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Abstract: Transforming growth factor-β (TGF-β) is a crucial pathogenic mediator of inflammatory
diseases. In tissue fibrosis, TGF-β regulates the pathogenic activity of infiltrated immunocytes and
promotes extracellular matrix production via de novo myofibroblast generation and kidney cell
activation. In cancer, TGF-β promotes cancer invasion and metastasis by enhancing the stemness
and epithelial mesenchymal transition of cancer cells. However, TGF-β is highly pleiotropic in
both tissue fibrosis and cancers, and thus, direct targeting of TGF-β may also block its protective
anti-inflammatory and tumor-suppressive effects, resulting in undesirable outcomes. Increasing
evidence suggests the involvement of long non-coding RNAs (lncRNAs) in TGF-β-driven tissue
fibrosis and cancer progression with a high cell-type and disease specificity, serving as an ideal
target for therapeutic development. In this review, the mechanism and translational potential of
TGF-β-associated lncRNAs in tissue fibrosis and cancer will be discussed.

Keywords: long non-coding RNA; fibrosis; transforming growth factor-β; cancer; Smad3; TGF-β

1. Introduction

Long non-coding RNAs (lncRNAs) are transcripts with lengths of over 200 nucleotides
that together with short microRNAs (miRNAs), small interfering RNAs (siRNAs), small
nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), and PIWI-interacting RNAs
(piRNAs) constitute a spectrum of non-coding RNA molecules (ncRNAs) characterized
by their gene-regulating functions [1–3]. Of these, lncRNAs and miRNAs are two major
classes of ncRNAs that participate in the pathogenesis of cancer and fibrotic diseases, as
dysregulation of lncRNAs and miRNAs interferes with the control of crucial biological
processes, including cell proliferation, apoptosis, and extracellular matrix homeostasis [4,5].
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Since their discovery with high-throughput RNA sequencing, various biological functions
of lncRNAs have been revealed, suggesting that these RNAs may be a missing piece
of a complex gene-regulatory mechanism that supports higher life forms and not junk
transcripts left over from evolution [6,7]. Emerging evidence indicates that lncRNAs are
important for fine-tuning transcription, contributing to the regulatory network of spatial
and temporal gene expression with high specificity. Thus, lncRNAs may represent an
optimal target for diagnosing and treating diseases.

Transforming growth factor-β (TGF-β) is a crucial cytokine that drives the pathogene-
sis and development of chronic inflammatory diseases, particularly chronic kidney disease
(CKD) and cancer [8–11]. TGF-β signaling is highly activated in experimental models
and in patient biopsies of CKD associated with enhanced production and deposition of
extracellular matrix (ECM) components like collagens and fibronectins, contributing to the
disruption of tissue structure and eventually leading to end-stage renal disease (ESRD)
with complete loss of function [12,13]. However, fibrotic response in a resolvable manner
is an essential mechanism for repairing initial tissue injury. Therapy directly targeting
TGF-β may lead to side effects in vital organs [14]. This scenario also applies to cancer in
that pleiotropic cytokine TGF-β initially suppresses proliferation and induces apoptosis
of cancer cells but promotes immunosuppression, angiogenesis, and cancer cell growth
via stromal cells in established tumors [15,16]. Therefore, identifying pathogenic down-
stream mediators of TGF-β is essential for developing a specific strategy that suppresses
the pathogenic activity while preserving the therapeutic and physiological activities of
TGF-β. TGF-β induced lncRNAs with high spatial and temporal specificity in the patho-
genesis of inflammatory disease, serving as an ideal target for developing targeted TGF-β
signaling therapy [1,17,18]. In this review, the mechanism of TGF-β-induced lncRNAs in
the pathogenesis of renal fibrosis and cancer will be discussed.

2. TGF-β1 Signaling Pathways

The TGF-β superfamily is a group of cytokines with shared properties in biosynthesis,
signal transduction, and other functions. It consists of four major subfamilies and a group
encompassing various divergent members. TGF-β1-3 are the three distinct isoforms; TGF-
β1 lacks a TATAA box in its promoter, in contrast to TGF-β2 and TGF-β3 with TATAA
boxes [19]. TGF-β1 is well recognized as a key driver of fibrosis and cancer progression,
while the roles of TGF-β2 and TGF-β3 are still largely unclear [20]. TGF-β1 can be directly
activated by reactive oxygen species, pH, and proteases in various contexts such as tissue
injury, stress, viral infection, carcinogenesis, tissue fibrosis, and inflammation [21,22].
TGF-β1 peptide is expressed and secreted as a nonactive complex with latent TGF-β
binding protein that is cleaved to release active TGF-β1 [17] for TGF-β1 receptor type II
binding, triggering downstream signaling via TGF-β1 receptor type I kinase (TβRI) [23].
Smad proteins are key players in the canonical pathway, while non-Smad signalings
are noncanonical pathways. Smad2/3 activated by TβRI kinase forms a heterotrimeric
complex with Smad4, then translocates into the nucleus to bind with target genes to initiate
transcription [8,17,24]. Simultaneously, TGF-β1 induces the expression of a Smad ubiquitin
regulatory factor (Smurf) that degrades Smad7, an inhibitory Smad that competes with
Smad3 and Smad2 for binding to TβRI to reinforce TGF-β1/Smad signaling [25].

3. TGF-β1 Signaling in Kidney Diseases

TGF-β1 is primarily involved in a dynamic pathophysiological process that leads to
renal fibrosis. It is significantly upregulated in the injured kidney as a primary step in
tissue scarring [8,26,27] and the progressive forms of kidney disease [28]. The latest studies
have revealed the diverse roles of TGF-β1, for instance as a major inducer of macrophage
polarization [23], myofibroblast differentiation, and accumulation in the fibrotic kidney,
which is primarily reduced by conditional deletion of TGFβ receptor 2 (Tgfbr2) [29–31].

TGF-β1 acts on both residential kidney cells (e.g., renal tubule epithelial cells, mesan-
gial cells, and podocytes) and infiltrated immune cells (macrophages and T cells) to promote
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fibrotic progression via inducing apoptosis, ECM protein synthesis and secretion, and trans-
differentiation for de novo myofibroblast generation, a specialized cell type that actively
secretes collagens for ECM deposition [30,32,33]. For instance, TGF-β1 induces podocytope-
nia via apoptosis of podocytes [34], resulting in the progression of glomerulosclerosis [35].
Furthermore, TGF-β1 directly triggers ECM production from renal fibroblasts, mesangial
cells, and podocytes [36–38] and further generates collagens producing myofibroblasts by
trans-differentiating tubular epithelial cells, endothelial cell, and bone marrow-derived
macrophages via epithelial-mesenchymal transition (EMT) [39], endothelial-mesenchymal
transition (EndoMT) [40], and macrophage–myofibroblast transition (MMT)[30,41] in the
fibrotic kidney. TGF-β1 in the diseased kidney activated these processes to accelerate
fibrotic progression dramatically.

Smad3 is the canonical downstream of TGF-β1 signaling, serving as a key media-
tor of kidney fibrosis by promoting myofibroblast accumulation and fibrogenic molecule
production in multiple experimental renal diseases, which is dramatically suppressed by
Smad3 deletion [42–45]. Increasing evidence suggests that macrophages are a key player
in the Smad3-dependent fibrogenic progression, particularly via the direct mechanism of
MMT [46,47]. In a chimeric study with Smad3−/− and Smad3+/+ GFP+ bone marrow trans-
planted into irradiated mice with unilateral ureteral obstruction (UUO), Smad3-deleted
macrophage (Smad3−/− GFP+ F4/80+) failed to undergo MMT to generate myofibroblasts
(GFP+ α-SMA+) for collagen-I deposition in the fibrotic kidney, which is in contrast to the
profound MMT activity of Smad3 wildtype macrophage (Smad3+/+ GFP+ F4/80+) [48].
These findings demonstrate that Smad3 is the key regulator of MMT [48]. However,
targeting Smad3 may cause dysregulation of the immune system, contributing to the devel-
opment of autoimmune disease [49]. Thus, Smad3 direct downstream targets responsible
for pathogenic processes including MMT were identified for developing an antifibrotic
strategy with minimal side effects. Single-cell RNA seq resolved the cell-cell transcriptome
of MMT, revealing proto-oncogene tyrosine-protein kinase Src- and neural transcription
factor Pou4f1-centric regulatory gene networks driving MMT in the injured kidney in vivo
and TGF-β1-induced bone marrow-derived macrophages in vitro [30,41]. Further molecu-
lar study reveals that Src and Pou4f1 are the direct targets of Smad3, where Src inhibition
and macrophage-specific Pou4f1 silencing mimicked the protective effect of Smad3−/−

in MMT suppression and associated myofibroblast generation and collagen-I production,
representing a precision strategy for targeting MMT [30,41]. Owing to lncRNA’s temporal
and spatial specificity, Smad3-dependent LncRNA-regulating MMT may be identified to
further enhance the precision of targeted MMT antifibrotic therapy.

3.1. TGF-β1-Associated lncRNAs in Kidney Diseases
3.1.1. lncRNAs in TGF-β1 Induced EMT

Studies in recent decades revealed that lncRNA is one of the pathogenic downstream
regulators of TGF-β1 signaling in inflammatory diseases [4,18] (Figure 1). The majority
of lncRNAs exert their biological effects by altering transcriptional or posttranscriptional
processes such as transcription factor recruitment, RNA maturation, protein synthesis,
and transport. These lncRNAs are also capable of changing chromatin structure via poly-
comb repressive complex 2 (PRC2) and repressing miRNAs via complementary binding
(sponging) [50,51]. For instance, lncRNAs and protein-coding genes were induced via
similar mechanisms that shared histone-modification profiles and exon/intron architecture,
but lncRNAs are predominantly localized in the nucleus and expressed at a lower level,
although with higher tissue specificity compared with coding genes [52]. Most novel
lncRNAs were discovered in primates with high-throughput RNA sequencing, reveal-
ing disease-associated TGF-β1-dependent lncRNAs that were significantly upregulated
in experimental disease conditions in vivo and in vitro [53] (Table 1). EMT is a crucial
pathogenic process in kidney fibrosis. Cell-cell connections between tubular epithelial cells
were progressively lost and ECM molecules were actively produced by EMT-derived cells
to transform nephrons into functionless scar tissue [39]. Numerous studies suggested that
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TGF-β1-dependent lncRNAs regulate EMT. LncRNAs have been proposed to modulate
gene expression indirectly as competing endogenous RNAs (ceRNAs), where they compete
with a network of mRNAs and circular RNAs (circRNAs) to bind to microRNAs [54].
LncRNAs acting as ceRNAs may represent significant modulation of the canonical TGF-β
pathway. PVT1 (plasmacytoma variant translocation 1) is the first lncRNA identified to
be associated with diabetic nephropathy, where single-nucleotide polymorphisms (SNPs)
significantly associated with end-stage renal disease (ESRD) of type 2 diabetes were located
in PVT1 [55]. Further study reveals that high glucose levels induced PVT1 to stimulate TGF-
β1, PAI-1, and FN1 expression, which is further amplified by PVT1-derived miR-1207-5p to
accelerate ECM accumulation in the diseased glomeruli of diabetic nephropathy (DN) [56].
lncRNA-MGC (megacluster) is a host of 40 miRNAs upregulated in the TGF-β1-treated
mesangial cells in vitro and the glomeruli of diabetic mice in vivo via transcription fac-
tor CHOP [57]. Inhibiting MGC by antisense oligos GapmeRs in the diabetic kidneys of
streptozotocin-injected mice effectively suppressed a cluster of miRNAs and profibrotic
gene expression (Col1a2, Col4a1), contributing to the dramatic reduction of PAS-positive
areas, glomerular basement membrane (GBM) thickness, and terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL)-positive cells [57]. These results suggest a
role of miRNAs in the regulation of MGC-driven DN progression.
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Figure 1. The roles of TGF-β1-dependent lncRNAs in renal disease progression. In the development
of chronic renal disease, TGF-β regulates renal inflammation and fibrosis via inducing lncRNAs,
which are potential therapeutic targets against CKD development.

In one study, lncRNA-HOTAIR (HOX transcript antisense RNA) was upregulated
in UUO kidneys in vivo and TGF-β1-stimulated HK-2 cells in vitro, associated with the
Notch signaling (JAG1, Notch1, NICD) and switching of EMT-related proteins, for example,
alpha-smooth muscle actin (α-SMA), fibronectin (FN), and E-cadherin [58]. Further analysis
shows that HOTAIR sponged miR-124 via a conserved binding site, thus preventing Notch
signaling suppression, demonstrated by how the silencing of HOTAIR prevented TGF-β1-
induced Notch signaling and EMT, but both were restored by further application of miR-124
inhibitor into the HOTAIR-silenced group [58]. Separately, lncRNA-MEG3 (maternally
expressed gene 3) is a protective lncRNA downregulated in TGF-β1-stimulated HK-2 cells,
where TGF-β1 suppressed miR-185 to induce CpGs methylation of MEG3 promoter via
DNA methyltransferases 1 (DNMT1) [59]. Overexpression of MEG3 largely suppressed
TGF-β1-induced apoptosis and EMT [59]. TCONS_00088786 was another pro-fibrotic
lncRNA upregulated in the UUO kidney, where TCONS_00088786 silencing effectively
suppressed collagen I and III, and profibrotic miR-132 expression [60].
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Table 1. The TGF-β-associated lncRNAs in renal diseases.

LncRNA Biological
Process Model Species Mechanism Year Ref.

lnc453774.1 anti-fibrosis HK-2 cells Human
associated with ceRNAs

targeting FBN1, IGF1R, KLF7
PPI networks

2021 [61]

ATB pro-inflammation HK-2 cells Human

promotes apoptosis, senescence,
inflammatory cytokines (TNF-α,
IL-1β, and IL-6), and adhesion

molecules (VCAM-1 and
sE-selectin) expression

2020 [62]

HOTAIR pro-fibrosis UUO,
TECs-HK-2 Human promotes EMT via Notch1 and

miR-124 2019 [58]

ENST00000453774.1 anti-fibrosis Renal biopsy, UUO,
TECs-HK-2 Human

promotes autophagy (Atg5/7)
and Nrf2-driven HO-1

expression and suppresses ECM
synthesis (Fn, Col-I)

2019 [63]

MEG3 anti-fibrosis HK-2 cells Human
suppresses EMT of HK2 cells

and is regulated by miR-
185/DNMT1/MEG3 pathway

2019 [59]

TCONS_00088786
pro-fibrosis UUO, NRK52E cells Rat promotes collagen I, III, and

miR-132 expression 2018 [60]

pro-fibrosis RNA-seq of rat UUO,
NRK52E cells

Rat promotes Col1a1 and
Col3a1 expression 2017 [64]

TCONS_01496394 promotes Ctgf and
Fn1 expression

ASncmtRNA-2 pro-fibrosis HRMC, DN Human, mouse promotes TGF-β and
Fn1 expression 2017 [65]

lnc-MGC pro-fibrosis STZ-DN, MMC, MCs Human, mouse
host of miRNA mega-clusters

regulating profibrotic
genes expression

2016 [57]

PVT1
pro-fibrotic MC, RPTEC,

podocytes Human
PVT1-derived

miR-1207-5p-induced TGF-β1,
PAI-1, and FN1

2013 [56]

pro-fibrotic ESRD-T2D GWAS Human 23 SNPs associated with ESRD 2007 [55]

ceRNAs: competing endogenous RNAs, FBN1: fibrillin-1, IGF1R: insulin-like growth factor 1 receptor,
KLF7: Kruppel-like factor 7, PPI: protein-protein interaction, ATB: activated by transforming growth factor-
β, TNF-α: tumor necrosis factor alpha, IL: interleukin, VCAM-1: vascular cell adhesion molecule 1, HOTAIR:
HOX transcript antisense RNA, UUO: unilateral ureteral obstruction, EMT: epithelial-mesenchymal transition,
ECM: extracellular matrix, Fn: fibronectin, Col: collagen, MEG3: maternally expressed gene 3, Ctgf: connec-
tive tissue growth factor, ASncmtRNA-2: antisense mitochondrial non-coding RNA-2, HRMC: human renal
mesangial cell, DN: diabetic nephropathy, MGC: megacluster, STZ: streptozotocin, MMC: mouse mesangial
cell, MCs: mesangial cells, PVT1: plasmacytoma variant translocation 1, RPTEC: human renal proximal tubule
epithelial cells, PAI-1: plasminogen activator inhibitor 1, ESRD: end-stage renal disease, T2D: type 2 diabetes,
GWAS: genome-wide association studies, SNPs: single nucleotide polymorphisms.

3.1.2. lncRNAs Associated with Reactive Oxygen Species

Reactive oxygen species (ROS) are another mechanism leading to fibrotic progression.
ROS that accumulate during acute kidney injury cause damage to tubular epithelial cells
and the release of pro-inflammatory cytokines, and renal inflammation and fibrosis develop
if oxidative stress persists [66–68]. Antioxidative and autophagy systems were cellular
defense mechanisms against oxidative stress by removing ROS and damaged organelles to
limit oxidative damage [69]. LncRNA-ATB was found to be highly expressed in TGF-β1-
induced HK-2 cells to promote inflammatory cytokines (TNF-α, IL-1β, and IL-6), adhesion
molecules (VCAM-1 and sE-selectin), and pro-senescence factor (p53/p21/p16) expres-
sion [62]. In contrast, protective lncRNA 74.1 (ENST00000453774.1) was identified from
downregulated differentially expressed genes (DEGs) of TGF-β1-treated HK-2 cells, where
it is largely suppressed in the fibrotic tissues compared with the normal control in human
renal biopsy [63]. Overexpression of LncRNA 74.1 activates Nrf2/HO-1 antioxidant and
Atg5/Atg7/LC3 autophagy pathways in TGF-β1-treated cells, contributing to the protec-
tive effect of LncRNA 74.1 overexpression against UUO-induced fibrosis in vivo [63]. ROS
are also involved in the pathogenesis of DN, causing mesangial matrix expansion and thick-
ening of the glomerular basement membrane. The lncRNA-ASncmtRNA-2 (antisense mito-



Non-Coding RNA 2022, 8, 36 6 of 23

chondrial non-coding RNA-2) was upregulated in DN of Lepr−/−(db/db) mice in vivo and
high glucose-stimulated mesangial cells in vitro, promoting TGF-β1 and fibronectin expres-
sion in a ROS-dependent mechanism, where shRNA-mediated ASncmtRNA-2-silencing
and ROS inhibition by NG-nitro-L-Arginine methylester (L-NAME) effectively suppressed
DN and high glucose-induced TGF-β1 and fibronectin expression [65]. Yuan et al. recently
identified lnc453774.1(ENST00000453774.1) in TGF-β1-stimulated human kidney epithelial
cells, revealing a lnc453774.1-centric fibrotic gene network, interacting with 14 competing
endogenous miRNAs to control 8 key functional genes for autophagy, oxidative stress, and
cell adhesion (FBN1, IGF1R, KLF7, etc.), suggesting a key regulatory role of lnc453774.1 [61].

3.2. Smad3-Dependent lncRNAs in Kidney Diseases

Smad3 plays an important role in TGF-β-driven renal inflammation and fibrosis, but
potential side effects in vital organs limit its therapeutic application [70]. Therefore, Lan’s
group further identify several Smad3 downstream profibrotic lncRNAs as therapeutic
targets against renal fibrosis via RNA sequencing [71] (Table 2). Smad3-WT-specific upreg-
ulated lncRNAs were extracted from the Smad3-dependent transcriptomes of both UUO
and anti-GBM kidneys, eventually revealing 21 potential fibrogenic lncRNAs suppressed
by Smad3 deletion [71]. The lncRNAs GAS5 [72], LRNA9884 [73], and lnc-TSI [74] are
Smad3 direct targets, regulated by its direct binding to the regulatory sequence of lncRNAs
as detected by ChIP-PCR assay, and its influence on the expression levels of lncRNAs
was further confirmed by luciferase reporter assay. Smad3 transcriptionally regulates
LRNA9884 in the advanced glycation end product-stimulated embryonic fibroblasts (MEFs)
and kidney of diabetic mice (db/db) via direct binding on LRNA9884 promoter, promoting
MCP-1-mediated renal inflammation via direct binding to its promoter [73]. Moreover,
LRNA9884 is also involved in the pathogenesis of acute kidney injury (AKI), which is
highly expressed in the tubular epithelial cells of AKI kidneys, promoting IL-1β-induced
inflammatory cytokine production (MCP-1, TNF-α, and IL-6) via transcriptional regula-
tion of macrophage migration inhibitory factor (MIF) to trigger MIF/NF-κB pathway [75].
Therefore, LRNA9884 inhibition might be a potential therapy for DN and AKI.

Table 2. The Smad3-associated lncRNAs in renal diseases.

LncRNA Biological
Process Model Species Mechanism Year Ref.

GAS5 anti-fibrosis Smad3-WT/KO UUO,
mTECs, MEFs Mouse

suppresses TGF-β1-induced
Col-I/Fn expression and

apoptosis, promotes
miR-142-5p expression

2021 [72]

LRNA9884 pro-inflammation
Cisplatin-AKI,

mTECs Mouse
promotes IL-1β-induced

p-p65,TNF-α, MCP-1, and IL-6,
binds directly to MIF promoter

2020 [75]

Smad3-WT/KO-DN,
mTECs, SV40 MES 13 Mouse

Smad3 dependently induced,
suppresses IL-1β, TNF-α, and
MCP-1, binds directly to the

promoter of MCP-1

2019 [73]

Ptprd-IR (np_4334) pro-inflammation mTECs, HEK293T,
UUO mice Human, mouse

Smad3 direct target; promotes
inflammatory response and

macrophage and
T-cell infiltration

2020 [76]

Erbb4-IR (np_5318) pro-fibrotic

Smad3-WT/KO-DN,
TECs, MCs Mouse

Smad3 deletion suppressed
Erbb4-IR and restored

miR-29b expression
2020 [77]

AKI,
PCS-400-012 cells Human, mouse

promotes I/R-induced renal cell
death, further enhances

TGF-β1/Smad3 signaling
2020 [78]
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Table 2. Cont.

LncRNA Biological
Process Model Species Mechanism Year Ref.

UUO, TEC, MEF Mouse

suppresses Smad7 via promoter
binding, enhances

Smad3-driven Col-I
α-SMA expression

2018 [79]

Smad3-WT/KO-DN,
TECs, MCs, MEF Mouse

enhances Smad3-driven
Col-I/IV expression, suppress

protective miR-29b via
3’UTR binding

2018 [80]

TSI anti-fibrosis

UUO, HK2, TECs,
MC, HL-7702, LX-2,

IMR-90, 16HBE,
HKC8 cells

Human, mouse inhibits Smad3 by direct binding
to MH2 domain 2018 [74]

Arid2-IR pro-inflammation UUO, TEC Mouse

Smad3 direct target; promote
fibrotic and inflammatory
response, macrophage and

T-cell infiltration

2015 [81]

RNA-seq pro-fibrotic
UUO /anti-GBM GN

of Smad3-
WT/KO mice

Mouse 21 TGF-β/Smad3
dependent lncRNAs 2014 [71]

GAS5: growth arrest-specific 5, UUO: unilateral ureteral obstruction, mTECs: mouse renal tubular epithelial cells,
MEFs: mouse embryonic fibroblasts, Col: collagen, Fn: fibronectin, AKI: acute kidney injury, DN: diabetic nephropa-
thy, IL: interleukin, p-p65: phosphorylated p65, TNF-α: tumor necrosis factor alpha, MIF: macrophage migration
inhibitory factor, Ptprd-IR: intron of protein tyrosine phosphatase receptor delta, Erbb4-IR: intron of Erb-B2 Re-
ceptor tyrosine kinase 4, I/R: ischemia-reperfusion, α-SMA: alpha-smooth muscle actin, UTR: untranslated region,
TSI: TGF-β/Smad3-interacting, anti-GBM GN: anti-glomerular basement membranous glomerulonephritis.

LncRNA Ptprd-IR (np_4334, intron of protein tyrosine phosphatase receptor delta),
is one of the 21 Smad3-WT-specific upregulated lncRNAs under fibrotic conditions [71].
Smad3 transcriptionally regulates Ptprd-IR expression in TGF-β1-stimulated mouse renal
tubular epithelial cells (mTECs) and UUO kidneys via a conserved Smad3 binding site on
Ptprd-IR’s promoter [76]. Interestingly, Ptprd-IR promotes TGF-β1- and IL-1β-mediated
activation of the NF-κB pathway, resulting in pro-inflammatory cytokine production and
renal inflammation in UUO kidneys in vivo and mTEC in vitro, while it has no effect on
TGF-β1-induced renal fibrosis [76].

LncRNA Erbb4-IR (intron of Erb-B2 receptor tyrosine kinase 4) is expressed in dia-
betic kidneys of db/db mice, and AGEs stimulated MEFs via a Smad3-dependent mech-
anism [71,77]. Erbb4-IR promotes fibrotic progression of a diabetic kidney in vivo, and
Col-I/IV expression in AGE-stimulated mouse mesangial cells and tubular epithelial cells
in vitro, via sponging renal protective miR-29b through direct binding to its 3’ untranslated
region (UTR) [80]. In a UUO kidney and its in vitro model, Smad3 regulates Erbb4-IR
to promote Col-I and α-SMA expression via suppressing Smad7, a suppressor of TGF-
β/Smad3 signaling by direct interaction with the 3’ UTR of Smad7. Therefore, renal
Erbb4-IR silencing effectively restored Smad7 expression against UUO-induced fibrotic
progression [80]. This also applied to the pathogenesis of ischemia-reperfusion-induced
AKI, where TGF-β/Smad3 signaling was further amplified by Erbb4-IR [78].

Smad3 transcriptionally regulates lncRNA Arid2-IR (np_28496 [81]) expression in
UUO kidneys and TGF-β-induced mTEC via direct binding on the promoter region of
Arid2-IR. Interestingly, Arid2-IR promotes inflammatory response instead of fibrosis, where
NF-κB-driven inflammatory cytokine expression was largely suppressed by Arid2-IR si-
lencing [81], confirming Arid2-IR as a Smad3-associated lncRNA that promotes renal
inflammation via crosstalk with the NF-κB pathway [81]. Moreover, LncRNA-TSI directly
binds to the MH2 domain of Smad3 to prevent its phosphorylation by TGF-β1 receptor
I, thus suppressing Smad3-dependent profibrotic signaling [74]. In addition, J. Sun et al.
also revealed 24 upregulated lncRNA candidates by transcriptome analysis of UUO- and
Sham-operated renal tissues in which 2 lncRNAs, TCONS_00088786 and TCONS_01496394,
contain 4 conserved Smad3 binding motifs and are detected in TGF-β1-stimulated renal
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tubular epithelial NRK-52E cells [64]. Their pathogenic role in renal fibrosis was con-
firmed by gene silencing, where TGF-β–induced expression of profibrotic molecules Col1a1
and Col3a1 was regulated by TCONS_00088786, while Ctgf and Fn1 were controlled by
TCONS_01496394 [64]. In addition, Smad3-dependent antifibrotic lncRNA GAS5 (growth
arrest-specific 5) was largely suppressed in a UUO kidney and TGF-β1-induced mTEC,
contributing to the Col-I and Fn expression. Further mechanistic study reveals that GAS5 in-
teracted with miR-142-5p, which binds to the 3′UTR of Smad3 to suppress TGF-β1-induced
apoptosis and Col-I/Fn expression of mTEC [72].

4. TGF-β1 Signaling in Tumor Progression

The role of TGF-β1 is also pleotropic in the tumor microenvironment (TME), simulta-
neously regulating both pro- and anticancer processes during tumor progression. TGF-β1
signaling activation has been associated with metastasis and poorer prognosis due to the
induction of EMT and drug resistance [82,83], but disruption of TGF-β1 signaling also
leads to poor prognosis and accelerated tumor progression as TGF-β1-induced cancer
cell apoptosis was relieved [84]. EMT is induced in epithelial tumor cells with prolonged
exposure to TGF-β1, phenotypic changes including the loss of cell-cell adhesion between
epithelial cancer cells to allow their migration and invasion, and the acquisition of pro-
tumoral cancer-associated fibroblast phenotype [22,85]. Thus, EMT is a critical step in
cancer metastasis and a critical contributor to patients’ poor prognosis. At the molecu-
lar level, EMT is featured by the downregulation of E-cadherin and upregulation of the
EMT markers N-cadherin, Vimentin, α-SMA, and EMT-associated transcription factor
SNAI1/2 and ZEB1 [86]. Moreover, TGF-β1 promotes drug resistance by upregulating
slow-cycling cancer stem cells (CSCs) that escape from chemotherapy and contribute to the
recurrence [83,87]. Interestingly, TGF-β also induces the apoptosis of cancer cells by inhibit-
ing the cell cycle via expression of cyclin-dependent kinases including p15Ink4b, p21Cip1,
and p57Kip2 and pro-apoptotic factor Bim [88,89]. Therefore, targeting the pathogenic
downstream effectors of TGF-β1 would selectively suppress its pro-tumoral effects without
interfering with the anticancer effect of TGF-β1; LncRNA with high tissue and disease
specificity represents an ideal TGF-β1-targeting strategy for anticancer therapy (Figure 2).
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Figure 2. Diverse mechanisms of TGF-β-dependent lncRNA in cancer progression. Pleiotropic TGF-β
regulates tumor progression via inducing pathogenic (red) and protective (blue), which modulate
cancer cell activities from the early to the advanced stages. Notably, stemness of cancer cells largely
contributes to treatment resistance and recurrence.
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4.1. TGF-β1-Dependent lncRNAs in Tumor Progression
4.1.1. lncRNAs in TGF-β1 Induced EMT

Studies in the past decade have identified a number of TGF-β1-induced lncRNAs
in different types of cancer (Table 3). Most TGF-β1-induced lncRNAs were found to be
involved in the regulation of EMT, drug resistance, apoptosis, and the proliferation of
cancer cells. TGF-β1 induces the LncRNA MALAT-1 (metastasis-associated lung adenocar-
cinoma transcript 1) in several types of cancer to promote EMT via different downstream
mechanisms [90–97]. In metastatic bladder cancer, MALAT1 directly interacts with suz12
(a component of histone-modifying complex-PRC2) to regulate the expression of EMT-
associated genes (E-/N-cadherin, fibronectin, MMP9), contributing to the migration and
metastasis of cancer cells in vitro and in vivo [95]. One study of aggressive renal cell
carcinoma further reveals that MALAT1 enhances the levels of Ezh2 and H3K27me3 on
E-cadherin promoter region, epigenetically suppressing E-cadherin to promote EMT [93].
In addition to EMT, MALAT1 promotes metastasis by enhancing angiogenic hepatocellular
carcinoma cells; VEGF-A expression and associated angiogenesis in vivo were regulated
by MALAT1 in a miR-140-dependent manner [90]. Moreover, MALAT1 also controls the
bioavailability of TGF-β1 in the extracellular space by activating the transcription of latent
TGF-β binding protein 3 (LTBP3) via recruiting Sp1 to its promoter [96].

Table 3. TGF-β associated lncRNAs in cancers.

LncRNA Cancer Type Model Species Mechanism Year Ref.

UCA1

Thyroid
carcinoma

Nthy-ori 3-1 and Hth74
cell, 8505C cell and
xenograft, thyroid

carcinoma biopsy, mouse
isolated CD8+ T cell

Human, mouse
promotes PD-L1-dependent
CD8 + T cell suppression via

miR-148a
2021 [98]

Hepatocellular
carcinoma

HepG2 and Huh7 cells,
HCC cohort Human associated with lower OS;

promote proliferation via HXK2 2018 [99]

Glioma
U87 and U251 cells,

glioma and
adjacent tissues

Human
promotes EMT (E-cad, Slug) and

stemness (Aldh1, Nanog) via
sponging miR-1 and miR-203a

2018 [100]

H19
Liver CCl4 induced tumor,

primary hepatocytes Human, mouse
promotes survival of

tumor-initiating cells in vitro and
tumorigenicity in vivo

2019 [101]

Breast, lung Hep3B, UMUC3 and
H358 cells Human, mouse promotes EMT via Slug 2014 [102]

LINC00273 Lung A549 cells and metastasis
model Human, mouse promotes ZEB-1-mediated EMT

via sponging miR200a-3p 2020 [103]

TUG1

Colorectal CRCs (LoVo,
HT-29, HCT116) Human, mouse promotes EMT via Twist1 in vitro

and metastasis in vivo 2020 [104]

Pancreatic BxPC3, PaTu8988, Sw1990 Human
promotes cell proliferation and

TGF-β/Smad3 induced EMT and
MMP2/9 expression

2017 [105]

MALAT-1

Hepatocellular
carcinoma

LO2,THP-1, HUVECs
cells, HepG2 and Huh-7

cells and xenograft
Human, mouse

promotes cancer cell
secretome-induced M2

polarization and VEGF-A
expression via suppressing

miR-140

2020 [90]

Clear cell renal
cell carcinoma

ccRCC biopsy, ACHN
cells and xenograft, 786-O,
SN12-PM6, HK-2, CAKI-1,

and OS RC-2 cells

Human, mouse promotes proliferation and
metastasis of cancer cell via ZEB2 2015 [91]

ccRCC biopsy, HK-2,
786-O, ACHN, Caki-1,

and Caki-2 cells
Human

associated with poorer overall
survival of ccRCC patients;

promotes proliferation, migration,
and invasion of cancer cells

2015 [92]

Renal cell
carcinoma

Human tissue biopsy,
786-O, A-498,

Caki-1/-2 HK-2
Human promotes EMT via Ezh2, β-catenin

nuclear localization, and miR-205 2015 [93]
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Table 3. Cont.

LncRNA Cancer Type Model Species Mechanism Year Ref.

Osteosarcoma SaOs, U-2 OS cells Human promotes cell growth, invasion,
and metastasis 2015 [94]

Bladder cancer
MB49 syngeneic tumor,
T24 cells and xenograft,

RT4 cells
Human

promotes TGF-β-induced EMT,
migration, and metastasis via

suz12
2014 [95]

Multiple
myeloma MSCs from MM patients Human

cooperates with Sp1 to regulate
LTBP3 expression via promoter

binding site
2014 [96]

Non-small cell
lung cancer NSCLC cohort Human significantly associated with

metastasis 2003 [97]

CASC11 Small cell
lung cancer

SCLC cohort, SHP-77 and
DMS79 cells Human

associated with TGF-β1
abundance and poorer OS;

promotes TGF-β1 and subsequent
CD133 expression

2019 [106]

HAND2-AS1 Non-small cell
lung cancer

NCI-H1581 and
NCI-H1993 cells, NSCLC

and adjacent tissues
Human

negatively associated with TGF-β1
abundance; suppresses

TGF-β1-induced migration,
invasion, and CD133 expression

2019 [107]

HAS2-AS1 Breast cancer
NMuMG, Py2T, 4 T1, and

EpRas cells, breast
cancer cohort

Mouse

associated with poorer OS;
promotes HAS2 expression,
CD44-dependent EMT, and

stemness (Sox2, Nanog)

2019 [108]

LINC00115 Glioblastoma
Public GBM cohort, U87,

LN229, LN18, T98G,
Patient-derived GSCs

Human

associated with poorer survival;
promotes ZEB1-EMT and

ZNF596/EZH2/STAT3-neuro-
like sphere formation via

sponging miR-200b/c

2019 [109]

MACC1-AS1 Gastric cancer AGS cell, MKN45 cell and
xenograft, GC cohort Human

promotes FAO-dependent
stemness and sponging of

miR-145-5p
2019 [110]

MIR155HG
laryngeal

squamous cell
carcinoma

TU686, AMC-HN-8, and
293T cells TU177 cell

and xenograft
Human, mouse

promotes EMT by suppressing
SOX10 via miR-155-5p

upregulation
2019 [111]

XIST
Non-small cell

lung cancer

NSCLC tissues, A549
and H226 Human

promotes EMT and is associated
with invasion and metastasis via
the miR-367/miR-141-ZEB2 axis

2018 [112]

A549, H358, H460, H1299,
16HBE and PC9,
NSCLC tissues

Human promotes EMT and proliferation
via sponging miR-137 2018 [113]

MMP2-2 Lung A549, HMVECs Human
associated with MMP-2

expression, promotes EMT and
vascular permeability

2018 [114]

PTAF Ovarian cancer
SKOV3, A2780 and
OVCAR-3, OvCa

tissue samples
Human

promotes EMT and invasion by
SNAI2 via sponging miR-25;

promotes growth and metastasis
of orthotopic tumor

2018 [115]

MEG8 Lung and
pancreatic cancer

A549, LC-2/ad, and
Panc1 cells Human

promotes EMT by suppressing
E-cadherin expression via

regulating miR-34a/-203 and
SNAI1/2

2018 [116]

MEG3

Lung cancer LC-2/ad, A549 cells Human

promotes EMT via transcriptional
regulation of CDH1 and miR-200

family by JARID2 and EZH2
recruitment to their

promoter region

2017 [117]

Renal cancer 786-0 and SN12 cells,
ccRcc samples Human promotes apoptosis via

mitochondrial pathway 2015 [118]

Breast cancer BT-549, MDA-MB-231,
HF cells Human

facilitates recruitment by encoding
interacting sequences for both

PRC2 and GA rich
regulatory element

2015 [119]
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Table 3. Cont.

LncRNA Cancer Type Model Species Mechanism Year Ref.

LINC00673 Non-small cell
lung cancer

A549 cell and xenograft,
H1975, H596, H520,
H1650, H1703 and

HEK-293T cells, TCGA
cohort

Human, mouse

associated with poorer survival;
promotes ZEB-1-EMT and
proliferation via sponging

miR-150-5p

2017 [120]

LINC01186 Non-small cell
lung cancer

NSCLC and adjacent
tissues, A549, H1299 and

293T cells
Human regulated by Smad3, inhibits EMT

and proliferation 2017 [121]

LET Urinary bladder
cancers

T24, 5637 cells and
xenografts J82, SW780,

BIU87, ScaBER and
UMUC3 cells, UBC tumor

tissues

Human, mouse
suppresses cancer cell stemness

for drug resistance via regulating
NF90/miR-145 axis

2017 [122]

LINC01133 Colorectal cancer
HT29, HCT8, LS513,

SW620, HCT116, and
HEK293FT, CRC cohort

Human
associated with increase OS;

suppresses EMT and metastasis
via SRSF6

2016 [123]

ATB

Colon

Colon cancer cohort,
NCM460, SW480,

HCT116, Caco2, Caco205,
SW620, and Lovo

Human
associated with metastasis and
poorer OS and DFS; promotes

EMT and proliferation
2016 [124]

Breast SKBR-3 cells, breast
cancer cohort Human promotes proliferation and EMT

via ZEB1, ceRNA of miR-200c 2015 [125]

Gastric

Gastric cancer cohort,
MKN1, MKN7, MKN28,
MKN45, MKN74, KATO

III, AGS, and NUGC4 cells

Human
associated with poorer survival,

TGF-β(+), ZEB1(+), and
miR-200c(−) expression

2015 [126]

Colorectal CRC cohort Human associated with metastasis and
lower DFS 2015 [127]

Liver
QSG-7701 cells,

MMC-7721 cells and
xenograft, HCC cohort

Human, mouse promotes EMT by stabilizing IL-11
mRNA via direct interaction 2014 [4]

Zeb2 NAT

Urinary bladder
cancer

T24, 5637 and J82 cells,
Human bladder

cancer specimens
Human promotes EMT via enhancing

ZEB2 expression 2015 [128]

Colon
adenocarcinoma

HT-29 M6, RWP-1,
SW-480, NMuMG and

LS-174T,colon
adenocarcinomas tissues

Human
promotes EMT via suppressing

E-cadherin by preventing splicing
of Zeb2 5-UTR

2008 [129]

ROR Hepatocellular
carcinoma

HepG2 and
PLC-PRF5 cells Human

promotes stemness and
suppresses apoptosis of HCC cells

to reduce chemosensitivity
2014 [130]

HOTAIR

Renal A-498 cells, OS-RC-2 cells
and xenografts Human, mouse

promotes cancer cell proliferation
by modulating binding between

EZH2/ H3K27me3 and
p53/21/16 genes

2014 [131]

Renal 786-O, ACHN, DU145,
HT-29, and HK-2 cells Human promotes cancer cell proliferation

and invasion via ZEB1 expression 2014 [132]

Lung cancer NSCLC cohort Human associated with poorer survival
and metastasis 2013 [133]

Breast and
Colon cancer

MCF10a, HCC1954,
DLD1, and HT29 cells Human, mouse

promotes TGF-β1-induced EMT
(E-Cad, Vim, Fn, β-Cat),

CD133+/CD44+ cancer stem
cell populations

2013 [134]

Breast cancer

MDA-MB-231 cells and
xenografts, SK-BR-3,

MCF-10A, MCF-7,
HCC1954, T47D, MDA
-MB-453, H16N2 cells

Human, mouse promotes invasion and metastasis
and associated genes via PRC2 2010 [135]
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Table 3. Cont.

LncRNA Cancer Type Model Species Mechanism Year Ref.

SPRY4-IT1

Thyroid cancer
thyroid cancer cohort,
SW579, K1, TPC-1 and

Nthy-ori 3–1 cells
Human

associated with poorer survival;
promotes growth and metastasis

via reinforcing
TGF-β/Smad3 activation

2018 [136]

Esophageal
squamous cell

carcinoma

Eca109, KYSE150,
Eca9706, EC18, EC1 and

HEEC cells
Human promotes EMT via Snail 2016 [137]

UCA1: urothelial cancer-associated 1, PD-L1: programmed death-ligand 1, HCC: hepatocellular carcinoma,
EMT: epithelial-mesenchymal transition, OS: overall survival, E-cad: E-cadherin, Aldh1: aldehyde dehydro-
genase 1, ZEB-1: zinc finger E-box binding homeobox 1, TUG1: taurine upregulated gene 1, CRC: colorectal
cancer, TGF-β: transforming growth factor-beta, MMP: metalloproteinase, MALAT-1: metastasis-associated lung
adenocarcinoma transcript 1, HUVEC: human umbilical vein endothelial cell, VEGF-A: vascular endothelial
growth factor A, ccRCC: clear cell renal cell carcinoma, suz12: suppressor of zeste 12, MSC: mesenchymal stem
cell, MM: multiple myeloma, NSCLC: non-small cell lung cancer, SCLC: small cell lung cancer, HAS2: hyaluro-
nan synthase 2, GBM: glioblastoma, GSC: glioma stem-like cell, GC: gastric cancer, FAO: fatty acid oxidation,
XIST: X-inactive specific transcript, HMVEC: human lung microvascular endothelial cell, OvCa: Ovarian Cancer,
HF: human fibroblast, TCGA: The Cancer Genome Atlas, LET: low expression in tumor, UBC: urinary bladder
cancer, ATB: activated by TGF-β, DFS: disease-free survival, ceRNA: competing endogenous RNA, HOTAIR:
HOX transcript antisense RNA, Vim: vimentin, FN: fibronectin, β-Cat: beta-catenin, HEEC: human esophageal
epithelial cell.

The lncRNA HOTAIR interacts with PRC2 complex to alter the chromatin state for
the metastatic phenotype of breast cancer cells [135]. HOTAIR promotes PRC2 occupancy
on the promoters of 854 genes detected by genome-wide promoter array assay on ChIP
enriched with EZH2, H3K27me3, and SUZ12 target genes in HOTAIR-overexpressing
cells [135]. Among the PRC2-associated genes, 35 genes are associated with the stemness
of cancer cells, contributing to the TGF-β1-induced upregulation of CD133+/CD44+ CSC
populations [134]. In renal carcinoma, HOTAIR regulates the proliferation and invasive-
ness of cancer cells by promoting H3K27me3 in cell cycle-related genes’ promoters (p53,
p21, and p16) via EZH2 and by sponging miR-141 to regulate ZEB1 expression [131,132].
Interestingly, lncRNA MEG3 brings the GA-rich distal regulatory element and PRC2 into
close proximity via two interacting sequences encoded to target the GA-rich region and
the PRC2 complex, thus modulating the transcription of the TGF-β pathway genes [119].
Further analysis of lung cancer cell lines reveals that MEG3 epigenetically suppressed
E-cadherin and miRNA-200s via recruitment of JARID2 and EZH2 and associated histone
H3 methylation [117]. The lncRNA ATB promotes the EMT of several types of cancer
cells [4,124,126,127] via sponging miR-200s, an EMT suppressor inhibiting ZEB1/2 expres-
sion via direct binding to their 3′UTR, which is detected between ATB and miR-200a/b/c in
an RNA immunoprecipitation (RIP) experiment [4,138,139]. The ATB/miR-200s/ZEB1/2
axis was demonstrated in the EMT of hepatocellular carcinoma and gastric and breast
cancer cells [4,125,126]. Moreover, in HCC cells, ATB also interacts with the IL-11 transcript
to extend its half-life, facilitating the synthesis and secretion of IL-11 into the supernatant
as the autocrine signal for STAT3 activation [4]. This IL-11/STAT3 axis is essential for the
metastatic colonization of the lung and liver [4].

LncRNAs regulate miRNAs targeting key activators of EMT to drive the phenotyping
changes in cancer cells. ZEB1/2 are transcriptional repressors of E-cadherin, which is es-
sential for the initiation of EMT [139,140]. ZEB1 is regulated by LINC00673 and LINC00273
via sponging miR-150-5p and miR-200a-3p, respectively, to reduce the binding of miRNAs
on the 3′UTR of ZEB1 [103,120]. Meanwhile, ZEB2 and Notch-1 are regulated by XIST via
miR-367/miR-141 and miR-137, respectively, in NSCLC cells, contributing to increased
pulmonary metastasis nodules in vivo and cell migration in vitro [113,141]. Interestingly,
the transcription of ZEB2 is also regulated by its natural antisense transcript ZEB2 NAT,
which overlaps the splicing site at 5′UTR of ZEB2 as a potential internal ribosome en-
try site (IRES) sequence to promote ZEB2 translation, accounting for the EMT of colon
adenocarcinomas and urinary bladder cancer cells [128,129]. In addition to NAT, the
long non-coding transcript of MMP2 (LncRNA-MMP2-2) is also induced by TGF-β1 and
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contained in exosomes to promote host gene MMP2 expression for enhancing cancer cell mi-
gratory ability [114]. Likewise, the lncRNA miR-155 host gene (MIR155HG) promotes EMT
via derived miR-155-5p, which targets the 3’ UTR of SOX10 to regulate its transcription.
Moreover, zinc finger protein SNAI1/2 is a powerful initiator of EMT induced by TGF-β1-
associated lncRNAs for suppressing E-cadherin expression [107,108,129]. In ovarian cancer
cells, SNAI2 expression is upregulated by PTAF via sponging miR-25, which suppresses
SNAI2 expression via direct binding to its 3′UTR [115]. In lung and pancreatic cancer cells,
SNAI1/2 is upregulated by MEG8 via suppressing miR-34a and miR-203 through histone
H3 methylation of their regulatory regions [116]. SNAI1 expression is also induced in
esophageal squamous carcinoma cells by lncRNA SPRY4-IT1, driving the EMT of thyroid
cancer cells and contributing to metastasis and poor patient prognosis [136,137]. Another
EMT-regulating transcription factor Twist is upregulated in colorectal and pancreatic cancer
cells by TGF-β1-induced lncRNA TUG1, suppressing E-cadherin expression to promote
the migration capacities of these cancer cells [104,105]. Serine/arginine-rich splicing factor
6 (SRSF6) is highly expressed in the cancer tissues of patients with metastatic tumors and is
induced by TGF-β1 via suppressing SRSF6 repressing lncRNA LINC01133 [123].

4.1.2. lncRNAs Associated with TGF-β1-Induced Drug Resistance

Cancer stem cells (CSCs) are a subpopulation with self-renewal and high tumorigenic
capacity that contribute to TGF-β1-induced drug resistance [83]. LncRNA UCA1 promotes
the stemness and proliferation of cancer cells for escaping from anticancer treatment,
where stemness regulators Nanog, ALDH1, and HXK2 expression were regulated by
the UCA1/miR-1, miR-203/Slug axis [99,100]. UCA1 also promotes PD-L1 expression
in anaplastic thyroid carcinoma cells to suppress CD8+ T-cell-mediated cell cytotoxicity
via sponging miR-148a to prevent its suppression on PD-L1 expression [98]. miRNA-145
plays a suppressive role in CSC formation, which is inhibited by LET and MACC1-AS1
against the gemcitabine resistance of bladder cancer cells and the 5-FU and oxaliplatin
resistance of gastric cancer cells, respectively [110,122,142]. In breast cancer cells, the
lncRNA Has2as mediates TGF-β-induced stemness via regulating a panel of stemness-
associated transcription factors (Pou5f1, Sox2, Nanog, Zfp42). In glioma cells, lncRNA
LINC00115 promotes the sphere formation of stem-like cancer cells in vitro and tumor
growth in vivo via sponging miR-200s to reduce their binding on the 5′UTR of ZNF596, a
downstream stemness regulator of glioma cells [109]. The lncRNAs CASC11 and HAND2-
AS1 were upregulated in small cell lung cancer (SCLC) and non-small cell lung cancer
cells (NSCLC), respectively, enhancing TGF-β1 expression to promote a CDD133+ CSC
population of SCLC cells [106,107]. In hepatocellular carcinoma cells, TGF-β1 induced the
enrichment of lincRNA-ROR (linc-ROR) in extracellular vesicles, promoting the formation
of spheroid CD133+ stem-like cells against sorafenib-, doxorubicin-, and camptothecin-
induced cancer cell death [130]. Another lncRNA, H19, promotes CSCs and their formation
of spheroid HCC cells, which is regulated by the noncanonical TGF-β/TGFBR2/SOX2 and
PI3K/AKT/miR-675 axis [101,102].

4.2. Smad3-Associated lncRNAs in Tumor Progression

Smad3 is a pathogenic mediator of TGF-β1 signaling in tumor progression [22,143–145].
lncRNAs are associated with the pathogenic action of Smad3 as shown in Table 4. The
lncRNA NORAD (LINC00657) directly interacts with importin β1 to facilitate the nuclear
localization of Smad3 and its associated complex for the transcription of EMT-related
genes [146]. The lncRNA EPR (epithelial cell program regulator) promotes epithelial trait
preservation and suppresses cancer cell proliferation via cyclin-dependent kinase inhibitor
1A (Cdkn1a) expression, which is regulated by EPR through enhancing the SMAD3-Cdkn1a
promoter binding and preventing KHSRP- (KH-type splicing regulatory protein) mediated
destabilization of Cdkn1a mRNA [147]. The LncRNAs TBILA [148], NKILA [141,149],
and HCP5 [150] were induced by TGF-β1 and transcriptionally regulated by Smad3 via
physical binding to its promoter; these lncRNAs then cross-talked with other signaling
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pathways including S100A7/JAB1 [148], NF-κB/Snail [149], NF-κB/MMP14 [141], and
miR-203/SNAI [150] to further activate EMT-related gene programs to complete changes
into metastatic phenotypes. Interestingly, Smad3 regulates the transcription of the lncRNA
MIR100HG and the derived miRNA miR-100/-125b, which form miR-100- and miR-125b-
centric regulatory networks of TGF-β response genes in PDAC cells to control the path-
ways associated with p53/apoptosis/tight junction and cell-cycle checkpoint induced by
TGF-β [151]. Smad7 inhibits the phosphorylation of Smad3 to prevent its transcription ac-
tivity [152]. The antisense strand of Smad7 upstream was transcripted into lncRNA-Smad7,
which specifically suppresses TGF-β-induced apoptosis of cancer cells, but TGF-β-induced
EMT was not affected [153]. Smad4 forms a complex with phosphorylated Smad3 for
nuclear localization and transcription. LncRNA LINP1 is suppressed by TGF-β in a Smad4-
dependent manner, responsible for epithelial phenotype maintenance via suppressing
EMT [154].

Table 4. Smad3 associated lncRNAs in cancers.

LncRNA Cancer Type Model Species Mechanism Year Ref.

HCP5 Lung AD

LUAD cohort and GEO
datasets; A549 (xenograft)
PC9, H1975, Calu3, HBE,

HEK293 and
HEK293T cells

Human, mouse

associated with poorer survival;
Smad3 direct target; promotes

proliferation, invasion, and EMT
(miR-203/SNAI)

2019 [150]

EPR Breast cancer
NMuMG, MDA-MB-231,
HEK-293 cells, 4T1 cell

and sygeneic tumor
Human, mouse

enhances Smad3 and CDKN1A
promoter binding to induce

CDKN1A for cell cycle arrest and
suppresses tumor growth

2019 [147]

LINP 1 NSCLC A549, H1299, H358,
H441 cells Human regulated by Smad4 to

suppress EMT 2018 [154]

TBILA NSCLC H226 cells, A549 cells and
xenografts, NSCLC tissues Human, mouse

promotes EMT, proliferation, and
motility of cancer cells by direct

binding to S100A7
2018 [148]

MIR100HG Pancreatic ductal
AD

BxPC-3, PANC-1,
COLO357, S2-007 and

S2-028 cells
Human, mouse

encodes miR-100, miR-125b to
inhibit p53, apoptosis, and

cell–cell junctions for
tumor growth

2018 [151]

NORAD Lung A549 Human
promotes EMT via enhancing

nuclear localization of activated
Smad3 (p-Smad3)

2018 [146]

NKILA

Esophageal
squamous cell

carcinoma

KYSE30, KYSE70,
KYSE150, KYSE180,
KYSE450, KYSE510,

Het-1a, ESCC biopsies

Human
Smad3 direct target; suppresses

invasion, metastasis, and
p-IκBα/p-p65/MMP14 signaling

2018 [141]

Non-small cell
lung cancer

H226, H292, H460, A549,
ANP973, H1299 and

BEAS-2B, NSCLC biopsies
Human

Smad3 direct target; suppresses
EMT, proliferation via
p-IκBα/p-p65, Snail

2017 [149]

Smad7 Breast cancer 4T1 cell, JygMC(A) cell
and xenograft Human, mouse

suppresses TGF-β-induced
apoptosis; promotes growth

of xenograft
2014 [153]

HCP5: histocompatibility leukocyte antigen complex P5, AD: adenocarcinoma, LUAD: lung adenocarcinoma,
GEO: Gene Expression Omnibus, EMT: epithelial-mesenchymal transition, EPR: epithelial cell program regu-
lator, CDKN1A: cyclin-dependent kinase inhibitor 1A, LINP 1: lncRNA in nonhomologous end joining path-
way 1, NSCLC: non-small cell lung cancer, TBILA: TGF-β-induced lncRNA, NKILA: NF-kappaB-interacting
lncRNA, ESCC: esophageal squamous cell carcinoma, p-IκBα: phosphorylated IκBα, p-p65: phosphorylated p65,
MMP: metalloproteinase.

5. Therapeutic Strategies Targeting lncRNAs

Due to the dual roles of TGF-β1 in physiological and pathological contexts, targeting
TGF-β1 is not an optimal therapeutic strategy as there is evidence that TGF-β1 deficiency
might impair host immunity and cause autoimmune diseases [26]. Although many studies
have demonstrated that blocking TGF-β1 protects against progressive renal fibrosis and
cancer, others have also highlighted the potential consequences of TGF-β1 inhibition, for
instance lethal inflammation observed in TGF-β1-deficient mice at 3 weeks of age [155].
Currently, TGF-β1 inhibitors have not been approved for cancer or fibrosis therapy due
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to reported cytotoxicity in recent clinical trials. A case in point is fresolimumab, a human
anti-TGF-β1 monoclonal antibody (mAb), was found to have no significant effect on pro-
teinuria, eGFR, or serum creatinine in focal and segmental glomerulosclerosis (FSGS) [156].
Furthermore, side effects including pustular rash, herpes zoster, bleeding, skin lesions, and
cancer have also been observed after anti-TGF-β therapies. Of note, fresolimumab was
found to be involved in the development of cutaneous lesions, and results showed that ker-
atoacanthomas were the most common cutaneous neoplasms observed as adverse events
in therapies targeting TGF-β [157]. Therefore, targeting the downstream effector of TGF-β
may represent a therapeutic strategy specifically against the pathogenic effects of TGF-β
without major disturbances to the immune system. Much insight has been gained into
how lncRNAs regulate processes such as fibrosis, tumorigenesis, and ECM accumulation,
where they can act via binding to Smad proteins, serving as miRNA sponges or interacting
with other signaling pathways. These lncRNAs can be used for diagnosis and targeted
when their pathogenic mechanisms are elucidated. Findings from preclinical studies have
shown the potential of targeting TGF-β-associated lncRNAs for treating kidney diseases
and cancers.

Smad3-dependent lncRNAs with therapeutic potential in renal diseases have been
identified in previous studies. Inhibition of Erbb4-IR alleviated renal fibrosis in fibrotic
UUO and DN models [79,80,158]. Inhibition of Arid2, LncRNA_5318, and LRNA9884 also
suppressed renal inflammation in UUO and diabetic models [73,75,81,159]. For antineoplas-
tic therapy, the modulation of lncRNAs not only regulates the TME but also participates in
combination with first-line therapy. Gemcitabine and cisplatin are standard therapy for
advanced/metastatic carcinoma, where LINC01714 dramatically enhanced the gemcitabine
sensitivity of cholangiocarcinoma cells [160]. LncRNA can be targeted by antisense-based
strategies or by shRNAs, consisting of siRNAs and modified antisense oligonucleotides
(ASOs) [161]. The ASO-based technologies including novel chemical modifications were
optimized with multiple preclinical trials, and the efficiency of cellular uptake and the
expression levels of targeted ncRNAs have largely improved [162]. The inhibition efficiency
and toxicity were major concerns of directly administering lncRNA-targeting agents via
tissue or tail vein injection, where toxicity is observed in a dose-dependent manner, i.e.,
off-target effects through nonspecific binding to similar nucleotide sequences [163–165].
However, repeated high dosages of siRNAs and gapmers are required for effective lncRNA
inhibition in vivo. Therefore, post-delivery monitoring and optimizing effective concentra-
tion of lncRNAs therapeutics are critical for translational application. Novel noninvasive
ultrasound microbubble-assisted (USMB) delivery largely reduced the concentrations of
lncRNA-targeting agents in nontargeted tissue [166], contributing to the safety and effec-
tiveness in preclinical studies [73,80,167]. Thus, USMB represents a realistic approach to
translating lncRNA-targeted therapeutics with added value in postdelivery monitoring
and assessment with its imaging function. Moreover, among the FDA- (Food and Drug
Administration) and EMA- (European Medicines Agency) approved ASO-based thera-
pies targeting mRNA expression in the liver, most were administered subcutaneously
(mipomersen, inotersen, givosiran, volanesorsen, inclisiran, and lumasiran) [5], suggesting
the potential for developing subcutaneously delivered lncRNA-targeted ASOs for kidney
fibrosis and cancer.

Collectively, lncRNA-targeted therapy might represent an effective strategy for fibrosis
and cancer due to its superior tissue and disease specificity. However, the translation of
lncRNA-targeted therapy was limited by the dose-dependent toxicities associated with
the delivery of lncRNA therapeutics and the lack of conservation among species; that is,
human lncRNAs may lack mouse homologs for preclinical study, and mouse lncRNAs
may lack human homologs for therapeutic development [168]. Therefore, an effective
approach in identifying homologues among species or using humanized mouse models
may facilitate the translation of experimental findings into preclinical settings for lncRNA-
based therapeutics development [169]. In addition, TGF-β-dependent lncRNAs are disease
specific, and in circulation, these lncRNAs are biomarkers of associated diseases. The FDA
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approved the use of the lncRNA PCA3 in urine as a biomarker for detecting prostate cancer
with high sensitivity [170]. As the circulating levels of the TGF-β-associated lncRNAs
UCA1 [171], H19 [172], and MALAT1 [173] are associated with disease progression, the
potential of these lncRNAs for use as biomarkers for diagnosis could be further explored.

6. Conclusions

The translational development of therapeutics targeting the TGF-β1 signaling pathway
has been largely hindered by its key regulatory roles in multiple physiological processes. In
recent decades, the dissection of TGF-β1 signaling pathways has revealed numerous precise
therapeutic targets, including lncRNAs for inflammatory diseases. Emerging evidence
shows that lncRNAs are specific pathogenic mediators of TGF-β1, regulating a particular
function of TGF-β1 during inflammatory disease progression that can be targeted to develop
effective gene-based therapies. With the advancement of RNA sequencing at single-cell
resolution and bioinformatic analysis, a more in-depth regulatory mechanism of lncRNAs
in inflammatory diseases will be discovered. Disease- and cell-type-specific lncRNAs
will be identified for the development of precision therapies against tissue inflammation
and cancers.
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