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Purpose of review

The last decade has witnessed tremendous advances in revealing an important role for the interleukin (IL)-
17 cytokine family in the pathogenesis of spondyloarthritis (SpA). Although most attention has been
focused on IL-17A, a potential role of other IL-17 family members in inflammation and tissue remodelling is
emerging. Herein, I review recent studies covering the role of IL-17B-F cytokines in the pathogenesis of
SpA.

Recent findings

Several recent studies provided new insights into the cellular source, regulation and function of IL-17F. IL-
17F/IL-17A expression ratio is higher in psoriatic skin compared to SpA synovitis. IL-17F-expressing T cells
produce different proinflammatory mediators than IL-17A-expressing cells, and IL-17F and IL-17A signal
through different receptor complex. Dual IL-17A and IL-17F neutralization resulted in greater suppression of
downstream inflammatory and tissue remodelling responses. Furthermore, there is additional evidence of IL-
23-independent IL-17 production. In contrast to IL-17A, IL-17F and IL-17C, which play proinflammatory
roles in skin and joint inflammation, an anti-inflammatory function is proposed for IL-17D. An increase in IL-
17E is associated with subclinical gut microbiome alterations after anti-IL-17A therapy in SpA patients.

Summary

IL-17 family cytokines may act as agonists or antagonists to IL-17A contributing in concert to local
inflammatory responses. Understanding their function and identifying their cellular sources, and molecular
mechanisms driving their expression will be the key to designing rational therapies in SpA.
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INTRODUCTION

Strong evidence from clinical trials firmly placed
interleukin 17A (IL-17A) in the centre of the patho-
genesis of the spondyloarthritides (SpA), the group
of related but phenotypically heterogeneous condi-
tions that share common genetic and pathogenetic
features [1–6]. Responders to anti-IL-17A therapy
included naı̈ve patients and those who did not
respond to previous treatments [7–10]. Importantly,
emerging evidence indicates that targeting IL-17A
slows down structural damage (including bone ero-
sions and pathological new bone formation) as IL-
17A blockade inhibits radiographic disease progres-
sion in both, psoriatic arthritis (PsA) [6,11] and
ankylosing spondylitis (AS) [12]. In addition, recent
data suggest that IL-17A inhibition improves enthe-
sitis in patients with PsA [13] and AS [14].
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KEY POINTS

� Innate cells, including MAIT, gd T cells and ILC3s do
not require IL-23 for IL-17F and IL-17A production.

� IL-17F-expressing and IL-17A-expressing T cells are
differentially regulated and produce different pro-
inflammatory mediators.

� A dominant IL-17F signature has been observed in PsO
skin compared with a stronger IL-17A signature in
SpA synovium.

� Preclinical data support the concept that dual blockade
of IL-17A and IL-17F is required for optimal inhibition of
downstream inflammatory and tissue
remodelling responses.

� Clinical trials of dual IL-17A and IL-17F inhibition
indicate high efficacy in PsO, PsA and AS.

� Head-to-head studies of bimekizumab and anti-IL-17A
treatment are required to further evaluate whether
targeting of both, IL-17A and IL-17F cytokines is
superior to inhibition of IL-17A alone.

� The IL-17 family cytokines may act complementary or
antagonistic to IL-17A contributing to the local
inflammatory responses in SpA.

Spondyloarthropathies including psoriatic arthritis
As to the related extra-articular manifestations,
anti-IL-17A therapy demonstrated impressive clini-
cal efficacy in treating skin psoriasis (PsO) [3,15,16],
but was not effective in treating colitis [17] or uveitis
[18]. In contrast, unexpectedly, blocking IL-23, the
cytokine upstream of IL-17A was not effective in AS
[19,20] though anti-IL-23 therapy did improve colitis
[21,22]. Overall, the IL-17 axis holds great promise for
the development of further disease-modifying thera-
peuticopportunities in SpA. However, the inability of
IL-17A blockers to cover the entire disease spectrum
and to achieve a major clinical response and sus-
tained remission underscores the importance of the
identification of additional drivers of the pathologic
immune responses, tissue-specific pathways, and
hierarchies. The list of attractive candidates com-
prises other IL-17 family members: IL-17B, IL-17C,
IL-17D, IL-17E and IL-17F [23–25]. These structurally
related to IL-17A yet less well-characterized cytokines
could play complementary or antagonistic roles,
hence may affect IL-17A-driven tissue inflammation
and/or remodelling, contributing to the pathology of
SpA. This review highlights the most recent studies
featuring the role of IL-17B-F cytokines in SpA.
INTERLEUKIN-17F

Among the IL-17 family members, IL-17F shares the
highest homology (55%) with IL-17A. Both
334 www.co-rheumatology.com
cytokines can exist as disulphide-linked homo-
dimers or as IL-17A/IL-17F heterodimers [26]. It
was postulated that IL-17F is co-produced with IL-
17A by Th17 cells under the control of STAT3 and
RORgt transcription factors [27] and signals via the
same heterodimeric receptor consisting of IL-17RC
and IL-17RA. Similar to IL-17A, although to a lesser
extent, IL-17F can synergize with other pro-inflam-
matory molecules, particularly with tumor necrosis
factor alpha, but also with IL-1b, interferon (IFN)-g
and lipopolysaccharide, amplifying its inflamma-
tory potential [28]. Therefore, a similar, albeit less
potent pro-inflammatory function has been pro-
posed for IL-17F in driving pathogenic responses.
Recent studies have provided new insights into the
cellular source, regulation and function of IL-17F.
Interleukin-23-independent production of
interleukin-17A and interleukin-17F

Cole and colleagues [29
&&

] present important novel
insight into the biology of IL-17A-producing and IL-
17F-producing innate cells. They demonstrated that
IL-17F is the dominant isoform produced by in vitro-
stimulated mucosal-associated invariant T (MAIT)
cells, a unique population of innate-like T cells with
restricted T cell receptor (TCR) diversity that can
function through both TCR-dependent and -inde-
pendent pathways [30,31]. IL-17A-producing MAIT
cells were identified in PsO skin [32] and PsA and AS
joint [33–35], and their potential role in SpA path-
ogenesis is emerging [36,37]. Importantly, Cole et al.
showed that MAIT cells can produce IL-17F (and IL-
17A) in an IL-23-independent fashion, in response
to TCR triggering combined with IL-12 and IL-18
cytokines stimulation in vitro [29

&&

]. In addition,
ILC3s and gd T cells were also capable of an IL-23-
independent IL-17A and IL-17F production [29

&&

],
supporting recent evidence that human entheseal
gd T cells can produce IL-17A without IL-23 receptor
expression [38]. These data prompt the notion that
IL-23-independent IL-17A and IL-17F production is
a feature shared among innate lymphocyte family
members [29

&&

]. Remarkably, the cytokine milieu
that tunes the IL-17A and IL-17F production seems
to be cell-type dependent. In contrast to MAIT and
gd T cells, which were dependent on IL-12 for IL-23-
independent IL-17A and IL-17F production, ILC3s
did not require IL-12 or IL-23 and produced IL-17A
and IL-17F upon stimulation with IL-1b, IL-2 and IL-
7 [29

&&

]. The ability of T cells and innate(-like)
lymphocytes to produce IL-17A in response to cyto-
kines other than canonical IL-23, in particular to IL-
7 and IL-9 [34,39,40], has been demonstrated before
[41–43]. Such IL-12-IL-23-independent IL-17A and
IL-17F production by these, presumably (but not yet
Volume 33 � Number 4 � July 2021
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proven) pathogenic cellular subsets could explain
why targeting p19 subunit that is unique to IL-23,
or p40 subunit common to both, IL-12 and IL-23,
were not efficacious in AS [19,20]. As to the peripheral
disease, our recent study investigating cellular and
molecular changes in the PsA joint in response to IL-
12/IL-23 blockade with ustekinumab revealed that
although ustekinumab suppressed synovial inflam-
mation through modulation of key pathogenic path-
ways, expression of IL-17A and IL-17F remained
unaffected [44], supporting IL-23-independent IL-
17A and IL-17F production in PsA joint. Whether it
has a pathogenetic significance has to be assessed in
head-to-head clinical trials of IL-17A or IL-17A-IL-17F
versus IL-23 antagonists. Yet, a recent retrospective
study in PsA demonstrated that treatment with secu-
kinumab has a greater persistence rate than the treat-
ment with ustekinumab [45]. Taken together, the
emergence of distinct pathways culminating in the
secretion of IL-17A and IL-17F cytokines, in addition
to the canonical IL-23/IL-17A pathway, underscores
the importance of the IL-17A/IL-17F axis in the path-
ogenesisof SpA,provides insights intounderstanding
results of clinical trials and urges to identify patho-
genic cell populations in target tissues.
Distinct regulation and function of
interleukin-17F

Recent findings challenged the notion that IL-17F
has a redundant role in SpA pathogenesis. In the
study of Cole et al., only a minor population of MAIT
cells produced IL-17A upon in vitro stimulation
despite uniform expression of RORgt. Instead, MAIT
cells as well as ILC3s and gd T cells produced pre-
dominantly IL-17F [29

&&

], supporting the concept
that IL-17A and IL-17F are differentially regulated
[46,47]. High expression of IL-17F can be also
induced in canonical CD4þ T cells [48

&&

], but in
contrast to innate lymphocytes, this process is
dependent on IL-23. In this study, Burns et al. iden-
tified and characterized three CD4þ T cell subsets:
IL-17AþIL-17F-, IL-17AþIL-17Fþ, and IL-17A-IL-
17Fþ. Interestingly, these populations displayed
different cytokine profiles: while all subsets con-
tained similarly high frequencies of cells expressing
TNF, IL-17A-IL-17Fþ cells expressed less IL-10 and
GM-CSF and more IFN-g compared to IL-17AþIL-
17F- CD4þ T cells [48

&&

]. Based on previous molecu-
lar characterization of IL-10-expressing Th17 subsets
[49], the authors proposed that IL-17F-expressing
CD4þ T cells might represent the ‘pathogenic’ sub-
type, although in-depth molecular and functional
characterization of these cells is required to con-
clude about their pathogenicity. Notably, IL-17F
and IL-17A-expressing T cells differ not only in their
1040-8711 Copyright � 2021 The Author(s). Published by Wolters Kluwe
molecular profiles but also are differentially regu-
lated. Comparing the induction of CD4þ T cells by
LPS-activated monocytes versus soluble anti-CD28
mAb and L-1b and IL-23 stimulation, Burns and
colleagues observed that while both stimuli induced
IL-17AþIL-17Fþ CD4þ T cells, only the latter
resulted in IL-17FþIL-17A- CD4þ T cells [48

&&

]. Fur-
ther analysis revealed that IL-17F expression in
CD4þ T cells is driven by high-strength TCR stimu-
lation in the presence of IL-23 and IL-1b. IL-17F
induction is partially mediated via IL-2-dependent
mechanism, as IL-2 blockade significantly reduced
the CD28-mediated increase in frequencies of IL-
17Fþ CD4þ T cells [48

&&

], in line with previous
findings showing that high levels of IL-2 shift the
balance between IL-17A and IL-17F towards IL-17F
production by murine T cells in vitro [50]. Interest-
ingly, another study in mice demonstrated that the
activation of transmembrane TNF (tmTNF)-TNF
Receptor 2 signalling stimulates IL-2 expression
and regulates IL-2 mRNA stability [51]. Given a
marked increase of tmTNF in SpA synovitis and its
impact on key pathological features of SpA [52]
along with the observation that IL-17F levels are
strikingly higher than IL-17A in the blood of
patients with SpA [53] it might be revealing to
examine tmTNF-IL-17F axis in SpA. Importantly,
reports by Cole et al. and Burns et al. demonstrate
that IL-17F is not only differentially regulated but
also significantly contributes to inflammation, as
dual IL-17A and IL-17F blockade were more effective
at reducing IL-17-driven pro-inflammatory
responses by human dermal fibroblasts [29

&&

] and
synovial fibroblasts [48

&&

] compared to blockade of
IL-17A alone, according to previous findings [54]
(Fig. 1). Attempting to detect IL-17F-expressing cells
ex vivo, Cole et al. confirmed the presence of single-
positive for IL-17A or IL-17F, as well as double-
positive MAIT cells in psoriatic lesional skin [29

&&

]
(Fig. 1). In contrast, Burns et al. failed to detect the
presence of IL-17F-expressing cells in PsA synovial
fluid directly ex vivo, although confirmed the poten-
tial of synovial fluid mononuclear cells to produce
IL-17F upon in vitro stimulation [48

&&

]. Could be
these discrepancies explained by tissue-specific
expression of IL-17F? Previous findings demon-
strated that IL-17F levels are approximately 30-fold
higher than IL-17A levels in PsO skin [53]. Our
recent study using paired biopsies of skin and syno-
vium collected from PsA patients with active PsO
confirmed a higher IL-17F to IL-17A ratio in the
inflamed skin and revealed that the relative expres-
sion of IL-17A versus IL-17F is inversed in inflamed
joint and skin compartments with IL-17A being
more than 30-fold higher than IL-17F in the joint
[55

&

] (Fig. 1). Taken together these in vitro and ex vivo
r Health, Inc. www.co-rheumatology.com 335



FIGURE 1. Recent ex vivo, in vitro and in vivo evidence supporting the role of IL-17 family cytokines in the pathogenesis of
SpA. Created with BioRender.com. SpA, spondyloarthritis.

Spondyloarthropathies including psoriatic arthritis
data point towards a nonredundant role for IL-17F
and provide new pathobiological insights in joint
versus skin inflammation, suggesting that (1) the
contribution of IL-17F to chronic tissue inflamma-
tion may be more prominent in the skin than in
joint; (2) IL-17F has the potential to contribute to
pathology, therefore dual blockade of IL-17A and IL-
17F can further reduce inflammation.

The preclinical data supporting the efficacy of
the dual IL-17A and IL-17F blockade is further
underpinned by recent clinical-trials evidence for
bimekizumab, a humanized monoclonal IgG1
antagonist neutralizing both cytokines [54]. Two
recent Phase 3 studies reported the safety and effi-
cacy of bimekizumab for the treatment of moderate
to severe plaque PsO [56

&

,57
&

] confirming phase 2
findings [58,59] and revealing the superiority of
dual IL-17A and IL-17F targeting to the targeting
of IL-12/IL-23 in achieving complete skin clearance.
Similarly, simultaneous inhibition of IL-17A and IL-
17F in patients with PsO was more effective than
inhibition of TNF in terms of the speed, depth and
durability of skin clearance [60

&

]. Superior efficacy of
IL-17A blockade relative to inhibition of IL-12/IL-
23[61] and TNF [62] in clearing skin PsO has been
demonstrated previously. Ongoing head-to-head
comparator study of bimekizumab and anti-IL-17A
treatment (BE RADIANT, http://clinicaltrials.gov/ct/
show/NCT03536884) will provide important knowl-
edge on whether targeting of both cytokines is
clinically more beneficial than inhibition of IL-
17A alone. Bimekizumab is also effective in treating
336 www.co-rheumatology.com
peripheral and axial SpA. It has been first assessed in
the proof-of-concept study [54] and strengthened in
followed up phase 2b study that patients with PsA,
who were administered bimekizumab, showed
marked and sustained improvements in their con-
dition compared with placebo [63]. Also, for an axial
disease, a phase 2b study revealed a rapid onset and
greater ASAS40 response rates as well as sustained
improvements across secondary outcomes of disease
activity for bimekizumab versus placebo [64

&

].
Role in bone pathology

Another recent study employing an in vitro model of
osteogenic differentiation of human periosteal cells
puts forward the argument that IL-17F does not only
contribute to IL-17A but has equal potency in pro-
moting osteogenic differentiation, in contrast to its
less potent role in driving inflammatory responses
[65

&

] (Fig. 1). IL-17A and IL-17F cytokines, circulat-
ing in the blood of AS patients, are also functionally
active as they were capable of driving osteoprolifer-
ation in vitro [65

&

] (Fig. 1). Accordingly, neutraliza-
tion of both cytokines by bimekizumab resulted in
greater suppression of gd or Th17 T-cell superna-
tants-mediated, or AS patient’s serum-mediated in
vitro bone formation than the blockade of IL-17A or
IL-17F individually [65

&

]. These results provide fur-
ther scientific evidence to validate the clinical rele-
vance of the dual IL-17A and IL-17F blockade in
patients with AS for preventing or suppressing path-
ological periosteal bone formation.
Volume 33 � Number 4 � July 2021
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OTHER MEMBERS OF THE INTERLEUKIN-
17 FAMILY

A very limited number of recent studies address the
role of other IL-17 family members in SpA. Lauffer
et al. demonstrated that IL-17C, a member of the IL-
17 family that, in contrast to IL-17A and IL-17F, is
mainly produced by epithelial cells and keratino-
cytes, is broadly expressed in the inflamed skin of
patients with various inflammatory skin diseases
including but not limited to PsO [66

&

]. The study
revealed that IL-17C establishes a self-amplifying
circuit in synergy with TNF, leading to the secretion
of pro-inflammatory cytokines by keratinocytes and
the recruitment of immune cells to the site of
inflammation (Fig. 1). Using human disease models,
Lauffer et al. demonstrated significant downregula-
tion of PsO-specific genes after neutralization of IL-
17C, considering IL-17C as a promising drug target
for the treatment of inflammatory skin diseases
[66

&

]. However, since IL-17C is regulated by IL-
17A and TNF, as both therapies rapidly reduce IL-
17C expression in PsO skin [67,68], the added-value
of the developing of IL-17C-specific therapy in SpA
needs to be further established.

Another recent study suggests an association
between IL-17A blockade-driven changes in the
gut microbiome of SpA patients and the expansion
of IL-17E-producing tuft cells and ILC2s in the lam-
ina propria [69

&

]. Whether IL-17E drives gut inflam-
mation after IL-17A inhibition remains to be
assessed. IL-17E has been shown to promote PsO
[70], however, its role in gut inflammation is con-
fusing as it has been demonstrated to induce colitis
[71,72] or to protect against colitis [73].

IL-17D is the least investigated member of the
IL-17 family. Our recent data on the cellular source
and function of IL-17D suggest its unique position
among other IL-17 family cytokines [74

&

]. First, IL-
17D is abundantly expressed in inflamed SpA joint,
higher than other IL-17 cytokines. Second, IL-17D is
expressed by stromal cells, in particular, by cells
similar to multipotent mesenchymal stromal cells.
Third, IL-17D expression inversely correlates with
inflammation (Fig. 1). Furthermore, IL-17D is upre-
gulated during osteogenic differentiation of syno-
vial stromal cells in vitro. However, in vitro functional
assays in bone precursor cells and in vivo experi-
ments in IL-17d–/– mice failed to demonstrate a
critical role for IL-17D in bone homeostasis. Instead,
IL-17d–/– mice were more prone to arthritis devel-
opment than littermate controls and presented with
enhanced systemic inflammation at the peak of
serum-transfer arthritis [74

&

]. Based on these data
it is tempting to propose that IL-17D exerts an anti-
inflammatory effect on synovial cells, yet further
1040-8711 Copyright � 2021 The Author(s). Published by Wolters Kluwe
research is required to address its role in the patho-
genesis of SpA.
DIRECTIONS FOR FUTURE RESEARCH

Further investigations of the exact mechanisms of
production and function of IL-17 family members
will provide novel insights into their roles in SpA
pathogenesis and may have direct relevance for the
targeted therapy. Could we imagine other ways to
target IL-17A and IL-17F production? Recently we
demonstrated that PI3Kd inhibition dampens both
IL-17A and IL-17F expression in innate-like lympho-
cytes and Th17 cells in IL-23-independent and the
dependent manner in vitro as well as in primary cells
derived from blood and synovial fluid of SpA
patients [75

&

]. This inhibition has functional anti-
inflammatory and anti-remodelling effects on target
cells, such as synovial fibroblasts. Furthermore, we
demonstrated that the PI3K-Akt-mTOR pathway is
active in the SpA joint and PI3Kd inhibition sup-
presses IL-17A and IL-17F expression in SpA synovial
explant biopsies ex vivo [75

&

]. In light of the results
from in vitro models, simultaneous suppression of
IL-17A and IL-17F is a promising direction in IL-17-
mediated diseases, however, more data is needed to
conclude about its added value on clinical response
over IL-17A inhibition. Moreover, accumulating evi-
dence suggests that IL-17A and IL-17F may exert
distinct, even opposite downstream activities,
which may impact the clinical outcome. For
instance, IL-17A-blockade is ineffective for Crohn’s
disease [17]. It was concluded, that IL-17A is impor-
tant for maintaining barrier integrity and has a
protective role in colitis [76]. However recent data
may suggest an alternative explanation. First, the IL-
17F pathway has been demonstrated to promote
inflammation in the intestines through its effect
on the intestinal microbiome. Consequently, IL-
17F neutralization suppressed the development of
colitis whereas blocking of IL-17A did not [77].
Second, a recent mechanistic study revealed that
IL-17A inhibits the expression of IL17-lineage cyto-
kines through a negative feedback loop. Accord-
ingly, the loss of IL-17A in Th17 cells did not
reduce their pathogenicity, resulting in the elevated
expression of GM-CSF and IL-17F cytokines [78].
Third, recent findings demonstrated that in contrast
to IL-17A homodimers or IL-17A/IL-17F hetero-
dimers that signal via heterodimeric IL-17RA/IL-
17RC receptor, IL-17F preferentially associates with
IL-17RC homodimers, leading to IL-17RA-indepen-
dent signalling [79

&

]. Given that it is plausible to
propose that aggravation of Crohn’s pathology by
IL-17A neutralization could be not due to a decrease
r Health, Inc. www.co-rheumatology.com 337
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in IL-17A but rather due to upregulation of IL-17F
and increased signalling via IL-17RC/IL-17F axis. In
this context, it is perhaps not surprising that anti-IL-
17RA treatment with brodalumab resulted in wors-
ening Crohn’s disease [80].
CONCLUSION

Accumulating evidence suggests that IL-17 family
members have tissue-specific functions in inflam-
mation. Their differential cellular sources, expres-
sion levels and function in different target tissues
could contribute to tissue-discrete results for IL-17
axis inhibition across the SpA spectrum. Addition-
ally, there is evidence for interaction between IL-17
cytokines, including self-reinforcing, feed-forward
as well as negative feedback mechanisms leading
to agonistic or antagonistic effects on tissue inflam-
mation and/or remodelling. Therefore understand-
ing the function of IL-17 family cytokines, as well as
detailed characterization of cellular subsets and
molecular mechanisms culminating in their expres-
sion, will be the key to designing rational therapies
in SpA.
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