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ABSTRACT

Natural killer (NK) cells are immune effector cells that can detect and lyse cancer cells. However, NK cell exhaustion, a phenotype
characterized by reduced secretion of cytolytic models upon serial stimulation, limits the NK cell’s ability to lyse cells. In this work, we
investigated in silico strategies that counteract the NK cell’s reduced secretion of cytolytic molecules. To accomplish this goal, we constructed
a mathematical model that describes the dynamics of the cytolytic molecules granzyme B (GZMB) and perforin-1 (PRF1) and calibrated the
model predictions to published experimental data using a Bayesian parameter estimation approach. We applied an information-theoretic
approach to perform a global sensitivity analysis, from which we found that the suppression of phosphatase activity maximizes the secretion
of GZMB and PRF1. However, simply reducing the phosphatase activity is shown to deplete the cell’s intracellular pools of GZMB and PRF1.
Thus, we added a synthetic Notch (synNotch) signaling circuit to our baseline model as a method for controlling the secretion of GZMB and
PRF1 by inhibiting phosphatase activity and increasing production of GZMB and PRF1. We found that the optimal synNotch system
depends on the frequency of NK cell stimulation. For only a few rounds of stimulation, the model predicts that inhibition of phosphatase
activity leads to more secreted GZMB and PRF1; however, for many rounds of stimulation, the model reveals that increasing production of
the cytolytic molecules is the optimal strategy. In total, we developed a mathematical framework that provides actionable insight into engi-
neering robust NK cells for clinical applications.
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INTRODUCTION

Natural killer (NK) cells are innate immune effector cells that
protect the host from diseased cells such as virally infected cells and
cancer cells.1,2 In particular, when NK cells engage with these target
cells, NK cell stimulatory receptors become activated and mediate
killing of the diseased cells. One mechanism for target cell killing is
through the secretion of the cytolytic molecules granzyme B (GZMB)
and perforin-1 (PRF1).3–6 Secretion of these factors is termed
“degranulation.” Specifically, PRF1 mediates the formation of pores
on the target cell membrane, enabling GZMB to infiltrate and induce
apoptosis. Although the secretion of cytolytic molecules is mediated
by multiple NK cell receptor signaling pathways,7 including – but not
limited to – the natural cytotoxicity receptors (e.g., NKp46), 2B4
(CD244), and DNAM-1 (CD226), the CD16 and NKG2D receptors
are two of the most studied. In fact, a significant majority of NK cells
in vivo are CD16-positive. Specifically, CD16 is an Fc c receptor found

on the surface of NK cells,7–10 which binds to the constant region of
immunoglobulin G (IgG) antibodies. Due to its affinity for antibodies,
CD16 is necessarily required for antibody-dependent cell-mediated
cytotoxicity (ADCC), a mechanism for lysing target cells through anti-
bodies. This feature of the CD16 receptor has been integral for design-
ing bi- and tri-specific killer engagers (BiKEs and TriKEs),11,12 which
are engineered antibodies that traffic NK cells to target cells for cell
killing. NKG2D belongs to the CD94/NKG2 family of receptors and
has been found on NK cells as well as T cells.13–15 Unlike CD16’s ubiq-
uity in ADCC, NKG2D is specific as it recognizes and binds to
induced self-antigens [e.g., MHC class I polypeptide-related sequence
A (MICA)] on the surface of cells. These antigens communicate to NK
cells that the diseased cell should be lysed. This implicates NKG2D in
the elimination of diseased cells, including cancer cells. Excitingly,
NKG2D serves as a focal point for many lines of research in targeted
therapies15–18 due to its affinity for tumor-associated antigens.
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While CD16 and NKG2D are activated under different biological
scenarios, they activate a similar set of downstream signaling mole-
cules7–10,19 that mediate the secretion of GZMB and PRF1. Upon
binding to their cognate ligands, antibodies, or antigens, CD16 and
NKG2D promote activation of the Src family kinases (SFKs) through
the intracellular adaptor molecules CD3f and DAP10, respectively.
The activation of SFKs leads to the phosphorylation of downstream
signaling species PLCc, Vav, SLP76, Akt, and Erk, as well as phospha-
tases SHP and SHIP.8–10,20,21 The phosphatases inhibit the activation
of the signaling intermediates and, thus, prevent cell activation. The
activation of Vav and SLP76 is critical for actin remodeling and forma-
tion of the immunological synapse4,8,22 between the NK cell and the
target cell. Moreover, phosphorylation of Akt and Erk has been corre-
lated with cell survival and proliferation, respectively.7,23–25 Studies
have shown3,4,8,9,22,26–28 a strong correlation between phosphorylation
of the signaling molecules Vav and PLCc, secretion of GZMB and
PRF1, and NK cell cytotoxicity, suggesting that the activation of these
molecules precedes target cell death.

Several lines of research29–31 have reported NK cell exhaustion as
a consequence of over-stimulation of NK cell receptors. NK cell
exhaustion is a phenotype characterized by a decrease in NK cell effec-
tor functions (e.g., GZMB/PRF1 secretion)32 even with more receptor
stimulation. In addition, NK cell exhaustion is correlated with a
decrease in the density of stimulatory receptors.29 Sanchez-Correa
et al.33 found a downregulation of DNAM-1 in primary NK cells
exposed to DNAM-1 ligands CD112 and CD155 expressed by leuke-
mic cells in vitro, leading to a dampened immune response upon sub-
sequent stimulation of DNAM-1. Paul and colleagues34 observed a
reduced quantity of NKG2D-positive NK cells in the tumor micro-
environment (TME) of B16F10-induced melanoma in C57BL/6 mice
in contrast to NK cells in the periphery of the tumor site. Moreover,
Paul et al.34 discovered that NK cells within the TME had reduced lev-
els of PRF1 mRNA, as well as lower levels of the cytokine IFN c and
CD107 (a marker of degranulation), compared to NK cells in the
periphery, suggesting that the TME can co-opt NK cells and promote
the exhausted phenotype. In the clinical setting, a decrease in the
quantity of NK cell stimulatory receptors and effector molecules has
been correlated with poor prognoses for pancreatic, gastric, and colo-
rectal cancer patients.35,36 It follows that the efficacy of NK cell-based
adoptive cell therapies will be limited unless NK cells can be modified
to overcome the effects of exhaustion. However, there appear to be
many mechanisms that induce NK cell exhaustion,32 implying that a
single approach may not work to prevent exhaustion. In addition,
given the extensive cascade of signaling reactions that mediate NK cell
degranulation and the complex interactions that influence NK cell
exhaustion, it is not clear which strategies can be combined to reduce
exhaustion or prevent it altogether.

Instead of preventing NK cell exhaustion, we could potentially
implement strategies that promote its opposite effect, that is, the con-
tinuous secretion of cytolytic molecules. This approach may counter-
balance the effects of exhaustion, causing the cell to be more robust to
stimulation and, thereby, allowing the NK cell to kill more target cells.
Still, it is not clear how to optimally achieve this objective due to the
nonlinearities in cell signaling and activation. Excitingly, mathematical
models are useful for providing quantitative insight into complex bio-
logical processes, including intracellular signaling leading to immune
cell activation.37 For example, mathematical models of NK cell

signaling have contributed to our understanding of NK cell activation:
the identification of Vav as the signaling molecule where stimulatory
and inhibitory signals integrate to determine activation;28 the explana-
tion of how weak-affinity stimulatory receptors can counterintuitively
inhibit NK cell activation in a non-monotonic manner;38 the revela-
tion that NK cell signaling occurs at a faster timescale than tumor cell-
killing and how modifying antibody concentrations can bridge the two
processes closer in time;39 and the elucidation of strategies that
increase the likelihood of NK cell activation19 by amplifying the
amount of phosphorylated signaling intermediates. Indeed, mathemat-
ical models can be applied to address a diversity of research questions,
especially in determining optimal strategies, which can save experi-
mental researchers’ time and resources.

In this work, we have applied a mathematical model to investi-
gate strategies that counteract NK cell exhaustion. We first modified
our previous model of NK cell signaling19 to include GZMB and PRF1
secretion. The model was first calibrated and validated using published
data.26 We then performed a global sensitivity analysis, revealing that
activation of a particular phosphatase strongly influences NK cell
secretion of cytolytic molecules. With that information in hand, we
simulated the effects of reducing the phosphatase’s impact, alone and
in combination with increasing production of cytolytic molecules, for
different rounds of stimulation. We found that the optimal strategy for
maximizing secretion of cytolytic molecules depends on how many
times the NK cells are stimulated: for fewer rounds of stimulation,
inhibiting phosphatase activity leads to more secreted GZMB and
PRF1; in contrast, for many rounds of stimulation, the production of
the cytolytic molecules becomes essential. In conclusion, we con-
structed a mathematical framework describing the effector function of
NK cells, which can aid researchers interested in engineering robust
NK cells for clinical applications.

RESULTS
NK cell degranulation model can reproduce
experimental observations

We generated a mathematical model of NK cell degranulation by
incorporating the dynamics of GZMB and PRF1 into our previous
model of NK cell signaling.19 In total, the model consists of down-
stream signaling reactions from the receptors CD16 and NKG2D that
ultimately mediate the secretion of the cytolytic molecules GZMB and
PRF1. Specifically, the model consists of a system of nonlinear ordi-
nary differential equations (ODEs) that predict the concentration of
the receptors, signaling intermediates, and the cytolytic molecules;
explicit equations, initial conditions, and parameters of the model are
provided in supplementary material file S2. When the CD16 and
NKG2D receptors are stimulated, they activate the cell via a cascade of
reactions (Fig. 1): activation of the Src family kinases (pSFK), facili-
tated by the ligand-bound phosphorylated receptors (pCD16 or
pNKG2D), mediates the activation of the Akt, SLP76-Vav-Erk, and
PLCc pathways. In particular, we assume that pVav and pPLCc medi-
ate the secretion of GZMB and PRF1, as they have been correlated
with NK cell cytotoxicity29 and a discharge of intracellular calcium
ions,1,9,10,40,41 which mediate exocytosis, respectively. Although Akt
and Erk are necessary for cell survival and proliferation,8–10,41 respec-
tively, their contribution to NK cell secretion of GZMB and PRF1
remains elusive. As it stands, given the available data, we consider
pVav and pPLCc as the mediators for NK cell secretion.
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The model was calibrated to data from the study by Srpan et al.26

using a Bayesian perspective to parameter estimation;47,48 namely, we
implemented the Metropolis–Hastings (MH) algorithm (see the meth-
ods) to sample from the posterior distribution of the parameters con-
ditional on the data. In brief, seven parameters (see Table I) were
estimated 200 times using randomized initial guesses. We also tested
the model predictions using a separate validation dataset. The com-
bined error for each run can be found in Fig. S1. Since the marginal
posterior distribution of each parameter for the best twenty runs was
almost identical, we chose to simulate the model using the results from
the best run (Run 1 in Fig. S1). The trace plots for each parameter in
the best run are shown in Fig. S2, where the value of each parameter is
plotted as a function of the iteration of the MH algorithm. This diag-
nostic of the parameter estimation shows that each parameter con-
verges to a stationary distribution, albeit at different iterations. We
simulated the model 1000 times using the final 1000 iterations of each

parameter from the best run (Fig. S3) and compared the results with
both the training and validation data.

Excitingly, the model simulations are in good agreement with both
the training and validation data (Fig. 2). The model can reproduce the
time evolution of secreted PRF1 mediated by stimulation of NKG2D
[Fig. 2(a)] and CD16 [Fig. 2(b)]. In addition, the model can replicate
sequential stimulation data where NK cells are stimulated via one path-
way for two consecutive rounds, each for 60min, and then stimulated
via the other pathway for the third round of stimulation. Under these
conditions, the simulated concentrations of secreted PRF1 [Figs. 2(c)
and 2(d)], the receptors [Figs. 2(e)–2(h)], and intracellular PRF1 [Figs.
2(i)–2(j)] all agree with the experimental data. To further validate the
model predictions, we simulated the concentration of secreted PRF1
when both Rituximab and MICA were decreased to 1 lg/ml [Fig. 2(k)],
and these model simulations agree with experimental measurements as
well. In addition, we demonstrate in Fig. S4 the model trajectories with
respect to the experimental data and conditions.

To investigate the effects of using a different combination of
training and validation data, we randomized the training and valida-
tion datasets by systematically switching the datasets from training to
validation, and vice versa, to create sixteen different combinations
including the original combination that we started with. For all combi-
nations, we estimated the parameter values using the MH algorithm
eight times using eight random initial guesses. Our results (Fig. S5)
indicate that the best fit (Run 1 from Fig. S1) led to a smaller total
error when compared to all combinations (including the original,
which we re-estimated). Interestingly, combinations 4, 8, and 12 in
Fig. S5 generated prediction errors similar in magnitude to the original
combination. We found that the parameter distributions (from the
final 1000 iterations of the MH algorithm) from combinations 4, 8,
and 12 were comparable to the original combination with a significant
overlap (Fig. S6). This suggests that the combinations that yield better
fits to the data converge to similar parameter distributions during esti-
mation, implying that the parameter estimates are robust with respect
to variations in the model calibration process. Hence, we move for-
ward with our original best fit and simulate the model using the
parameter distributions found in Fig. S3, which overlap with the distri-
butions in Fig. S6. Overall, we generated an experimentally validated
mechanistic model of NK cell degranulation, which can recreate
results from the study by Srpan et al.26 in a range of different experi-
mental conditions. We next apply the model to determine which fea-
tures, when perturbed, robustly maximize the amount of secreted
PRF1 and GZMB.

FIG. 1. Natural Killer cell signaling model schematic. Signal propagation flows from
left to right, starting with the interaction between the ligand (Rtx or MICA) and the
receptor (CD16 or NKG2D) that leads to the activation (phosphorylation) of the
receptor-ligand complex (pCD16 or pNKG2D). Then, this complex can promote
phosphorylation of the Src family kinases (pSFK), which activates the signaling
intermediates as well as the inhibitory phosphatases (SHP and SHIP). Finally, the
synergistic activation of pVav and pPLCc influences the release of granzyme B
(GZMB) and perforin-1 (PRF1). Arrows indicate stimulation, whereas red crossbars
signify inhibition.

TABLE I. List of estimated parameters.

Parameter Units Description

kdeg min�1 Degradation of phospho-species
kint CD16 min�1 Internalization and degradation rate of phospho-complex CD16
kint NKG2D min�1 Internalization and degradation rate of phospho-complex NKG2D
kdegranCD16 lM�2 �min�1 Degranulation rate under CD16 activation
kdegranNKG2D lM�2 �min�1 Degranulation rate under NKG2D activation
k0 min�1 Crosstalk from phospho-complex CD16 to NKG2D
k1 min�1 Crosstalk from phospho-complex NKG2D to CD16
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Inhibition of pSHP maximizes PRF1 and GZMB
secretion in silico

In order to understand which model parameters (inputs) leads to
an increase in the predicted secretion of GZMB and PRF1 (outputs),
we performed an entropy-based sensitivity analysis on the model (see
the methods). This technique, as shown by L€udtke et al.,50 measures
the degree of mutual information shared between the model inputs
and outputs. The greater the amount of shared mutual information
between an input and output, the more sensitive the output is to that
input. This metric is defined as the sensitivity index of the parameter
(see the Methods). Briefly, we varied the model parameters 50% above
and below their mean value and then drew 250 uniformly distributed
samples to simulate the model and generate distributions for the
amount of GZMB and PRF1 after 60minutes of receptor stimulation.
With these probability distributions for the model inputs and outputs,
we are able to approximate the conditional entropies needed to com-
pute the sensitivity indices.

Interestingly, only a select few parameters were shown to have a
large sensitivity index in regard to GZMB and PRF1 secretion (Fig.
S7). The fifteen most influential parameters are found in the pSFK-
pSHP-pVav-pPLCc subgraph, where each parameter can explain
more than 35% of the information in GZMB secretion promoted by

the CD16 receptor [Figs. 3(a); S7(a)]. This also holds true for NKG2D-
mediated GZMB secretion [Figs. 3(b); S7(c)] as well as for PRF1 secre-
tion promoted by either receptor [Figs. S7(b) and S7(D)]. These results
suggest that this subnetwork [Fig. 3(c)] strongly influences the amount
of GZMB and PRF1 secretion. In fact, the total effect of the most influ-
ential parameter, describing the catalytic rate of pSHP activation,
shares over 70% of the information observed in GZMB and PRF1
secretion. Given the causal structure of the model, we can infer that
blocking the pSFK! pSHP reaction can yield more GZMB and
PRF1 secretion since that would prevent the phosphatase from inhibit-
ing signal transduction. Similar causal inferences can be made for
other parameters in the subgraph in Fig. 3(c). Thus, we intervened on
these parameters (individually) by modifying their values and simulat-
ing the model to measure the percent change in GZMB and PRF1
secretion from baseline compared to the modified case.

Since there are four variables of interest in this influential subnet-
work (pSFK, pSHP, pVav, and pPLCc), each with a rate of activation
and deactivation, we intervened on eight different parameters to
enhance or inhibit the phosphorylated species. Specifically, the cata-
lytic rate constants were varied from baseline. Then, the model was
subsequently simulated to quantify their impact on the percent change
in GZMB and PRF1 secretion after 60min of receptor stimulation

FIG. 2. Model training and validation. The model was trained to, and tested against, in vitro NK cell stimulation data from the study by Srpan et al.26 In all panels, blue markers
and bars represent mean experimental data, while red and green signify the mean model predictions for the NKG2D and CD16 pathways, respectively. Error bars indicate one
standard deviation. Except for panel (k), the ligand concentrations used to stimulate NKG2D and CD16 are 2.5 lg/ml of MICA and 10 lg/ml of Rituximab, respectively. (a) and
(b) Normalized time series data of PRF1 secretion using (a) 2.5 lg/ml of MICA or (b) 10 lg/ml of Rituximab. (c) and (d) Normalized PRF1 secretion per round of stimulation
(60 minutes each) by stimulating the CD16 or NKG2D pathway and then stimulating the NKG2D pathway or CD16 pathway. (e) and (f) Normalized concentration of CD16 per
round of stimulation (60min each) by stimulating the CD16 or NKG2D pathway and then stimulating the NKG2D or CD16 pathway. (g) and (h) Normalized concentration of
NKG2D per round of stimulation (60min each) by stimulating the CD16 or NKG2D pathway and then stimulating the NKG2D or CD16 pathway. (i) and (j) Normalized concen-
tration of intracellular PRF1 per round of stimulation (60 min each) by stimulating the NKG2D or CD16 pathway and then stimulating the CD16 or NKG2D pathway. (k)
Normalized concentration of PRF1 after 60min of stimulation using different concentrations of ligand.
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[Figs. 3(d) and S8]. The simulated percent increase in GZMB secretion
is greatest when the pSFK! pSHP reaction is inhibited [Fig. 3(c);
decreasing 1] and when either CD16 or NKG2D [Fig. 3(d)] is stimu-
lated. The model predicts that reducing the catalytic rate constant for
this pathway has a larger effect when CD16 is stimulated, compared to
NKG2D stimulation [Fig. 3(d)]. The remaining interventions were not
as influential, however [Figs. S8(a) and S8(d)]. Furthermore, this con-
clusion is equally true for PRF1 secretion [Figs. S8(b), S8(c), S8(e), and
S8(f)]. These results suggest that disrupting the incoherent feed-
forward loop (IFFL) pSFK! pSHP a pX, where X is either Vav or
PLCc, leads to more GZMB and PRF1 secretion. In summary, we
interrogated the model and found that the amount of cytolytic mole-
cule secretion is strongly affected by the pSFK! pSHP edge in the
subgraph depicted in Fig. 3(c).

The optimal synNotch system depends on the number
of rounds of NK cell stimulation

The above results indicate that a strategy to increase GZMB or
PRF1 secretion is to inhibit pSHP activation. While this does lead to
more GZMB and PRF1 secretion in silico, it almost completely
depletes the intracellular pool of cytolytic molecules (Fig. S9).
Depleting intracellular pools of GZMB and PRF1 makes the NK cell
less likely to secrete these cytolytic molecules upon subsequent stimu-
lation since the timescale over which the pool is replenished (i.e., pro-
tein production) is longer than the timescale over which the cell
would be stimulated.39,65 Ultimately, this causes NK cells to become
less cytotoxic over time. Therefore, to maximize GZMB and PRF1

secretion over multiple rounds of stimulation, we need to induce the
production of these molecules, in addition to reducing SHP activation.
Fortunately, the field of synthetic biology52–54 provides tools that can
be applied to address this issue. Multi-cistronic plasmids, which
express two or more genes, can be used to promote expression of both
the GZMB and PRF1 genes in NK cells and, thereby, replenish the
intracellular pool of the cytolytic molecules. When coupled with the
inhibition of pSHP, this strategy may increase both cytolytic molecule
secretion and production, enabling NK cells to continuously secrete
cytolytic molecules over multiple rounds of stimulation.

Excitingly, the synthetic Notch (synNotch) signaling system55

can be applied to simultaneously (1) inhibit pSHP and (2) increase the
intracellular pools of the cytolytic molecules when the NK cell senses a
danger signal (e.g., MICA). In brief, the synNotch system can be con-
structed via genetic modifications. Once the cell expresses the
synNotch receptor, it is able to promote a specific function52–54,77 that
can be tailored to a specific stimulus [Fig. 4(a)]. The NK cell signaling
network promoted by the endogenous receptors CD16 and NKG2D
combined with the synthetic Notch system is illustrated in Fig. 4(b).
We apply this augmented modeling framework as a mechanism for
controlling the production and secretion of the cytolytic molecules
(i.e., the specific functions) when the NK cell binds to CD16 and
NKG2D ligands (i.e., the specific stimuli). For inhibiting pSHP, we
simulate the expression of long non-coding RNA (lncRNA) targeting
SHP, which impedes SHP from binding to its targets, thereby reducing
its ability to inhibit signaling58,59,61 (see Methods). At the same time,
we consider increasing the expression of GZMB and PRF1 using the
synNotch system. Collectively, this approach can grant NK cells the

FIG. 3. Sensitivity analysis shows that inhibition of pSHP activation is most influential for GZMB and PRF1 secretion. Total order sensitivity indices of the top fifteen influential
parameters for the amount of GZMB secretion after 60min of stimulation of the (a) CD16 pathway or (b) NKG2D pathway. (c) Almost all the influential parameters from the sen-
sitivity analysis can be found in the pSFK-pSHP-pPLCc-pVav sub-network of the full model. (d) Predicted percent change in GZMB secretion when decreasing the catalytic
rate constants kcatð Þ, parameters involved in the sub-network depicted in (c) after 60min of stimulation of CD16 (left) and NKG2D (right). In panel (d): green, decreasing pSHP
activation; blue, decreasing pSFK deactivation; magenta, decreasing pVav deactivation; cyan, decreasing pPLCc deactivation; markers, mean model prediction; and error
bars, one standard deviation.
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ability to maximally secrete cytolytic molecules upon repeated receptor
stimulation.

We study the case where the extracellular domain of the synNotch
receptor has the same binding kinetics as the endogenous receptor (see
Table II). In this case, the synthetic and endogenous pathways are inde-
pendent yet complementary to one another: the synthetic path produces
the cytolytic molecules, while the endogenous pathway secretes them.
Although this strategy seems intuitive, the optimal amount of synNotch
receptor is difficult to deduce a priori given the competing dynamics for
the ligand. Moreover, it is unclear howmuch of each plasmid is required
to maximally secrete GZMB and PRF1 when considering the number of
rounds of stimulation. Since transcription and translation are demand-
ing biological processes,51,54,76 which are required to express the
synNotch receptor in addition to the lncRNA and cytolytic molecules,
we consider using the absolute minimal amount of exogenous material
needed to achieve maximum secretion. Taken together, we aim to find
the optimal levels of lncRNA-coding plasmid targeting SHP (lncSHP),
cytolytic molecule-coding plasmid, and the synNotch receptor needed
to maximize GZMB and PRF1 secretion over many rounds of stimula-
tion while using the absolute minimal amount of synthetic material (see
the Methods).

Interestingly, the optimized synNotch system has different char-
acteristics when paired with CD16 [Fig. 4(c)] or NKG2D [Fig. 4(f)].
When CD16 is stimulated for 1–2 rounds only [Fig. 4(c)], it is optimal
to do nothing. That is, the amount of effort required to express the
synNotch system outweighs the gain in performance (i.e., increased
secretion). This is due to the fact that the time delay inherent in tran-
scription and translation. That is, two rounds (�2h) of receptor stim-
ulation is not enough time to appreciably change the concentration of
intracellular GZMB and PRF1 via the synNotch system. This holds
true for NKG2D as well [Fig. 4(f)]. In contrast, when CD16 is stimu-
lated for 3–5 rounds, the optimal amounts for each plasmid and R0

(initial value of synNotch) are at their maximum values. At this stage,
the synNotch system is fully operational. Surprisingly, as we continue
to increase the number of rounds of CD16 stimulation, we found that
the optimal amount of lncSHP-coding plasmid decreases precipitously
by several orders of magnitude, while the optimal amounts of the cyto-
lytic molecule-coding plasmid and R0 remain at their maximum val-
ues. Intriguingly, the model prediction reveals that inhibition of
SHP is not optimal in the long-term, as the optimal amount of
lncSHP plasmid is effectively zero. This is because too much inhibition
of SHP leads to an accumulation of phospho-proteins, which increases

FIG. 4. Optimal strategies depend on the number of rounds of stimulation. (a) Diagram of the synNotch signaling pathway. The ligands (red) can bind to the synNotch receptor,
which allows the complex to change in conformation to allow constitutively expressed, membrane-bound proteases (green rectangle) to cleave the peptide link between the
synNotch receptor and the transcription factor (TF, blue). This allows the TF to bind to its binding site (cyan) on the plasmid, which initiates gene (orange) transcription. (b)
Schematic of interaction between the endogenous and synthetic pathways. The arrows and crossbars represent stimulation and inhibition, respectively. The objective function
is minimized over various rounds of stimulation of (c) CD16 and (f) NKG2D. For each round of stimulation, the optimal amounts of lncSHP plasmid (red markers), cytolytic mol-
ecule plasmid (blue markers), and synNotch receptor (yellow markers) are shown. (d) and (e) The performance from CD16 stimulation with and without controllers. The secre-
tion of (d) GZMB and (e) PRF1 via the CD16-synNotch pair pathway. (g) and (h) The performance from NKG2D stimulation with and without controllers. The secretion of (g)
GZMB and (h) PRF1 via the NKG2D-synNotch pair pathway. No control, optimal values from round 1 for CD16 and NKG2D (gray squares); max control, optimal values from
round 3 for CD16 and round 11 for NKG2D (green squares); semi-max control, optimal values from round 6 for CD16 and round 15 for NKG2D (orange squares). Markers,
mean model prediction; error bars, one standard deviation.
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the velocity of phospho-protein decay10,78,79 (see Table I, kdeg).
Moreover, since there is no synthesis reaction of the inactive signaling
species in our model, the degraded phospho-species reduces the total
amount of available molecules for the next round of signaling. Thus,
for many rounds of stimulation, the phosphatase counterintuitively is
needed to maintain the availability of proteins for subsequent
signaling.

The optimal synNotch system when coupled with NKG2D has
subtle yet important differences. The model predicts that when
NKG2D is stimulated for three rounds or more, the optimal amount
of cytolytic molecule-coding plasmid is at its maximum [Fig. 4(f)]—
similar to CD16 [Fig. 4(c)]. Unlike CD16, however, the optimal
amount of lncSHP-coding plasmid remains at a maximum value from
3–14 rounds of stimulation, and the optimal concentration of R0 does
not immediately reach its maximum value. This difference between
the optimal amounts of R0 is due to the initial amounts of CD16 and
NKG2D receptors (38 and 0.3lM, respectively), compared to the
maximum value that R0 can have, 10lM76 (see the Methods section).
We interrogated the model and found that the concentrations of
CD16 and NKG2D lead to this distinction. The high concentration of
the endogenous CD16 receptor compared to the concentration of the
synNotch receptor means that CD16 will outcompete the synNotch
receptor. This helps clarify why the optimal value of R0 is the maximal
value it can take on. In comparison, for NKG2D stimulation, where
the initial amount of endogenous receptor is less than the maximal
amount of R0, a large R0 would lead to less secretion by directing the
input signal more toward cytolytic molecule production. Moreover,
since the optimal R0 is small when considering 10 or fewer rounds of
NKG2D stimulation, the indirect impact of SHP inhibition on
phospho-protein decay is also small, thus allowing the amount of
lncSHP-coding plasmid to remain at the maximum for more rounds
of NKG2D stimulation. Nevertheless, as the rounds of NKG2D stimu-
lation increase, where the optimal R0 approaches its maximal value,
the optimal amount of lncSHP-coding plasmid is reduced by several
orders of magnitude – similar to the case for CD16 stimulation. In

summary, we found that the optimal synNotch system not only
depends on the number of rounds of receptor stimulation but also is
different when considering whether the CD16 or NKG2D pathway is
being stimulated.

The predicted optimal CD16- and NKG2D-synNotch
pairs show qualitative differences in
cytolytic molecule secretion

Given the optimized synNotch system, we next simulated the
model to predict how the secreted amount of GZMB and PRF1
changes, compared to the baseline case without the synNotch receptor.
We simulated the model using the optimal amounts of each plasmid
and the initial synNotch receptor from different rounds of stimulation
to observe any differences in GZMB and PRF1 secretion. The results
of our optimization analysis show three separate clusters of optimal
conditions, which depend on the number of rounds of receptor stimu-
lation: (1) no synNotch system, (2) maximal amount of both plasmids
and synNotch, and (3) no lncSHP-coding plasmid but maximal
amount of cytolytic molecule-coding plasmid and synNotch. For sim-
plicity, we label these clusters as “no control,” “max control,” and
“semi-max control,” respectively. For CD16, we used the optimal
amounts from Fig. 4(c) for rounds 1, 3, and 6, respectively, for these
three conditions; whereas for NKG2D, we used the optimal amounts
from Fig. 4(f) for rounds 1, 11, and 15, respectively.

When considering GZMB secretion [Fig. 4(d)], the model analy-
sis shows that using the amounts of synNotch receptor and plasmids
optimized for one round of stimulation (in this case, none at all), more
GZMB is released compared to using the amounts of receptor and
plasmids optimized for multiple rounds of stimulation in the first few
rounds of stimulation. Specifically, not having the synNotch receptor
is best for up to one round of stimulation of the CD16 pathway and
up to two rounds of stimulation of the NKG2D pathway [Fig. 4(g)].
This counterintuitive result that no control is optimal is due to the
competition for ligand between the endogenous and the synNotch

TABLE II. synNotch signaling model.

No. Equation Reaction velocities Parameters Description

1 Rþ L�C (1) konR tð ÞL tð Þ; koffC tð Þ kon; koff ¼ the same as endogenous receptor Binding kinetics

2 C ! C� þ TF (2) kcleaveC tð Þ kcleave ¼ 1min�1 (assumed) Detachment of TF

3 C� ! L (3) kintC� tð Þ kint ¼ the same as endogenous receptor Ligand recycling

4 TF !1 (4) kdegTF tð Þ kdeg ¼ the same as phospho-protein decay Degradation of TF

5 1! RNA (5) ktrptu
1

1þ KM

TF tð Þ

� �n ktrpt ¼ 600 nt�min�1 (calculated65) RNA production
KM ¼ 1min�1 (assumed)

6 RNA! RNAþ protein (6) ktrslRNA tð Þ ktrsl ¼ 600 aa�min�1 (calculated65) Protein production

7 RNA!1 (7) kdeg RNARNA tð Þ kdeg RNA ¼ 0:0462min�1 (calculated66,67) RNA degradation
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receptors as well as the time delay in protein production. For short-
term stimulation, it is best for the NK cell to rely on endogenous sig-
naling to maximize GZMB and PRF1 secretion [Figs. 4(d) and 4(g)].
These simulated results help contextualize why it was optimal to not
intervene in the first few rounds of stimulation [Figs. 4(c) and 4(f)].

Interestingly, when the synNotch system is absent, we found
that one round of NKG2D stimulation leads to much more
secreted PRF1 than CD16 stimulation (3.8 vs 2.0 pmol, respec-
tively), corroborating the findings in the study by Srpan et al..26

However, for the second round of stimulation, the amount of
secreted PRF1 reduces significantly for NKG2D stimulation to
1.4 pmol, while CD16 stimulation yields 1.5 pmol of secreted
PRF1. For the subsequent round of stimulation, NKG2D yields
0.8 pmol, whereas CD16 produces 1.5 pmol. This initial large burst
in NKG2D-mediated PRF1 secretion can be explained by the esti-
mated degranulation parameter kdegranNKG2D (Fig. S3), which is
approximately three times larger than kdegranCD16, and thus, the
velocity of secretion is faster via the NKG2D path. Taken together,
in the absence of a synthetic pathway, NKG2D leads to a large but
transient secretion of PRF1, whereas CD16 produces a small but
steady secretion of PRF1 after two rounds of stimulation in silico.

In contrast, when we consider more rounds of stimulation, it is
best to use the synNotch system. Using the max control set [rounds 3
and 11 for CD16 and NKG2D stimulation from Figs. 4(c) and 4(f),
respectively] leads to more GZMB secretion for 2–4 rounds of CD16
stimulation and for 3–10 rounds of NKG2D stimulation [green
squares in Figs. 4(d) and 4(g)] when compared to the no control set
[gray squares in Figs. 4(d) and 4(g)]. Finally, the semi-max control set
[rounds 6 and 15 for stimulation of CD16 and NKG2D from Figs. 4(c)
and 4(g), respectively] secretes more GZMB after 5 rounds of CD16
stimulation and after 11 rounds of NKG2D stimulation when com-
pared to the max control set [compare green with orange squares in
Figs. 4(d) and 4(g)]. As a result, the semi-max control set is predicted
to be the preferred strategy when the number of rounds of stimulation
continues to increase. These conclusions hold for PRF1 secretion also
[Figs. 4(e) and 4(h)].

The model again predicts differences between the CD16-
synNotch pair and the NKG2D-synNotch pair. When using the max
control set, the secreted amount of GZMB mediated by the CD16-
synNotch pair decreases to zero after 7 rounds of stimulation [Fig.
4(d)]. The NKG2D-synNotch pair, on the other hand, continues to
secrete GZMB up to 14 rounds of stimulation. The model predicts
similar differences when considering secreted PRF1, where secretion
of PRF1 promoted by stimulation of CD16 goes to zero after 8 rounds
of stimulation. In contrast, PRF1 secretion promoted by NKG2D stim-
ulation goes to zero after 16 rounds of stimulation. The differences in
the concentration between synNotch and the endogenous receptors
are mainly responsible for the differences in the responses. Given that
R0 is greater than the initial value of NKG2D (0.3 lM), more of the
signal is veered toward cytolytic molecule production due to competi-
tion for the ligand. This explains NKG2D-synNotch’s sustained
response to stimulation. The initial concentration of CD16 (38 lM),
in contrast, is greater than R0, and therefore, more of the signal is
shifted to cytolytic molecule secretion, resulting in a large but transient
response. Taken together, in the presence of synNotch, the qualitative
features of CD16- vs NKG2D-mediated secretion of the cytolytic mol-
ecules changed compared to the no control case: the CD16 path now

produces a large but transient response to stimulation, while the
NKG2D pathway yields a small but sustained response to stimulation.

Interestingly, the optimal synNotch system does not indefinitely
increase the amount of secreted cytolytic molecules as we increase the
frequency of NK cell stimulation. In fact, when the number of rounds
of receptor stimulation becomes large [Figs. 4(d), 4(e), 4(g), and 4(h)],
the secreted amount of cytolytic molecules decreases. We interrogated
the model to better understand this prediction. While the intracellular
pool of GZMB [Fig. S10(a)] and PRF1 [Fig. S10(b)] continues to
increase as we increase the number of rounds of stimulation, the intra-
cellular amount of pPLCc [Fig. S10(c)] and pVav [Fig. S10(d)] eventu-
ally decreases to zero. Since the secretion of GZMB and PRF1 is
mediated by pPLCc and pVav in our model, it follows that once the
amount of pPLCc and pVav becomes negligible, so too does the secre-
tion of GZMB and PRF1. Thus, at higher frequencies of stimulation,
the depletion of intracellular signaling species is predicted to be a
limiting factor in cytolytic molecule secretion.

To assess the robustness of the above results, we performed a sen-
sitivity analysis on the optimized model that includes the synNotch
pathway (see Table II). Similar to our previous sensitivity analysis, we
varied each parameter by 50% above and below its baseline value to
create a uniform distribution. Next, we drew 250 samples and simu-
lated the model to determine how sensitive the secretion of GZMB
and PRF1 is to the parameters under stimulation of CD16 (Fig. S11)
or NKG2D (Fig. S12). This sensitivity analysis was performed using
the max control set (3 and 11 rounds of stimulation for CD16 and
NKG2D, respectively) and the semi-max control set (6 and 15 rounds
of stimulation for CD16 and NKG2D, respectively) of optimal results
from Figs. 4(c) and 4(f). For CD16, we found that the total order sensi-
tivity indices of each of the parameters in the synNotch system, for
GZMB secretion from the optimal results for the max control set
(round 3), can at most explain 32% of the information in the output
[Fig. S11(a)]. Moreover, when compared to the parameters in the
endogenous pathway [Fig. S11(a); orange vs black], the synNotch
parameters are much less relevant, meaning that the secretion of
GZMB is robust to our assumptions related to the synNotch signaling
model. The parameters that are found to be the most influential are
the same as those found in Fig. 3(a), which belong to the endogenous
pathway. Similarly, these conclusions hold for the semi-max control
case of GZMB secretion [Fig. S11(c)] as well as for PRF1 secretion
[Figs. S11(b) an S11(d)] and GZMB and PRF1 secretion promoted by
the NKG2D pathway (Fig. S12). To further verify these results, we
intervened on the R0 and kon parameters in the synNotch pathway
(which are the most influential parameters from the synNotch system)
as we presented above [Fig. 3(d)] and compared the results with the
decreasing activation rate of pSHP (Fig. S13). We found no significant
change in the secretion of GZMB or PRF1. In conclusion, we aug-
mented our baseline model with a synNotch signaling system and
found that the secretion of the cytolytic molecules can be enhanced
with this added system, and the predicted impact of the synNotch sys-
tem is not significantly affected by the parameters and assumptions we
implemented.

Transcription factor cooperativity impacts the
performance and optimality of the synNotch system

Since transcription and translation restrict the rate of cytolytic
molecule production, we investigate in silico the optimality of the
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synNotch system as we modify the transcriptional dynamics. The
results from Figs. 4(c) and 4(f) show that the synthetic circuit is not
needed if NK cells are stimulated for less than three hours due to the
time delay in transcription and translation. Studies have demonstrated
that modulating transcription80,81 can enhance the rate of protein pro-
duction. With this knowledge at hand, we alter key parameters that
may increase RNA production. In this work, we represent the rate of
transcription of DNA as a Hill function of the transcription factor

(TF) (see Table II): rate of RNA production ¼def r tð Þ ¼ ktrptu 1
1þ KM

TF tð Þ

� �n,
where u is the amount of plasmid and ktrpt is the transcription rate. By
taking u and ktrpt to be fixed, we observe that the rate of RNA produc-
tion increases as we decrease the parameters n (the Hill coefficient)
and KM (the affinity between the DNA molecules and the TF). We
consider the case of varying the Hill coefficient only, although a similar
argument can be made for the affinity parameter. Briefly, the Hill coef-
ficient captures the sharpness of a response (i.e., RNA production) to a
given input82–84 (i.e., the TF). It is possible to change the rate of RNA
production by varying n. For example, decreasing n should increase
the velocity of RNA production. Indeed, if we take, for example,

n0 ¼def 0:5n and n1 ¼def 1:5n, then,

r0 tð Þ ¼ ktrptu
1

1þ KM

TF tð Þ

� �n0 ¼ ktrptu
1

1þ KM

TF tð Þ

� �n
 !0:5 > r tð Þ;

where r tð Þ is the rate of RNA production with n ¼ 1, and similarly,

r1 tð Þ ¼ ktrptu
1

1þ KM

TF tð Þ

� �n1 < r tð Þ < r0 tð Þ;

for all time t. It follows that if we decrease n, we should expect to find
an increase in performance of the synNotch system.

To investigate the effects of the Hill coefficient, we repeat the
analyses and simulations as we did above for two new cases: (1)
n ¼ 0.5 and (2) n ¼ 1.5 to represent “negative” and “positive” cooper-
ativity, respectively. As expected, we found that when n < 1, we
enhance the performance of synNotch since the optimal amounts of
lncSHP-coding plasmid [Fig. 5(a)] and cytolytic molecule-coding
plasmid [Fig. 5(b)] are at their maximal values and R0 [Fig. 5(c)] is
near-maximal even with one round (i.e., 1 h) of CD16 stimulation. By
increasing RNA production, we increase the performance term in the
objective function relative to the effort term, and therefore, the syn-
thetic circuit will be useful in short-term receptor stimulation.
Contrastingly, when n > 1, we reduce the necessity of synNotch as evi-
denced by a delay in intervention [compare the lightest shade (n < 1)
with darker shade (n > 1) in Figs. 5(a)–5(c)]. These results hold for
the NKG2D pathway as well [Figs. S14(a)–S14(c)]. However, the data
suggest that augmenting the velocity of RNA production only affects
the optimality of synNotch when considering five rounds of stimula-
tion or fewer in the case of CD16. Note that in Figs. 5(a)–5(c), when
the number of rounds of CD16 stimulation increases, the optimal
amounts of synNotch components are nearly identical for the different
values of n. In summary, the optimality of synNotch is sensitive to
transcriptional dynamics.

FIG. 5. Transcription factor cooperativity impacts CD16-synNotch performance. (a)–(c) Optimal values of (a) lncSHP-coding plasmid, (b) cytolytic molecule-coding plasmid,
and (c) initial synNotch for negative cooperativity (lightest shade), no cooperativity (intermediate shade), and positive cooperativity (darkest shade). (d)–(f) The amount of
secreted GZMB from CD16-synNotch pair when using the optimal values from (d) round 1, (e) round 3, and (f) round 6 from (a)–(c). (g)–(i) The amount of secreted PRF1 from
CD16-synNotch pair when using the optimal values from (g) round 1, (h) round 3, and (i) round 6 from (a)–(c). (d)–(i) Markers, mean model prediction; error bars, one standard
deviation; lightest shade, negative cooperativity (n ¼ 0.5); intermediate shade, no cooperativity (n ¼ 1); darkest shade, positive cooperativity (n ¼ 1.5).
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Given the optimal synNotch components for the different levels
of TF cooperativity, we simulate the model to predict and compare the
amount of secreted cytolytic molecules in the different cases. We simu-
late the model using the control sets (i.e., no control, max control, and
semi-max control) we defined previously. Here, for the CD16 path-
way, the no control, max control, and semi-max controls corre-
sponded to using the optimal synNotch components from rounds 1, 3,
and 6 from Fig. 4(c). We apply the model by using the predicted opti-
mal values from the same rounds with the different Hill coefficients.
When we consider GZMB secretion [Figs. 5(d)–5(f)], we found that
when n ¼ 0.5 (lightest shade), the performance of synNotch is supe-
rior to all other cases, irrespective of the control set. These results hold
true for PRF1 secretion [Figs. 5(g)–5(i)] and the NKG2D pathway
[Fig. S14(d)–S14(i)]. Interestingly, in the case of NKG2D, we found
that the qualitative nature of the synNotch-NKG2D pair resembles
that of the synNotch-CD16 pair when n ¼ 0.5 [compare the lightest
shade in Figs. S14(e) and S14(f) with Figs. 5(e) and 5(f)], suggesting
that increasing RNA production shifts the response from small-but-
sustained to large-and-transient [compare the lightest shade with
intermediate shade in Figs. S14(e), S14(f), S14(h), and S14(i)]. In
conclusion, we found that TF negative cooperativity is predicted to
augment the performance of synNotch, whereas positive cooperativity
is predicted to reduce it.

The synthetic endogenous pathway pairs promote a
biphasic steady state response to stimulus

The analysis of dose-response relationships is helpful in under-
standing the link between the input and output of a system. Here, we
apply the model, with and without the controllers, to determine how
the steady state amount of secreted GZMB and PRF1 (i.e., response)
varies as we vary the amount of ligand (i.e., dose). More specifically,
we vary the concentration of Rituximab (Rtx) andMICA from 10�5 to
10 lM and simulate the model for one round of stimulation until the
steady state is attained. That is, instead of stimulating the receptors for
k rounds (60min each) with k� 1 intermediary washing steps (15min
each), we simulate the stimulation of the receptors for one round but
for a sufficiently long time-horizon (i.e., > 40h). Given the signaling
dynamics, the only species with non-trivial steady state values are the
cytolytic molecules; the amount of each intracellular phospho-species
goes to zero as time approaches infinity as there is only a sink in the
current model represented by the degradation term (see kdeg, Table I).
We simulate the steady state response with the base case where the
Hill coefficient (n) is equal to one.

As expected, the steady state response of secreted GZMB via the
CD16-synNotch pair [Fig. 6(a)] is larger when the controllers are pre-
sent (compare green and orange curves with the gray curve).
Interestingly though, the response is biphasic with respect to the mag-
nitude of stimulus; that is, as we continue to increase the amount of
Rtx beyond 0.7 or 0.2lM—in the max and semi-max control settings,
respectively—the steady state levels of GZMB do not increase but, in
fact, decrease. Given the endogenous and synthetic signaling dynam-
ics, the model predicts the existence of a range where synNotch is use-
ful. In the case of GZMB [Fig. 6(a)], the benefits of synNotch are
observed when Rtx is between 10�3 and 10 lM and peak at approxi-
mately 0.7 and 0.2lM for the max and semi-max control cases,
respectively. The data suggest that a stimulus level too small or too
large nullifies the effects from synNotch. We observe a similar

characteristic response when considering the steady state levels of
PRF1 via the CD16-synNotch pair [Fig. 6(b)] or via the NKG2D-
synNotch pair [Figs. 6(c) and 6(d)].

Next, we probed the model to better understand the cause of the
biphasic, steady state response. In Figs. S15(a)–S15(d), we demonstrate
the time evolution of secreted GZMB via the CD16-synNotch pair at
four distinct levels of Rtx: 10�2, 10�1, 1, and 10 lM, respectively. Also,
we show the time evolution of secreted PRF1 in Figs. S15(e)–S15(h).
We use the same control sets as we defined above. In these figures, we
observe that when Rtx is 10�1 lM, the steady state response is largest
for both species when the controllers are present. Intriguingly, as we
increase the magnitude of Rtx, note that the time required to reach the
steady state decreases [compare, for example, Figs. S15(a) with
S15(b)–S15(d)]. More importantly, phospho-CD16—the species that
mediates the activation of the endogenous pathway, thereby leading to
cytolytic molecule secretion—continues to signal well over 20 h when
Rtx is equal to 10�2 lM [Fig. S15(i)] and close to 8 h when Rtx is equal
to 10�1 lM [Fig. S15(J)]. However, once the concentration of Rtx is 1
or 10 lM (Figs. S15(k)–S15(l)], the concentration of phospho-CD16
undergoes a large rapid increase but decreases precipitously after a 3-
or 1-hour stimulation period, respectively. This response is attributable
to the signaling dynamics regulating phopsho-CD16, where the veloc-
ity of internalization and ligand recycling (see kint CD16, Table I) is pro-
portional to the amount of phospho-CD16. That is, degradation of
phospho-CD16 / kint CD16pCD16 tð Þ, where kint CD16 is between 1.4
and 1.5 min�1 [Fig. S3(b)]. Although a large concentration of Rtx
shortens the time to reach the steady state, it reduces the magnitude of
secreted GZMB and PRF1 at steady state because the amount of
phospho-CD16 depletes faster and, therefore, ceases to promote the
signal for secretion of cytolytic molecules. These conclusions are
shown to be consistent with the NKG2D-synNotch pair as well (Fig.
S16). In summary, our results indicate that the long-term benefits of
synNotch are biphasic with respect to the amount of stimulus due to
depletion of the phosphorylated endogenous receptor.

DISCUSSION

In the present work, we constructed a mathematical model of
NK cell secretion of GZMB and PRF1, which replicated experimental
observations from the study by Srpan et al..26 The model was simu-
lated to better understand which subnetworks strongly regulate the
secretion of the cytolytic molecules as well as strategies for maximizing
their secretion in silico. Furthermore, we investigated in silico how to
enhance secretion of the cytolytic molecules over time. Specifically, we
simulated the effects of engineering the NK cell to express the
synNotch receptor that simultaneously enables production of GZMB
and PRF1 and expression of an inhibitor of the phosphatase that sig-
nificantly affects GZMB and PRF1 secretion. Our modeling revealed
the following: as the number of rounds of stimulation increases, the
optimal initial value of the synNotch receptor increases proportionally.
This implies that if the NK cell is to be stimulated for multiple
rounds, it is optimal to promote the synthetic pathway in order to
increase production of GZMB and PRF1. In general, the produc-
tion of the cytolytic molecules should be induced as maximally as
possible. The optimal amount of lncSHP-coding plasmid, however,
should switch from its maximum value to the minimum (0 copies
per cell) as the number of rounds of stimulation increases, sugges-
ting that SHP inhibition is only optimal in the short-term.
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Moreover, negative cooperativity in transcriptional dynamics
enhances RNA production and, thereby, augments the perfor-
mance of synNotch. The long-term behavior (steady-state GZMB
or PRF1 secreted) in response to varying ligand concentrations of
the endogenous signaling pathway paired with the synthetic sys-
tem is biphasic, implying that too small or too large of an input
leads to a suboptimal performance. In total, our work presents a
theoretical framework that can be used by researchers for engi-
neering NK cells with applications to cell-based therapies.

The baseline model predicts that cytolytic molecule secretion
is strongly dependent on the IFFL pSFK! pSHP a pX, where X is
either Vav or PLCc. Interestingly, this motif is not uncommon in
biological networks85–88 given its significant role in controlling cell
activation by regulating signal transduction. Indeed, occluding the
above subnetwork disinhibits signal transduction, allowing the NK
cell receptor to continue signaling to its downstream mediators
and, thereby, generate a greater response. In fact, there are many
examples of increased cell activation using pharmacological inhibi-
tors of phosphatases.20,89–92 Here, we observed a similar result by
decreasing the catalytic rate constant that regulates the rate of SHP
activation in silico. Still, given the complexity of the signaling net-
work, the efficacy of inhibiting the phosphatase is not immediately
obvious. Our global sensitivity analysis revealed the importance of
the phosphatase, and simulating the effects of reducing phospha-
tase activity confirmed its impact, demonstrating the utility of the
model.

The synNotch signaling system is a powerful tool for engineering
cells with novel capabilities. One advantage of this approach is that it
grants the researcher the ability to program new pathways in cells
using established methods in molecular biology; however, arriving at
the optimal signaling circuit via experimentation alone can be cumber-
some, expensive, and time consuming. In addition, it is often not clear
if optimality was obtained. Excitingly, mathematical models of cell sig-
naling systems can help address the above barriers. Namely, the ques-
tion of optimality can be addressed when a model is applied to
perform optimal control, given a set of controllers and an objective
function. In the work presented here, the initial amounts of plasmid-
encoding lncRNA for the phosphatase, the plasmid-encoding cytolytic
molecules GZMB and PRF1, and the synNotch receptor are analogous
to controllers as they help steer the NK cell signaling network to
secrete more cytolytic molecules. Once a solution is found to the opti-
mization problem, we gain insight on how to optimally control NK
cell degranulation.

Our findings demonstrate that the optimal strategy for maximiz-
ing the secretion of the cytolytic molecules is dependent on the num-
ber of rounds of stimulation that the cell will experience. We found
that the optimal plasmid amounts have a bang-bang characteristic,
meaning that they are either applied at maximal dose or not at all.
This is a known characteristic for bound controls that appear linearly
in the objective function.69 In comparison, the optimal initial value of
the synNotch receptor is more tunable and generally increases propor-
tionally with the number of rounds of stimulation. Given that the

FIG. 6. Long-term behavior of the combined synthetic-endogenous pathway. (a) and (b) The steady state levels of (a) GZMB and (b) PRF1 mediated by the CD16-synnotch
combination as a function of the stimulus. (c) and (d) The steady state levels of (c) GZMB and (d) PRF1 mediated by the NKG2D-synNotch tandem as a function of the stimu-
lus. Solid line, mean model prediction; shaded area, one standard deviation; gray, no control set [round 1 for CD16 and NKG2D from Figs. 4(c) and 4(f), respectively]; green,
max control set [round 3 for CD16 and round 11 for NKG2D from Figs. 4(c) and 4(f), respectively]; orange, semi-max control set [round 6 for CD16 and round 15 for NKG2D
from Figs. 4(c) and 4(f), respectively].
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synNotch receptor competes with the endogenous receptor for ligands,
the increase in its initial amount reflects how much of the signal
should be shifted to cytolytic molecule production and SHP inhibition
vs secretion. Transcriptional dynamics are influential in determining
the performance of the synthetic pathway, where decreasing TF coop-
erativity leads to an increase in the velocity of RNA production and,
thus, an increase in cytolytic molecule production. Although engineer-
ing negative cooperativity may be difficult in practice, an analogous
strategy would be to increase the affinity93–95 between the TF and its
DNA binding site on the plasmid (i.e., decreasing KM).

The steady state performance of the synNotch system is sensitive
to the amount of ligand. Specifically, we found that when the magni-
tude of stimulus is less than 10�3 lMor greater than 10 lM, the added
benefits of synNotch are nullified. In fact, the speed of degradation of
the intracellular signaling molecules is proportional to the amount of
stimulus, implying that a sufficiently large stimulus is suboptimal for
cell signaling since it leads to rapid depletion of the molecules and,
therefore, impedes cytolytic molecule secretion. On the other hand,
when the amount of ligand is scarce—as in the case of tumor cells
with low immunogenicity—endogenous and synthetic signaling will
be negligible, and other strategies for enhancing secretion of cytolytic
molecules should be investigated in these cases.

Our modeling and analysis predict the optimal amounts of con-
trollers for specific rounds of stimulation. As it stands, however, it is
not completely understood how many target cells an individual NK
cell can kill in its lifespan; that is, how many times an NK cell would
be stimulated. Prager et al.3 recently showed that a given NK cell
in vitro can kill up to six HeLa cells when confined to a microfluidic
device. Elsewhere, others have demonstrated that NK cells are capable
of serial killing,3,26,96–98 implying that they are able to undergo multi-
ple rounds of stimulation. It remains to be seen if these results hold
in vivo as well. While there is uncertainty in the exact killing potential,
our analysis predicts that the highest secretion of GZMB and PRF1
occurs when we expect that NK cells will undergo many rounds of
stimulation. The optimal synthetic biology solution is to have the cyto-
lytic molecule-coding plasmid given at the maximal level, with high
affinity between the TF and its DNA binding domain on the plasmid,
in combination with a synNotch receptor to generate NK cells that
continuously secrete effector molecules, even up to almost 10 rounds
of stimulation. Although the precise numerical values of the optimal
sets are subject to vary in practice, the qualitative predictions from the
model are particularly useful, that is, the effects of using the maximum
(or minimum) values of the plasmids and synNotch. Also, given that
the intracellular pool of signaling species can limit the amount of
secreted cytolytic molecules and that the production of each species
may not be feasible in practice, the optimal strategies proposed here
complement ongoing research aimed at increasing the population of
NK cells or their proliferative capacity along with the strategies pre-
sented here. Taken together, these approaches may improve the effi-
cacy of NK cell-based therapies.

We acknowledge that the model predictions are sensitive to the
assumptions made on the model (see the Methods). We assume that
an increase in the secretion of the cytolytic molecules will increase
the likelihood of target cell death since these effector molecules are the
mediators for apoptosis. Given the model was fit to data from the
study by Srpan et al.,26 where the ligands were immobilized in each
well of the 96-well plate, we assumed that the total amount of ligand in

the system was fixed. This, however, need not be true in vivo where
the ligands are subject to degradation, shedding, and clearance. The
assumptions on the synNotch signaling pathway (see Table II) were
implemented to simplify the optimal control analysis. Certainly, the
extracellular domain of synNotch receptor does not need to have the
same properties as the endogenous receptor; the binding and internali-
zation kinetics can be different in practice. Furthermore, the affinity
between the transcription factor and the plasmid can vary depending
on what specific nucleotide sequences are used in the promoter site
and the specific transcription factor. In the future, we can simulate the
model where one plasmid has a higher affinity to the transcription fac-
tor than another plasmid, which may affect the optimal strategy. We
also assumed that lncRNA can bind to both SHP and pSHP with equal
affinity. Fortunately, these assumptions can be addressed by experi-
mentation and parameter estimation to improve the precision of the
model. Finally, we acknowledge that the solution to the optimization
problem is sensitive not only to the model but also to the objective
function. In particular, the constant q determined how much empha-
sis we placed on minimizing the given amount of exogenous material
vs maximizing the cumulative amount of secreted cytolytic molecules.
In our analysis, we placed an equal weight on both. Future research
can address this issue by solving the optimization problem for a variety
of desired outcomes (e.g., more emphasis on performance). We note
that the data used for fitting were from a single published study. We
acknowledge that using data from different sources would augment
the training and validation of the model. However, there is a lack of
studies involving repeated stimulation of NK cells where the number
of ligands is quantified and standardized before cell stimulation, an
input needed for model simulation. The model can be further vali-
dated as additional data become available.

Despite the limitations, the simulated results provide insight into
NK cell secretion of cytolytic molecules GZMB and PRF1 mediated by
the CD16 and NKG2D signaling pathways. We trained and validated
a mathematical model by estimating the posterior distribution of the
model parameters using the Metropolis-Hastings algorithm. An
information-theoretic sensitivity analysis was subsequently performed
on the model, from which we identified that the inhibition of SHP
strongly influences the secretion of the cytolytic molecules. By incor-
porating a synNotch signaling system, we found that the optimal con-
ditions for maximizing degranulation are dependent on the number of
rounds of receptor stimulation: we found that SHP inhibition is not
optimal in the long-term, while the production of the cytolytic mole-
cules should be maximally induced almost all the time. Additionally,
we found that negative cooperativity in transcription improves the
performance in synNotch signaling and that the steady state response
of the endogenous pathway combined with the synthetic system is
biphasic with respect to the amount of stimulus. In conclusion, the
current work provides actionable insight into engineering robust NK
cells with applications to immunotherapies.

METHODS

We adopted the mathematical model of NK cell signaling from
our previously published work,19 which includes a system of nonlinear
ODEs that describes the dynamics of receptors CD16, NKG2D, and
2B4, as well as their downstream signaling intermediates. The system
of ODEs is integrated using the MATLAB function ode15s. We apply
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a range of computational methods (described below), and ethics
approval is not required.

Construction of the NK cell degranulation model

Here, we focus on CD16 and NKG2D signaling, given extensive
experimental data quantifying their roles in promoting cytolytic mole-
cule degranulation. Furthermore, we expanded the model by incorpo-
rating the dynamics of GZMB and PRF1 to study and simulate
strategies that optimize their secretion. This baseline model is provided
in supplementary material file S1, and the list of model species, reac-
tions, and parameters is provided in supplementary material file S2. A
simplified representation of the baseline model is shown in Fig. 1,
where connections between species represent reaction velocities and
are governed by established Michaelis–Menten kinetics.

The baseline model contains 89 parameters and 40 species.
Briefly, each receptor binds to its ligand and forms a receptor-ligand
complex that can then become phosphorylated by basally active Src
family kinases (SFKs). Then, the ligand-bound phosphorylated recep-
tor (pC in Fig. 1) serves as the catalyst for converting SFK from a
basally active state to a fully active state (pSFK).29 Next, pSFK mediates
the phosphorylation of PLCc, Vav, SLP76, Akt, and Erk, in addition to
the phosphatases SHP and SHIP.7,10,40–42 The phosphatases SHP and
SHIP provide negative feedback to the stimulatory network by dephos-
phorylating the phosphorylated signaling intermediates, including pC
and pSFK. The initial concentrations of the model were taken from
the literature,43 and the kinetic parameters regulating the rate of phos-
phorylation and dephosphorylation reactions are taken from our pub-
lished model.19 In particular, the initial concentrations are assumed to
be steady state values since the primary NK cells were pre-incubated
in cell culture media, which excluded stimulatory ligands for CD16 or
NKG2D prior to the measurement via mass spectrometry.43

In addition to the model given by Makaryan and Finley,19 we
included a degranulation parameter for each pathway (CD16 and
NKG2D) to account for actin remodeling, trafficking, docking, and
exocytosis of the cytolytic molecules.4,8,10,40,44 Given pVav’s correlation
with NK cell cytotoxicity29 and pPLCc’s role in the release of intracel-
lular calcium ions, which are needed for exocytosis,1,2,4,40–42 we used
pVav and pPLCc as catalysts for GZMB and PRF1 secretion. Also,
data from the study by Srpan et al.26 demonstrated crosstalk between
CD16 and NKG2D; specifically, stimulation of CD16 induced a slight
increase in the amount of NKG2D, whereas stimulation of NKG2D
slightly decreased the concentration of CD16. We included reactions
to account for the crosstalk, based on either mass action kinetics or a
nonlinear Hill equation. We also considered alternate models that
included synthesis and decay reactions for the inactive signaling species
since the data in the study by Srpan et al.26 stimulated NK cells over a

long timescale. Excitingly, all candidate models demonstrated a good
agreement with experimental observations. We compared each model
using the Akaike information criterion (AIC) that measures the quality
of models given a dataset. We found a simpler model, which (1) had lin-
ear equations for the crosstalk reactions and (2) excluded synthesis and
decay reactions for the inactive species, to be the preferred model (see
Table III). Specifically, we calculated the relative likelihood of the mod-
els: exp 1

2 mini AICið Þ � AICið Þ
� �

, where i is the index number of the
model. This value represents how likely or probable the model candi-
dates are to the one with the lowest AIC score.

Data collection and processing

The mathematical model was trained using experimental data
from the study by Srpan et al.,26 who used (1) primary NK cells in
their experimental studies, (2) Rituximab as the ligand for stimulating
CD16, and (3) MICA for the stimulation of NKG2D. The freely avail-
able online software WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer) was used to extract mean and standard deviation
data from plots shown in the study by Srpan et al.26 In that study, the
researchers stimulated primary NK cells in a 96-well plate using
immobilized Rituximab and MICA for activation of CD16 and
NKG2D, respectively. In addition, each well was coated with anti-
PRF1 monoclonal antibodies to measure and visualize the concentra-
tion of secreted PRF1 via confocal microscopy. The researchers
subsequently quantified the optical density of microscopy images
using ImageJ45 as a measure of secreted PRF1.

We extracted a total of 50 data points from the published study,
from which 34 were used for model training and the remaining 16
were used for model validation. The experimental design in the study
by Srpan et al.26 is as follows: NK cells were stimulated under one
pathway for 60min and then washed for 15min prior to the next
round or iteration of receptor stimulation. The cells were stimulated
for two rounds under one pathway and then either stimulated via the
same pathway or the other pathway for the third round. We desig-
nated the data from the first two rounds of receptor stimulation for
model training, and if the same pathway was stimulated again for the
third round, then these data would also be assigned to the training set;
otherwise, they would be assigned for model validation. For data
where NK cells were stimulated for 120min in a single well (i.e., under
one pathway), we used the first half for model training and the second
half for model validation. Finally, since the model predictions are units
of concentration (lM) and the experimental data are signal intensity,
we normalized both the model predictions and the data prior to train-
ing by calculating the fold change (FC) from the same reference time
point, as done in our previous work,19

TABLE III. AIC scores for model selection.

Model Crosstalk Synthesis/decay reaction AIC score Relative to model 1

1 Linear: kpC tð Þ N/A 179.9 1

2 Nonlinear: k
pC tð Þ

K þ pC tð Þ N/A 187.7 0.020 times as probable

3 Linear: kpC tð Þ 1! X !1, where X is the inactive species 188.2 0.015 times as probable
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FC ¼ x tð Þ
x trefð Þ

:

Parameter estimation

The model parameters were estimated using a Bayesian frame-
work, namely, the Metropolis-Hastings (MH) algorithm,46–49 as we
did previously.19 We provide an extensive description of this approach
in the published work. Briefly, the goal of this approach is to sample
from the posterior probability distribution of the parameters given the
data (p hjyð Þ). Bayes’ theorem provides a relationship between the pos-
terior and prior probability densities via

p hjyð Þ ¼ p yjhð Þp hð Þ
p yð Þ

/ p yjhð Þp hð Þ;

where p hð Þ is our prior knowledge of the parameters, p yjhð Þ is the
data likelihood function, and p yð Þ is the probability of the data (which
is constant here since the data are given). The seven estimated
model parameters are related to secretion and are briefly described in
Table I. All other parameters are set to their estimated values from our
previous model.19

We used a continuous uniform prior distribution on the parame-
ters, as there is no evidence to suggest a priori where these parameters
may lie on the positive real line. Specifically,

p hð Þ ¼ p h1;…; h7ð Þ ¼
Y7
i¼1

bi � aið Þ�1;

where each independent hi is an element in the arbitrary interval
ai; bi½ �. Indeed, the prior distribution is independent of h and, thus,
will not play a determining role in the estimation process (see below).

The data likelihood function represents a measure of the error
between the data and the model. We assume that the errors
between each data point and model prediction (ei ¼ yi �Mi hð Þ)
are independent and normally distributed with zero mean and
identical variance r2,

p yjh;r2
� �

¼ p e1;…; e34ð Þ ¼
Y34
i¼1

p eið Þ ¼
Y34
i¼1

p yi �Mi hð Þ
� �

;

where each p yi �Mi hð Þ
� �

� N 0;r2ð Þ and 34 represents the num-
ber of training data. Moreover, we marginalize the noise (r2) from
p yjh;r2
� �

by assuming an inverse gamma measure over r2 (specifi-

cally, p r2ð Þ � C�1 a;bð Þ) and integrating p yjh;r2
� �

with respect to
r2 to obtain

p yjhð Þ ¼
ð1
0

p yjh; r2
� �

p r2ð Þdr2 ¼ K
1
2
y �M hð Þ
�� ��2 þ b

� �� 34
2það Þ

:

Here, K is a constant that is independent of both y and h. Note that
p yjhð Þ achieves its maximum when y ¼M hð Þ, which implies that
maximizing the posterior density p hjyð Þ is proportional to minimizing
the sum of squared residuals.

However, we cannot solve for p hjyð Þ analytically due to the nonli-
nearities inM hð Þ. To that end, we employ the MH algorithm to sample

from the posterior distribution. Before doing so, we specify key compo-
nents needed to implement the MH algorithm.47,48 We first log-
transform the parameters (i.e., calculate lnh) and estimate the parameter
values in the log-space. Specifically, we use the lognormal distribution to
propose a new parameter vector given the current estimate,

p h jð Þjh�; v
� �

� Lognormal ln h�ð Þ; v
� �

;

where h� is the current estimate, h jð Þ is the proposed parameter vector,
j is the number of iterations of the MH algorithm, and v ¼ 0.1 is the
scale parameter of the distribution. The scale parameter (v) must be
carefully tuned to allow for both sufficient exploration of the (log)
parameter space and maximizing the posterior density. It is important
to note that the skewness and kurtosis (third and fourth moments,
respectively) of the lognormal distribution grow proportionally to the
exponential of the square of the scale parameter [i.e., exp v2ð Þ]. As we
increase the scale parameter, we exponentially increase our sampling
space; however, this comes at the cost of proposing parameter vectors
with low acceptance probability. Alternatively, if the scale parameter is
too small, we do not sufficiently explore the parameter space and pos-
sibly may not find parameter vectors that maximize the posterior den-
sity. In our estimation, we found that when v ¼ 0.1, the MH algorithm
is effective at both exploring the parameter space and maximizing the
posterior density. Next, we compute the acceptance ratio (AR) at each
iteration j,

AR ¼ p yjh jð Þ� �
p yjh�
� � p h jð Þð Þ

p h�ð Þ
p h�jh jð Þ; v
� �
p h jð Þjh�; v
� �

¼
1
2
y �M h�ð Þ
�� ��2 þ b

1
2
y �M h jð Þð Þ
��� ���2 þ b

0
BB@

1
CCA

34
2það ÞY7

i¼1

h
jð Þ
i

h�i
:

Since a;b > 0 is needed to satisfy the inverse gamma distribution, we
set both equal to one. These two hyperparameters determine the
degree of irreducible noise between the data and model predictions,
where a and b affect the shape and scale of the noise, respectively.
Also, note that the prior distributions do not affect the acceptance ratio

since p h jð Þð Þ
p h�ð Þ ¼ 1 regardless of the parameter vectors h� or h jð Þ and inde-

pendent of the arbitrary intervals ai; bi½ � for each ith component. This
is a consequence of imposing a uniform prior, which implies that our
knowledge of the parameters is completely determined by the data.
The last term on the right-hand side is the ratio of the transition ker-
nels, which measures the asymmetric probability of transitioning
between h� and h jð Þ. Given the above proposed distribution and AR,
we simulated the MH algorithm for 10 000 iterations. In our estima-
tion, the marginal posterior distribution of each parameter converges
to a stationary distribution anywhere between the 2000th and 5000th
iteration. Given that the MH algorithm is a stochastic optimization
method, we simulated the MH algorithm 200 times using independent
random initial guesses for h�. In addition, the uncertainty in the
parameter estimates from our previous model19 was incorporated in
our current estimation of the new parameters by randomly sampling
each previously fitted parameter from its corresponding distribution
during every iteration of the MH algorithm. For simulations, we used
the final 1000 iterations of the MH algorithm, which we take to be
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samples from the posterior distribution. The model is provided in
supplementary material file S1, and the list of model species, reactions,
and parameters is provided in supplementary material file S2.

Information-theoretic sensitivity analysis

We employed an entropy-based sensitivity analysis for informing
which parameters (model inputs) share a significant degree of mutual
information with the amount of secreted GZMB and PRF1 (model
outputs). We follow the methods described previously by L€udtke
et al.50 Entropy, in the sense of Shannon, is described as the average
information content of a random variable. That is, for any random
variable Y , the (Shannon) entropy of Y is given by

H Yð Þ ¼ �
X
y

p yð Þlog2 p yð Þð Þ:

The conditional entropy of Y given X ¼ x (H YjX ¼ xð Þ) is defined
analogously by using the conditional probability p yjX ¼ xð Þ.
Moreover, the quantity H Y jXð Þ measures the average amount of
information remaining Y given that we observed another random var-
iable X. Specifically,

H Y jXð Þ ¼
X
x

p xð ÞH Y jX ¼ xð Þ ¼ �
X
x;y

p x; yð Þlog2
p x; yð Þ
p xð Þ

� �
:

Note that H Yð Þ � H Y jXð Þ as any random variable X can only
explain away some of the information in Y , if any at all. If
H Y jXð Þ ¼ H Yð Þ, then Y is independent of X. Alternatively, if
H Y jXð Þ ¼ 0, then knowing X completely determines Y . As defined in
the study by L€udtke, et al.,50 conditional entropies of the form
H Y j X1;…;Xnf g Xi
� �

measure the total effect that a particular input
Xi exerts on the output Y . Furthermore, the quantity
H Y j X1;…;Xnf g
� �

determines the amount of information remaining
in Y once we observed all the inputs. This can be thought of as the
residual information that persists in Y for which the inputs X1;…;Xn

cannot account for. Thus, the total order sensitivity index for each
input Xi is defined by

Si ¼
H Y j X1;…;Xnf g =Xi

� �
H Yð Þ � H Y j X1;…;Xnf g

� � :
Indeed, inputs with a higher sensitivity index suggest that the output is
sensitive to variations in the input. In our case, Xi represents the kinetic
parameters in our model, whereas Y1 and Y2 represent the amount of
secreted GZMB and PRF1, respectively, after 60min of receptor stimu-
lation to mimic the experimental conditions from the study by Srpan
et al..26 We drew 250 random samples for each Xi (independently)
using a uniform distribution on the interval 0:5E Xið Þ; 1:5E Xið Þ½ �,
where E is the expectation operator and the distribution of each Xi is
given by parameter estimation (see above) or from the study by
Makaryan and Finley.19 Next, we simulated the model using these 250
samples to generate a distribution for each of the outputs Y1 and Y2 to
then compute the total order sensitivity indices.

synNotch signaling and RNA expression model

The synthetic biology field has empowered biologists with tools
for engineering novel cellular responses. In general, such molecular

programming techniques provide cells with additional capabilities; for
instance, Smole et al.51 engineered novel genetic circuits in mamma-
lian cells to respond to inflammatory signals (i.e., IL-1 b) by producing
anti-inflammatory proteins. In addition, the use of synthetic biology
methods with clinical applications is the subject of recent reviews.52–54

The synthetic Notch (synNotch) signaling pathway,55 in particular,
can be constructed via genetic modifications to trigger a specific cell
response when a specific stimulus (e.g., chemical and thermal) is pre-
sent in the micro-environment. Briefly, the synNotch system includes
three components: (1) the synNotch receptor, (2) a transcription fac-
tor, and (3) a plasmid vector. The extracellular domain of the
synNotch receptor can be a single-chain variable fragment (scFv)
designed to bind to a specific antigen, similar to chimeric antigen
receptors (CARs) that target tumor-specific antigens.16,56,57 The
synNotch receptor and the transcription factor are linked together
using peptide sequences that can be cleaved by constitutively expressed
membrane proteases once the receptor binds to a specific ligand.55

Then, the transcription factor becomes unchained from the cell mem-
brane and subsequently free to bind to its promoter site and initiate
gene expression.

It follows that if the synNotch receptor’s extracellular domain is
engineered to bind to the same ligands as CD16 and NKG2D, then
this synthetic pathway will be complementary to the endogenous path-
way, that is, the endogenous pathway will mediate the secretion of
GZMB and PRF1, while the synthetic pathway will both increase the
production of GZMB and PRF1 in addition to enhancing their secre-
tion. To determine if this approach is indeed beneficial, we constructed
a mathematical model of the synNotch receptor, based on mass action
kinetics, to simulate and predict if such a system necessarily leads to
the continuous secretion of GZMB and PRF1 over multiple rounds of
stimulation.

We implemented an in silico synNotch system to inhibit protein
activity. For inhibiting protein activity, the use of long non-coding
RNAs (lncRNAs) presents new avenues for impeding protein-to-pro-
tein interactions in signaling pathways.58–61 Recently, lncRNA pull-
down assays,61–63 when coupled with mass spectrometry, have been
utilized for identifying novel RNA molecules that can bind to and
sequester proteins from signaling. An advantage of protein-
sequestering lncRNAs is that, once discovered, they can be sequenced
and reverse-transcribed via polymerase chain reaction (PCR) to manu-
facture their complementary DNA strand (cDNA).64 The cDNA can
be subsequently integrated into a plasmid vector for expression under
the control of the synNotch receptor. In particular, we simulate inhibi-
tion of phosphatase activity.

We also apply the synNotch system to promote production of
cytolytic molecules. By incorporating a multi-cistronic plasmid
downstream of the synNotch receptor, which enables the expres-
sion of two or more genes, the production of GZMB and PRF1 can
be induced once the NK cell binds to a specific target ligand. This
added specificity allows the researcher to designate when protein
production should occur. Given that protein expression is a costly
function, this strategy limits cytolytic molecule production to sit-
uations where an NK cell interacts with a target cell. Thus, the NK
cell allocates its resources for cytolytic molecule production only
in cases where a target cell is nearby. In contrast to constitutive
over-expression techniques, this method allows the NK cell to pre-
serve its energy for other functions.
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To simplify our analysis, we assume that (1) a lncRNA binds
to, and sequesters, both phosphorylated and unphosphorylated
phosphatase at a rate of 1 lM�minð Þ�1 and (2) there are two
plasmids (at fixed amounts) controlling the expression of lncRNA
and the cytolytic molecules separately and both are under the con-
trol of the same transcription factor. For a detailed description of
the reactions and parameters that characterize the synNotch sig-
naling system, see Table II.

In Eq. (1), the ligand can be either Rituximab or MICA, to signal
complementarily with the CD16 or NKG2D pathway, respectively.
For Eq. (5), the production of RNA is nonlinear with respect to the
transcription factor (TF) and follows a Hill function with plasmid
affinity KM and Hill coefficient (n) equal to one. Initially, we assume
no cooperativity between the TF and the plasmid; however, we relax
this assumption and observe how the synNotch dynamics are affected
using various values of the Hill coefficient (see the Results). We
assume that the plasmid concentration (u) in Eq. (5) is at steady state
prior to receptor stimulation. Rates of protein production65 and RNA
degradation66,67 are from published data. We performed a sensitivity
analysis to determine the robustness of the model predictions with
respect to our assumptions on the kinetic rates.

Optimization of the synNotch system

We apply optimal control theory to determine how a synthetic
pathway, the synNotch pathway, can be used to promote maximal
secretion of cytolytic molecules. Such an optimization is necessary
because, while the synNotch pathway may lead to an increase in the
production of cytolytic molecules and the inhibition of protein activity,
it certainly imposes a burden on the cell to express this system.
Moreover, given that the synNotch and endogenous receptors will be
competing for the same ligand, it is not immediately clear how much
synNotch receptor is optimal for a given frequency of NK cell stimula-
tion. Therefore, we considered optimizing the synthetic pathway to
maximally secrete GZMB and PRF1 while using the absolute minimal
amount of exogenous material. In this context, the plasmids and
synNotch receptor can be considered as the controllers for the secre-
tion of cytolytic molecules. Thus, our objective is to find the optimal
values of the plasmids and synNotch receptor (controllers) such that
we maximally induce secretion (performance) at a minimal cost to the
cell (effort). Indeed, this is an optimization problem, which we can
solve using conventional methods;68–71 specifically, we minimized the
following stochastic objective function, given the model parameters h:

min
u;v;R0

(
1� qð Þ uþ v þ R0ð Þ

� q
XNr

r¼1
E GZMBr 60; hð Þ½ � þE PRF1r 60; hð Þ½ �

 !)
:

Indeed, we minimize the objective function using the sample average
approach (SAA).72–78 Here, u; v, and R0 represent the amount of
lncRNA-coding plasmid, cytolytic molecule-coding plasmid, and the
initial value of the synNotch receptor, respectively. The minimization

is subject to the constraints: 0 � u; v � 1000 copies� cell�1
� �

0 � R0 � 10 lMð Þ

(
. We

set the upper bound of the plasmid concentrations based on what is

defined as a high copy number.51,54,55 In addition, the upper bound on
the initial value of synNotch receptor is based on a study76 where
Chinese hamster ovary (CHO) cells were genetically modified to maxi-
mally produce human IgG; the values ranged from 0.3–20 lM, from
which we chose 10 lM. While we acknowledge the dissimilarities
between the CHO and NK cells and the synNotch receptor and
human IgG, it is, nevertheless, a strict upper bound that can constrain
our estimation. Additionally, we solved the above objective function
where the upper bound of R0 was either 20 lM or unbound and
observed no differences in the conclusion of the results. The results
show that the optimality of synNotch was more sensitive to the tran-
scriptional dynamics.

The second term on the right-hand side represents the cumula-
tive secretion of GZMB and PRF1 after 60min of receptor stimulation,
where r ¼ 1;…;Nr is the number of rounds of receptor stimulation
and the expectation is taken over the parameters h. Since GZMB and
PRF1 are non-negative, the second term is, in fact, a maximization
problem given that argmin �f ¼ argmax f for all non-negative f .
The constant q 2 0; 1ð Þ is a weight parameter that specifies how much
emphasis is placed on minimizing the first term (effort) vs maximizing
the second term (performance); in this study, we place an equal weight
on both (i.e., q ¼ 1

2).
To solve this optimization problem, we used the mesh-adaptive-

directed search (MADS) algorithm patternsearch in MATLAB. This is
a gradient-free method that attempts to locate a minimizer of the
objective function by evaluating many trial points nearby the initial
guess at each iteration. If some trial point near the initial guess induces
a lower function evaluation, then the iteration terminates and starts
again by implicitly creating a new mesh around this new incumbent
point. If the algorithm cannot find a feasible point that minimizes the
objective function, the mesh around the current incumbent point
becomes finer and finer until a predefined threshold is reached. For
our purposes, we set the mesh tolerance parameter to 10�6 at which
the algorithm terminates.

SUPPLEMENTARY MATERIAL

See the supplementary material for (File S1) computational
model files (.m files with model code and .mat files with parameter val-
ues); (File S2) list of model species, reactions, and parameters (pro-
vided as .xlsx file); and (File S3) supplementary figures (provided as
.pdf file).
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