brainlike structures [21].

3. Results

Next we specify and show results that support our hypothesis about the possible mechanisms of passive persistent activity for-

getfulness. Our suggestion, based on solutions of Eq. (5) (Fig. 1), for two mechanisms are: (i) A current flow that shows a natural 
long-term plateau with very slow decay under certain conditions. The memory is represented as an almost constant current for a 
limited time followed by a natural fast decay to zero, (ii) Neuronal noise fluctuations of the ionic-currents that lead to its fast decay, 
with persistent activity duration that is described by a ‘first passage time’ analysis.

3.1. Passive deterministic forgetfulness: deterministic plateau

Here we describe the passive mechanism for loss of persistent activity based on deterministic dynamic analysis, that we find to 
emerge in the transition from unstable to stable state in the Hopfield model, Eq. (2). Before explicitly presenting our theory regarding 
memory persistent activity forgetfulness, note that an intuitive explanation and demonstration is provided in Supplementary section 
Fig. S1.

We describe the passive mechanism for forgetfulness, based on a plateau formation shape of the current, which takes place near 
criticality just below the critical point. Specifically, we simulate the current in the region (gray area in Fig. 2 a) of a weak synaptic 
strength, which includes only the dormant steady state. However, due to its closeness to the persistent-activity area, the forgetting 
process is slow, and might include a long plateau which acts as a quasi-steady state, for some period. This means that, in the 𝜔-space, 
this plateau scenario is for 𝜔 < 𝜔𝑐 , i.e., 𝜔 = 𝜔𝑐 − Δ𝜔, therefore 𝐼 converges to zero, but since 𝜔 is near criticality (Δ𝜔 is small) 
the current decays very slowly in a plateau shape, see Fig. 2 a - b (see also the analogous plateau phenomena in percolation of 
interdependent networks [22,23]). The duration of this slow decaying plateau depends on the proximity of 𝜔 to 𝜔𝑐 , i.e., on Δ𝜔, as 
depicted next (based on [24]). In order to analytically estimate the time duration of the plateau, 𝑇 , we focus on the region around 
the plateau formation, that is: 𝜔 → 𝜔𝑐 and current close to 𝐼𝑐 , i.e., the time duration where 𝛿𝐼 = 𝐼 − 𝐼𝑐 is small. In general, for two 
3

such currents, close to 𝐼𝑐 , with 2𝜖 currents difference between them, their time interval, 𝑇 , can be described as:
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Fig. 2. Deterministic plateau. (a) Deterministic scenario describing current just below the criticality. Due to the closeness to the fixed point, the current decreases 
towards zero very slowly, such that a pseudo memory emerges. (b) Below criticality, 𝜔 <𝜔𝑐 , the average current decays to zero, however close to criticality there is a 
long slow decay like a plateau, which is similar to a steady state. This quasi-steady state plateau increases its time length, plateau duration, when simulated for smaller 
values of Δ𝜔∕𝜔𝑐 . (c) The duration of the plateau, 𝑇 , scales as Δ𝜔−1∕2 such as predicted by Eq. (10). Note that the decay of 𝑇 with an exponent −1∕2 is analogous to 
critical interdependent networks [22,23]. Here we show averaged values of simulations over 10 realizations assuming Gaussian distribution for the synaptic weights. 
Simulations in panels (b) and (c) were performed with 𝜏 = 1, 𝐶 = 2 and 𝑁 = 100 neurons, (i.e., without Mean-Field (MF) approximation). (d) Experimental data of 
anesthetized aged rats [15] (blue dots), shows a very good agreement with our theoretical simulation results (red line) for our suggested state variable Δ𝜔∕𝜔𝑐 = 0.04
(i.e., 𝜔 = 0.96𝜔𝑐 ). All stimulations use constant values of: 𝐼0 = 14, 𝐶 = 2 and 𝜏 = 1 [min] (as assumed in sleep brain models [26]). The simulation results are shown 
for normalized 𝐼∕𝐶 and thus have no units. This is since different scales of 𝐶 , and hence of 𝐼 , have no affect on the temporal dynamics but only their ratio. The EPSP 
units, in panel (d) and in the next Fig. 3 d, are shown in percentage [15], which indicate increase in EPSP slope relative to pre-stimulation baseline.

𝑇 = ∫ d𝑡 ≈

𝐼𝑐−𝜖

∫
𝐼𝑐+𝜖

d𝑡
d𝐼

d𝐼 =

𝐼𝑐−𝜖

∫
𝐼𝑐+𝜖

(d𝐼
d𝑡

)−1
d𝐼 = 𝜏

𝜖

∫
−𝜖

(
−𝜏 d𝛿𝐼

d𝑡

)−1
d𝛿𝐼. (7)

To calculate the argument of the integral, we analyze the behavior of Eq. (5) in the limit of 𝜔 → 𝜔−
𝑐
= 𝑒 ⋅𝐶(𝑁 −1) and 𝐼 → 𝐼𝑐 = 𝑒 ⋅𝐶

(see Eq. (6)). We further use Eq. S.26 (Supplementary) for small Δ𝜔, keeping also the second order term of 𝛿𝐼 ,

−𝜏 d𝛿𝐼
d𝑡

≈
𝐼𝑐

2

[(
𝛿𝐼

𝐼𝑐

)2
+ 2Δ𝜔

𝜔𝑐

𝛿𝐼

𝐼𝑐
+ 2Δ𝜔

𝜔𝑐

]
. (8)

Placing Eq. (8) into Eq. (7), yields,

𝑇 ≈ 2𝜏

∞

∫
−∞

1
𝑥2 + 2𝑏𝑥+ 2𝑏

d𝑥 = 2𝜏𝜋√
𝑏
√
2 − 𝑏

, (9)

where 𝑥 = 𝛿𝐼∕𝐼𝑐 and 𝑏 = Δ𝜔∕𝜔𝑐 . Note that in Eq. (9) we replaced the integration limits to ±∞, since the integral is governed by 
small values of 𝑥 and large values do not change the leading term.

Since 𝑏 =Δ𝜔∕𝜔𝑐 is small, we finally get the plateau duration,

𝑇 ≈ 𝜏

√
2𝜋√

Δ𝜔∕𝜔𝑐

. (10)

We note that, according to our analysis, the deterministic plateau duration also depends on 𝜏 . Hence environmental physiological 
conditions, such as sleep/anesthesia that affect 𝜏 , will accordingly change the time scale of 𝑇 . Moreover, note that Eq. (10) depends 
on the same parameters (though with different scalings) as Eq. S.28 (Supplementary), which refers to the typical time decay of the 
current at conditions where there is no plateau formations.

Fig. 2 c illustrates the good fit between the theory, Eq. (10) (red line), and the simulation results (blue dots). As expected, this fit 
is better at low values of Δ𝜔, i.e., when 𝜔 is closer to criticality.

Furthermore, a closer look on recent empirical studies, Fig. 2 d, performed with EPSP measuring memory of rats models [15,25], 
4

shows memory with a quasi-steady state long plateau similar to our theory and simulation results. Fig. 2 d compares between memory 
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of aged rats [15] (blue dots) and simulating the current with 𝜔 close to criticality (Δ𝜔∕𝜔𝑐 = 0.04). The excellent agreement between 
the plateau simulations and the EPSP measurements supports our theory and further suggests that the average synaptic strength with 
respect to the critical synaptic strength is for this case, 𝜔 = 0.96𝜔𝑐 . We note that similar plateau behavior has been also observed for 
EPSP measurements of memory in pilocarpine-treated rats [25].

3.2. Passive stochastic forgetfulness: stochastic plateau

In the previous Section we obtained a plateau from a state just below criticality. In the present Section we show that a plateau can 
be formed also at a state just above criticality. We will demonstrate, next, that for this scenario to take place, stochastic conditions 
must be present, as indeed occurs physiologically due to neuronal noise. For that matter, we first analyze persistent activity without 
considering forgetfulness and analyze EPSP of young rats. Specifically, we will show that by adding neuronal noise a plateau is 
formed even at certain conditions above criticality.

3.2.1. Persistent activity analysis

In this Section we study the regime in 𝜔-space (Fig. 1) of 𝜔 > 𝜔𝑐 , where persistent activity is maintained, and analyze the memory 
dynamic when converging to a steady state. We study here persistent activity, since we wish to better understand the effect of 𝜔 in 
young rats EPSP data, which is concluded at the end of the present section. Specifically, we show that the current converges to its 
stable state exponentially with a typical time constant (representing the memory length) that depends on the average weight 𝜔.

For a steady state memory solution, the derivative of the current vanishes in Eq. (5) and thus obtaining:

0 = −𝐼LT +𝜔(𝑁 − 1) ln(𝐼LT∕𝐶), (11)

where 𝐼𝐿𝑇 is the persistent current that yields the memory persistent activity (steady-state solution). Without intervention, such as 
the active inhibitor currents, this could have yielded a long term (LT) memory (LTM) solution. Here we study this region of persistent 
activity, whereas in the next Section we study how it could be still terminated to forgetfulness.

Next we are interested in describing the dynamics of LTM using Eq. (5) in two different limits: (i) 𝐼 ≫ 𝐼LT and (ii) when 𝐼
approaches 𝐼LT (when 𝐼 → 𝐼LT).

(i) In the first limit (𝐼 ≫ 𝐼LT), the behavior is trivial: since 𝐼 is very large it can be assumed that 𝐼 ≫ ln𝐼 , so that Eq. (5) can be 
written approximately as 𝜏d𝐼∕d𝑡 ∼ −𝐼 , and therefore an exponential decay with a typical time 𝜏 is obtained,

𝐼(𝑡) ∼ exp(−𝑡∕𝜏). (12)

(ii) In the second limit, close to 𝐼LT (when 𝐼 → 𝐼LT), we expand Eq. (5) as 𝐼 = 𝐼LT + 𝛿𝐼 where 𝛿𝐼 is small (see details in 
Supplementary Section S.5), and obtain,

𝜏
d𝛿𝐼
d𝑡

≈ −
(
1 − 1

ln(𝐼LT∕𝐶)

)
𝛿𝐼.

This implies an exponential decay with a typical time decay,

𝜏LT = 𝜏

1 − 1
ln(𝐼LT∕𝐶)

. (13)

Note that this exponential decay is valid under the condition 𝛿𝐼∕𝐼LT ≪ ln(𝐼LT∕𝐼𝑐) as aforementioned, namely within a region above 
the steady memory, see Fig. 3 a. The range of this validity region is getting narrower close to criticality.

Fig. 3 b shows results from simulating Eq. (1) with 𝐼Aff = 0 for the LTM case, that is for 𝜔 = 𝜔𝑐 + Δ𝜔 and Δ > 0, showing the 
average current, 𝐼 , temporal decay. Each colored line is for a different value of Δ𝜔∕𝜔𝑐 . Particularly, for all values of Δ𝜔∕𝜔𝑐 two 
exponential decays can be observed. The first exponent, at short time scales, t, (in the beginning of the simulations), is 𝜏 , which 
appears for all Δ𝜔∕𝜔𝑐 values, in accordance to Eq. (12) (Fig. 3 b dashed orange line). The second exponent, shows up at long time 
scales (towards the end of the simulation time and close to the steady state), representing a more moderate decay with an exponential 
value that fits well to the 𝜏LT in Eq. (13) (Fig. 3 b, four dashed lines). Note that the first exponent, 𝜏 , is smaller than the second 
exponent, 𝜏LT, which also fits well Eq. (13) implying that indeed, 𝜏LT > 𝜏 .

Next, we evaluate 𝜏LT when 𝜔 is close to the critical value 𝜔𝑐 from above. To track the behavior in proximity of 𝜔𝑐 (for small 
Δ𝜔), we expand Eq. (11) using 𝜔 = 𝜔𝑐 +Δ𝜔 and 𝐼LT = 𝐼𝑐 +𝛿𝐼LT (see Supplementary). Recalling that 𝐼𝑐 = 𝑒 ⋅𝐶 , and 𝜔𝑐 = 𝑒 ⋅𝐶∕(𝑁 −1)
(Eq. (6)) we get

𝛿𝐼LT ≈ 𝐼𝑐

√
2Δ𝜔∕𝜔𝑐.

Substituting this into Eq. (13), we finally obtain,

𝜏LT ≈ 𝜏√
2Δ𝜔∕𝜔𝑐

. (14)

This relation, Eq. (14), is in excellent agreement with our simulation results as illustrated in Fig. 3 c. Fig. 3 c summarizes the 
5

values of the time decay exponent, 𝜏LT, as obtained from the simulations of the current 𝐼 close to its steady state (the gray area in 
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Fig. 3. Persistent activity temporal decay. (a) The current converges to a positive steady state because the average synaptic weight 𝜔 is above criticality 𝜔 > 𝜔𝑐

and the system is in the active region. However, we identify two different typical time constants, long and short, for the decay of the memory. Far from the steady 
state there is a universal short time decay 𝜏 while close to the final state (gray area) there is a larger time decay 𝜏LT . (b) The decay of the average current 𝐼 with 
time is exponential with fast (at the beginning) and slow (towards the end) exponential decay. The fast and slow exponents represent characteristic time constants 
𝜏 and 𝜏LT , respectively, and fit well to their theoretical values in Eq. (12) and Eq. (13), which are marked in dashed lines. (c) Here we provide support for the 
analytical approximation, Eq. (14), for small Δ𝜔, showing a power-law with exponent −1∕2. Simulations in panels (b) and (c) were obtained for a network of size 
𝑁 = 100 neurons (i.e., without using Mean-Field (MF) approximation), threshold of 𝐶 = 2, 𝜏 = 0.25 and initial condition (by stimulating current 𝐼Aff ) of 𝐼0 = 150. 
(d) Empirical memory data as collected from anesthetized young rats model [15] (blue) compared to our model (red) with 𝐶 = 2, 𝜏 = 3, 𝐼0 = 16 and Δ𝜔∕𝜔𝑐 = 0.006
(i.e., 𝜔 = 1.006 ⋅ 𝜔𝑐 ) yielding 𝜏LT ≈ 27 min. Note that the value of 𝜔∕𝜔𝑐 = 1.006 is normalized, and therefore is not affected by units or scaling parameters which 
affect both 𝜏 and 𝜏LT (see Eq. (14)). Hence, while other parameters sets might yield same current temporal configuration, the value of 𝜔∕𝜔𝑐 is resilience and fixed 
per configuration.

Fig. 3 a and the straight lines close to steady-state in Fig. 3 b). It is clearly seen that the relation between Δ𝜔∕𝜔𝑐 and 𝜏LT is a power 
law with an exponent −1∕2, supporting Eq. (14). Note, as expected, that for small values of Δ𝜔∕𝜔𝑐 , i.e. when 𝜔 is close to 𝜔𝑐 , the 
simulation results in Fig. 3 c, are more accurately described by a −1∕2 slope.

After investigating the model theoretically and verifying it by simulations, we explore the theoretical parameter 𝜔 and its relation 
to actual electrophysiological experiments of measuring memory data of EPSP. We used empirical EPSP data of long-term potentiation 
(LTP) [15], which is a phenomenon observed in brain areas involved in memory storage such as the hippocampus, and it describes 
long lasting increase of the EPSP after stimulation. The common belief is that LTP is the physiological basis of memory which 
accompanies plasticity in synaptic connections [15]. Fig. 3 d shows the LTP dynamics as experimentally measures in young rats [15]

(blue dots) compared to our theoretical model of current dynamics as simulated for (𝜔 − 𝜔𝑐)∕𝜔𝑐 = Δ𝜔∕𝜔𝑐 = 0.006 (red line). The 
excellent agreement between the data and the model suggests indeed that the average weight 𝜔 relation to the critical weight 𝜔𝑐 is 
𝜔 = 1.006 ⋅ 𝜔𝑐 . Thus, in this data of anesthetized young rats, the average synaptic weight is fairly close to the critical LTM weight, 
and just above it. However, in this LTP memory data, after one week [15] the memory eventually decays to zero, much faster than 
the common LTM. In the next Section we explain how this system could move from just above critical point to forgetfulness.

3.2.2. Passive stochastic forgetfulness: stochastic plateau - effect of neuronal noise

To consider neuronal noise inflations, we extend the model in Eq. (2) so that it includes neuronal noise of normal distribution 
with std 𝜎 and zero mean, using the stochastic differential equation:

𝜏
d𝐼
d𝑡

= −𝐼 +𝜔(𝑁 − 1) ln
(
𝐼

𝐶

)
𝜃

(
𝐼

𝐶
− 1

)
+ 𝜏 ⋅ 𝜎 ⋅ 𝑛(𝑡), (15)

where 𝑛(𝑡) is a white noise. We assume that the stimulating current 𝐼0, which initiates the memory, has terminated so that now the 
neurons are influenced by the neuronal noise that fluctuates around zero. Note that here we analyze the average current, which is 
averaged over all neurons, same as in the definition, Eq. (2).

Next, we ask: when will the average current 𝐼 , which here evolves randomly, cross down a critical value (the threshold, 𝐶 , in 
the average case), and consequently the system will collapse to the dormant state regime, i.e., fully forgetfulness state. In fact, this 
phenomenon actually describes the problem known as the ‘first passage time’ of a stochastic process [27]. Specifically, we wish 
6

to examine the time when the mean current 𝐼 crosses down for the first time the threshold 𝐶 , and consequently decays to the 
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Fig. 4. Stochastic plateau: Simulations of neuronal noise (white noise). (a) In the persistent activity phase near criticality, there is a chance that afferent input 
noise will lead to crossing the criticality towards the forgetting region. The average current evolves in time according to Eq. (15). Simulating the case Δ𝜔∕𝜔𝑐 = 0.006
and 𝜎 = 0.17, yields a first passage time 𝑇 , where the current 𝐼 sharply decays below the threshold 𝐶 , at around 𝑇 ≈ 400 [min]. (b) We repeat the simulation of panel 
(a) for different values of noise level 𝜎. For each 𝜎 value, simulation has been repeated over 1, 000 realizations in order to obtain a mean value of ⟨𝑇 ⟩. The average 
time until forgetting ⟨𝑇 ⟩ is marked in blue circles. As 𝜎 decreases, the mean time duration ⟨𝑇 ⟩ increases inversely with ⟨𝑇 ⟩, see the dashed line. From this graph, 
given ⟨𝑇 ⟩ the noise level 𝜎 can be calculated (the threshold 𝐶 value is generally known). All simulations have been performed with 𝜏 = 1 [min] (in accordance with 
sleep brain models [26]), 𝐶 = 80𝑝𝐴 [28] and 𝑁 = 100. The units of ⟨𝑇 ⟩ are in [min], same as the units of 𝜏 .

forgetfulness state. In order for this memory-loss scenario to occur, 𝜔 must have a value slightly above the critical 𝜔𝑐 , so that the 
noise could push it towards the dormant state regime. This occurrence starts as persistent activity state, and terminated passively in 
the presence of neuronal noise.

In Fig. 4 a we simulate Eq. (15), i.e., the stochastic plateau for values, 𝜎 = 0.17 and 𝜔 = 1.006 ⋅𝜔𝑐 , that is 𝜔 is slightly above 𝜔𝑐 . 
Starting at persistent activity state close to the critical 𝜔𝑐 , due to the neuronal noise fluctuations, the current 𝐼 rapidly drops to zero 
at around 𝑇 ≈ 400 [min], hence the memory state is terminated passively. The results of 1000 realizations of simulating Eq. (15), 
all with 𝜔 = 1.006 ⋅ 𝜔𝑐 but with different values of noise levels 𝜎, are shown in Fig. 4 b. The average forgetfulness time ⟨𝑇 ⟩, of all 
realizations, shows an inverse relation to 𝜎, seen by the dashed line.

Our LTP data analysis in Fig. 3 d of young rats shows 𝜔 slightly above criticality (also 𝜔 = 1.006 ⋅ 𝜔𝑐 ), where the memory has 
been reported to vanish eventually after a week [15], much shorter than expected from LTM (lasting many years). Hence this case 
fits well to our definition. According to our findings of the 𝜔 values, we suggest that while aged rats could show deterministic plateau 
(slightly below the critical 𝜔𝑐 , with 𝜔 = 0.96 ⋅ 𝜔𝑐 , Fig. 2 d), young rats might show stochastic plateau (𝜔 slightly above 𝜔𝑐 , with 
𝜔 = 1.006 ⋅𝜔𝑐 Fig. 3 d).

Theoretically, we can use the simulation results in Fig. 4 b to evaluate the neuronal noise 𝜎. Assuming the termination of the LTP 
memory data after one week [15], i.e., ⟨𝑇 ⟩ ≈ 10, 000[𝑚𝑖𝑛], it yields according to Fig. 4 b a value of 𝜎∕𝐶 ≈ 0.05. Thus, since for rats’ 
current excitability threshold is 𝐶 = 80𝑝𝐴 [28], the average neuronal noise is 𝜎 = 0.05 ⋅ 80 = 4𝑝𝐴. This value of 𝜎 is in agreement 
with the estimated value of 4.4𝑝𝐴 current noise of a single neuron, as was suggested when investigating cultured neurons from rat 
hippocampus held near activation potential [29].

In conclusion, we presented in the last two Sections, two possible scenarios for memory plateau formations and loss: (i) deter-

ministic plateau: just below criticality (Fig. 2), the plateau emerges and drops fast when the current reaches from unstable state 
to the steady-state of 𝐼 = 0 (no-activity) in the Hopfield network model, or (ii) stochastic plateau: close and above criticality with 
noisy current fluctuations that at a certain time drops below criticality (Fig. 4 a), and terminates fast due to natural neuronal noise. 
Both options terminate persistent activity passively and yield similar current trajectories, however, originate from two different 
mechanisms.

4. Discussion

In the present work we describe analytically the fundamental dynamics of memory persistent activity, by exploring the phase 
diagram under changes in the strength of the neuronal network synaptic connections and its effects on memory decay with time. 
Generally, our theory explains and shows, from self-sustained network state model perspective, that forgetfulness can be achieved 
in two ways, either passively via deterministic considerations that yield a plateau in the current as a result of being close but below 
criticality, or via stochastic noise perturbations that yield a plateau even at state just above criticality. Our analytical results suggest 
a new fundamental understanding of the memory termination. It ends spontaneously in contrast to the contemporary belief, which 
suggests that forgetfulness has an active mechanism (derives from inhibitor currents).

We note that at 𝜔 values far from criticality the active inhibitor currents might be relevant, but suggest here that at values near 
(above or below) criticality the memory-loss can be passive and spontaneously. Based on empirical LTP rats data, we also show that 
physiologically 𝜔 can indeed takes values near criticality. Our results suggest that 𝜔 of young rats is just above criticality (𝜔 > 𝜔𝑐). 
Thus, it is quite interesting to find that, for the same experimental protocol, aged rats show values just below criticality (𝜔 < 𝜔𝑐), i.e., 
smaller than young rats. The relationship between LTP to memory was not fully understood, while memories last decades, LTP has 
been observed only for days (up to couple of weeks). Thus, excellent fit between LPT data and our simulations in Fig. 2 d, Fig. 3 d and 
7

Fig. 4, supports our hypothesis that LTP could represent just a persistent activity which does not involve all of the LTM mechanisms 
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changes. We suggest that LTP does not evolve to long lasting memory since it produces too weak synaptic strength, with values only 
just above or just below criticality (𝜔𝑐 ) for young and aged anesthetized rats respectively, which are probably not strong enough to 
produce substantial long lasting remodifications.

Note that the LTP is an artificial memory, which has some differences when compared to the naturally obtained (e.g., via visual 
stimulation) memory. Nevertheless, LTP is an excellent tool to study memory, in particularly using analytical models such as the 
Hopfield network model. Interestingly, our analysis and simulations results show that both our passive deterministic and passive 
stochastic plateau temporal values, as well as the typical time decaying exponents (see Eq. S.23 and Eq. S.28 (Supplementary)) 
depends on 𝜔𝑐 and 𝜏 . This might explain the empirical findings of correlations [30,31] between all memory types.

Equation (10) and Fig. 4 describe analytically and via simulations the typical time duration of the deterministic plateau and 
the stochastic plateau cases respectively. While for the deterministic plateau case we offer deterministic stability approach, for the 
stochastic plateau case we offer a stochastic ‘first passage time’ mechanism. From Fig. 4 we conclude that as the noise level 𝜎
increases, the memory terminates earlier and there is a higher probability to return to the stable dormant state (no-memory state). 
However, the opposite scenario, i.e., obtaining memory from the no memory state due to synaptic weight noise, is not possible 
according to our simulations. Adding synaptic noise to the model during the stable dormant state could not change the state, i.e., 
can not produce memory, even in proximity to the 𝜔𝑐 critical value. This points to a possible protection mechanism that prevents 
maintaining false memories, due to merely noise, at the long term (see also Supplementary Fig. S5).

The neuronal noise is of clinical importance, that spans diverse clinical implications [26,32]. Our simulation results based on 
our framework for persistent activity in Fig. 4, suggest that medications for reducing neuronal noise level could prolong memory, 
and hence might therefore prevent fall risk in dementia patients [33]. On the other spectrum of memory malfunctions, are diseases 
that are characterized by excessive memory, such as in post-traumatic stress disorder (PTSD). In those situations the patients might 
benefit from medications that promote forgetfulness by increasing synaptic noise. Generally, memory-loss is an important mechanism, 
allowing acquisition of new memories. Thus, our suggested passive forgetfulness mechanisms and analysis, could serve as an integral 
part of an healthy forgetfulness mechanism.

Several limitations of the present study, regarding the model simulations and the data interpretations should be noted. First, 
we compare our theoretical analyses and model simulations of persistent activity to experimental data as measured from EPSP of 
anesthetized rats [15]. However, the relation between EPSP protocol of anesthetized rats and memory performances is not fully 
understood yet [15]. Therefore, additional experimental platforms measuring memory should be compared to our model analysis.

Second, using our model simulations, we adjust the model time constant parameter to 𝜏 = 1 [min], in accordance with sleep brain 
models [26]. This 𝜏 parameter main effect is on the time scaling of the current 𝐼 and EPSP, where smaller 𝜏 will achieve faster 
temporal dynamics. For example, changing the cognitive state or the experimental stimulation protocol, e.g., wakening or natural 
stimulations, could affect 𝜏 and therefore change the time scales (faster or slower time dynamic). Hence, future research should 
evaluate the 𝜏 values in different protocols.

Finally, note that in our persistent activity model analysis, we assume that the neuronal network connections strength affects the 
membrane currents through a logarithmic function (Eq. (1)), as in earlier studies on memory [9,14]. Although other functions can 
be used, for example hyperbolic tangent [34] or with a delay [35], we still expect similar conclusions without changing the main 
inferences, though the 𝜔-space diagram in Fig. 1, might be changed only quantitatively for other functions [36].
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