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Long-term synaptic plasticity is widely believed to underlie learning and memory
in the brain. Whether plasticity is primarily expressed pre- or postsynaptically has
been the subject of considerable debate for many decades. More recently, it is
generally agreed that the locus of plasticity depends on a number of factors, such
as developmental stage, induction protocol, and synapse type. Since presynaptic
expression alters not just the gain but also the short-term dynamics of a synapse,
whereas postsynaptic expression only modifies the gain, the locus has fundamental
implications for circuits dynamics and computations in the brain. It therefore remains
crucial for our understanding of neuronal circuits to know the locus of expression of
long-term plasticity. One classical method for elucidating whether plasticity is pre- or
postsynaptically expressed is based on analysis of the coefficient of variation (CV), which
serves as a measure of noise levels of synaptic neurotransmission. Here, we provide a
practical guide to using CV analysis for the purposes of exploring the locus of expression
of long-term plasticity, primarily aimed at beginners in the field. We provide relatively
simple intuitive background to an otherwise theoretically complex approach as well
as simple mathematical derivations for key parametric relationships. We list important
pitfalls of the method, accompanied by accessible computer simulations to better
illustrate the problems (downloadable from GitHub), and we provide straightforward
solutions for these issues.

Keywords: long-term plasticity, long-term potentiation, long-term depression, spike-timing-dependent plasticity,
paired recordings, monosynaptic connections, electrophysiology

INTRODUCTION

Synapses transform and transmit information between neurons in a dynamic manner. This
activity-dependent capacity to modify the strength of connections between neurons—termed
synaptic plasticity—is widely believed to underlie information storage (Bliss and Collingridge, 1993;
Malenka and Bear, 2004; Nabavi et al., 2014) as well as circuit remapping during development (Katz
and Shatz, 1996; Cline, 1998; Song and Abbott, 2001).

There has been considerable disagreement regarding the locus of expression of long-term
plasticity, that is whether the long-term modifications that underpin enduring changes in synaptic
efficacy are primarily located presynaptically—through alterations to neurotransmitter release
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properties—or postsynaptically—through modifications to
the number and/or responsiveness of postsynaptic receptors
(Lisman, 2003; MacDougall and Fine, 2014; Padamsey and
Emptage, 2014). Much of this earlier divisiveness stemmed from
the difficulty in analyzing central synapses (Bliss, 1990; Redman,
1990; Korn and Faber, 1991) using classical methods that were
developed in the context of the neuromuscular junction (Del
Castillo and Katz, 1954). For brevity, the structural and functional
differences between the neuromuscular junction and central
synapses are not stated here, as they have been reviewed in detail
before (Bliss, 1990; Redman, 1990; Sanes and Lichtman, 1999).

After decades of debate, it is now generally accepted
that either pre- or postsynaptic mechanisms can support the
expression of long-term plasticity (Sheng and Kim, 2002;
Malenka and Bear, 2004; Castillo, 2012). In fact, there is
also evidence for both pre- and postsynaptic involvement in
certain cases (Kullmann and Nicoll, 1992; Sjöström et al.,
2007; Loebel et al., 2013; Costa et al., 2015). Generally, the
locus of expression depends on factors such as animal age,
induction protocol, and synapse type (Isaac et al., 1997; Corlew
et al., 2007; Larsen and Sjöström, 2015). Indeed, there appears
to be tremendous diversity in the cellular mechanisms that
contribute to the expression of long-term potentiation (LTP)
and depression (LTD) at central synapses (Malenka and Bear,
2004; Sjöström et al., 2008; Castillo, 2012). This diversity likely
helps ensure the proper functioning of information storage
by way of redundancy (Malenka and Bear, 2004; Murphy
and Corbett, 2009). Despite this overwhelming diversity, the
functional consequences of the locus of expression are actually
quite poorly understood. Only a handful of recent theoretical
studies show computational benefits from pre- and postsynaptic
expression, such as memory savings and improved receptive field
discriminability (Costa et al., 2015, 2017).

The locus of expression may thus hold distinct implications for
neural coding and is therefore an important variable to resolve.
For example, by modifying release probability, presynaptic
expression not only affects the synaptic weight but also the
reliability (Otmakhov et al., 1993) and short-term synaptic
dynamics of neurotransmission (Markram and Tsodyks, 1996;
Sjöström et al., 2007). Synaptic dynamics, such as short-term
facilitation or depression, describe changes in synaptic strength
that occur over the course of milliseconds to minutes (Zucker
and Regehr, 2002; Abbott and Regehr, 2004; Fujisawa et al.,
2008; Regehr, 2012). Such changes of synaptic efficacy have
been proposed to underpin functionalities such as promotion of
stability (Seeholzer et al., 2019), adaptation (Chance et al., 1998),
decorrelation and burst detection (Lisman, 1997; Goldman et al.,
2002), dynamic gain control (Abbott et al., 1997), detection of
temporal coherence (Tsodyks and Markram, 1997), and working
memory (Fujisawa et al., 2008; Costa et al., 2017). Postsynaptic
expression, on the other hand, typically changes only the gain of
synaptic transmission (Pananceau et al., 1998; Selig et al., 1999)
(although see Poncer and Malinow, 2001), which in turn may
affect signal to noise (Otmakhov et al., 1993). Whether long-
term plasticity alters short-term plasticity thus has important
computational implications. The locus of plasticity expression
therefore matters.

The primary source of noise in synaptic transmission is
derived from the probabilistic nature of neurotransmitter release
(Otmakhov et al., 1993; Costa et al., 2017). As the coefficient
of variation (CV) serves as a handy metric of noise due to
synaptic release, changes in the CV due to e.g., the induction
of long-term plasticity therefore imply presynaptic expression of
plasticity (Bekkers and Stevens, 1990; Malinow and Tsien, 1990;
Faber and Korn, 1991; Costa et al., 2017). Using CV analysis, it
is therefore possible to resolve the locus of plasticity expression
at central synapses. Here we provide basic instructions for how to
carry out CV analysis, including tips and tricks for circumventing
shortcomings and avoiding pitfalls.

MATERIALS AND EQUIPMENT

Animals and Ethics Statement
The animal study was reviewed and approved by the Montreal
General Hospital Facility Animal Care Committee (The MGH
FACC), and adhered to the guidelines of the Canadian Council on
Animal Care (CCAC). P11-16 C57BL/6J mice were anesthetized
with isoflurane and sacrificed once the hind-limb withdrawal
reflex was lost. Every attempt was made to ensure minimum
discomfort to the animals.

Acute Slice Electrophysiology
After decapitation, the brain was removed and placed in ice-
cold (∼4◦C) artificial cerebrospinal fluid (ACSF), containing in
mM: 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 NaH2PO4, 2 CaCl2,
26 NaHCO3, and 25 glucose, bubbled with 95% O2/5% CO2.
Osmolarity of the ACSF was adjusted to 338 mOsm with glucose.
Oblique coronal 300-µm-thick acute brain slices were prepared
using a Campden Instruments 5000 mz−2 vibratome (Lafayette
Instrument, Lafayette, IN, United States). Brain slices were kept
at ∼33◦C in oxygenated ACSF for ∼15 min and then allowed
to cool at room temperature for at least one hour before we
started the recordings. We carried out experiments with ACSF
heated to 32–34◦C with a resistive inline heater (Scientifica Ltd.),
with temperature recorded and verified offline. Recordings were
truncated or not used if outside this range.

We patched neurons with pipettes (4–6 M�) pulled from
medium-wall capillaries using a P-1000 electrode puller (Sutter
Instruments, Novato, CA, United States), and filled with a
gluconate-based current-clamp solution containing (in mM): 5
KCl, 115 K-gluconate, 10 K-HEPES, 4 Mg-ATP, 0.3 Na-GTP,
10 Na2-phosphocreatine, adjusted to pH 7.2–7.4 with KOH.
For 2-photon microscopy (see below), internal solution was
supplemented with 10 µM Alexa Fluor 594 (Life Technologies,
Carlsbad, CA, United States). Osmolarity of internal solution
was adjusted to 310 mOsm with sucrose (Abrahamsson et al.,
2016; Lalanne et al., 2016). Whole-cell recordings were amplified
with BVC-700A amplifiers (Dagan Corporation, Minneapolis,
MN, United States) or Multiclamp 700B amplifiers (Molecular
Devices, San Jose, CA, United States). Voltage signals were
first filtered at 5 kHz and then digitized at 10 kHz using PCI-
6229 boards (National Instruments, Austin, TX, United States)
controlled by custom software (Sjöström et al., 2001) running in
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Igor Pro 8 (Wavemetrics Inc., Lake Oswego, OR, United States)
on a SuperLogics (Natick, MA, United States) computer.

Neurons were patched at 400× magnification with infrared
video Dodt contrast (built in-house from Thorlabs parts)
on a custom-modified SliceScope microscope (Scientifica Ltd.,
Uckfield, United Kingdom) (Abrahamsson et al., 2017). Primary
visual cortex was identified by the presence of layer 4. Layer-
5 (L5) pyramidal cells (PCs) were then targeted based on their
large somata, thick apical dendrites, and distinctive triangular
shape. We verified cell morphology using 2-photon microscopy
(Figures 2A,B, 5Dii).

To compensate for their sparse connectivity (Song et al., 2005;
Abrahamsson et al., 2017), connected L5 PC pairs were targeted
for recording by the quadruple whole-cell recording approach,
enabling us to test for 12 possible connections simultaneously
(Abrahamsson et al., 2016; Lalanne et al., 2016). Seals were
formed with four cells and then quickly and successively broken
through to avoid plasticity washout. To find connections, we
evoked in each cell five spikes at 30 Hz by current injections
(5 ms duration; 1.3 nA amplitude) every 20 s for 10–20
repetitions. Spikes in different cells were separated by >700 ms
to ensure that long-term plasticity was not accidentally induced
(Sjöström et al., 2003; Lalanne et al., 2016). If no EPSPs were
found, all four recordings were interrupted, and another four
nearby cells were patched with fresh pipettes. If at least one
sufficiently large connection was found (>∼0.3 mV, to ensure
good signal-to-noise ratio), the baseline of the experiment
was started. Perfusion temperature, input resistance, resting
membrane potential or holding current, and EPSP amplitude
were continuously monitored online and reassessed offline.
Series resistance was not compensated. Liquid junction potential
(10 mV) was not accounted for. As quality selection criteria,
we required that input resistance change less than 30% and
resting membrane potential less than 8 mV over the time
course of the experiment, and that baseline period was stable
as measured with a t-test of Pearson’s r (Sjöström et al., 2003,
2007; Buchanan et al., 2012; Abrahamsson et al., 2017). If these
measures were stable over a 15-min-long period, LTD or LTP
was elicited by repeated pre- and postsynaptic spike pairings.
The LTD induction consisted on five spikes evoked in both
pre- and postsynaptic cells at 20 Hz, repeated 15 times every
10 s, displaced by 1t = 25 ms pre- relative to postsynaptic
spike. Similarly, LTP induction consisted of five spikes evoked
in pre- and postsynaptic cells at 50 Hz, repeated 15 times
every 10 s, displaced by 1t = 10 ms. In the post-pairing period,
the spike bursts were continued up to 180 repetitions, for a
total of 75 min.

Two-Photon Laser-Scanning Microscopy
Two-photon laser-scanning microscopy was performed with an
imaging workstation custom-built from a SliceScope (Scientifica
Ltd., United Kingdom) microscope (Buchanan et al., 2012).
Detectors were Scientifica 2PIMS-2000 or custom-built based on
R3896 bialkali photomultipliers (Hamamatsu, Bridgewater, NJ,
United States) and scanners were 6215H 3-mm galvanometric
mirrors (Cambridge Technology, Bedford, MA, United States).
Two-photon excitation was achieved using a MaiTai HP

(Spectraphysics, Santa Clara, CA, United States) titanium-
sapphire laser tuned to 820 nm to excite Alexa Fluor 594
fluorescence. Lasers were gated with SH05/SC10 (Thorlabs)
shutters, and manually attenuated with a polarizing beam splitter
in combination with a half-lambda plate (Thorlabs GL10-
B and AHWP05M-980). Laser output was monitored with a
power meter (Newport 1916-R with 818-SL). Fluorescence was
collected with Semrock (FF665, FF01-680/SP-25) and Chroma
filters (t565lpxr, ET630/75m, ET525/50m). Laser-scanning Dodt
contrast was achieved by collecting the laser light after the spatial
filter with an amplified diode (Thorlabs PDA100A-EC). Imaging
data were acquired using customized variants of ScanImage
version 3.7 (Pologruto et al., 2003) running in MATLAB (The
MathWorks, Natick, MA, United States) via PCI-6110 boards
(National Instruments).

After each whole-cell recording, L5 PC morphologies were
acquired as stacks of 512-by-512-pixel slices (∼1.5 pixels/µm),
with each slice spaced by 1 µm. Each slice was an average of
3 red-channel frames acquired at 2 ms per line. Morphologies
shown (Figures 2A,B, 5Dii) are pseudo-colored maximum-
intensity projections of such 3D stacks compiled with ImageJ
(NIH, United States).

Statistics
Unless otherwise noted, results are reported as the
mean ± standard error of the mean (SEM). Significance
levels are denoted using asterisks (∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001). All pairwise comparisons were carried out using
a two-tailed Student’s t-test for equal means. If an equality
of variances F test gave p < 0.05, we employed the unequal
variances t-test. Wilcoxon–Mann–Whitney’s non-parametric
test was always used in parallel to the t-test, with similar outcome.
Statistical tests were performed in Igor Pro (Wavemetrics Inc.).

Simulations
Coefficient of variation analysis simulations were Monte-Carlo
based with 150 repetitions of individual long-term plasticity
experiments, carried out in Igor Pro. Each experiment was
simulated with a baseline period consisting of 60 responses and
a post-induction baseline of 240 responses. In real life, this
would correspond to a 10-min baseline with an inter-stimulus
interval of 10 s, followed by a 40-min-long post-pairing baseline,
which is representative of our actual experiments (Sjöström et al.,
2001, 2003; Abrahamsson et al., 2017). The number of release
sites was fixed to n = 5, which is representative of a typical L5
PC-to-PC monosynaptic connection (Markram et al., 1997). To
illustrate presynaptically expressed LTD (Sjöström et al., 2003,
2007), the probability of release was initially set to prelease =

0.55, and was reduced to prelease = 0.4 after the induction (which
are representative values, e.g., see Costa et al., 2015), while the
quantal amplitude was fixed at q = 0.35 mV.

Individual responses were simulated by drawing from a
binomial distribution. Noise due to background activity, the
amplifier, etc., was drawn from a zero-mean normal distribution
with a standard deviation of 0.1 mV, which is representative of
our experiments. Background noise was fixed and did not change
throughout the simulated experiments.
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For the outlier simulations, a single response in the baseline
period was systematically increased by adding 0.1e−3

× 2jmV,
where j = {0, . . . , 5}, of which three steps are shown in
Figures 4Ci–iii, with 150 simulation reruns for each step.
The z-score, also known as the standard score, was calculated
analytically from the binomial distribution parameters.

For the baseline trend simulations, a line with slope 0.6e−6
×

2jµV/min and zero mean was added to the simulated baseline
responses, where j = {0, . . . , 5}. As an illustration, three slopes
are shown in Figures 5Ci–iii, each with 150 simulation reruns.

A simplified, accessible version of the simulation code is
possible to download in Igor Procedure File format from GitHub:
https://github.com/pj-sjostrom/Sim_CV_analysis. This code was
created with a minimum number of user-modifiable parameters,
to be pedagogical and relatively easy to experiment with for
somebody who is new to the concept of CV analysis. This code
includes the LTD simulations shown in Figures 4, 5, but extends
to other scenarios, including LTP.

THE QUANTAL THEORY OF SYNAPTIC
RELEASE

Synaptic Release Is Quantized
Even in the absence of nervous impulses, single neurotransmitter-
containing vesicles spontaneously fuse with specialized release
sites in the presynaptic terminal, releasing their contents into
the synaptic cleft through exocytosis (Südhof, 2013). In result,
miniature postsynaptic potentials are generated, which represent
the postsynaptic response due to the neurotransmitter contained
in one vesicle (Fatt and Katz, 1952). This is the smallest unit of
neurotransmission, which is known as a “quantum” (Fatt and
Katz, 1952; Del Castillo and Katz, 1954). A synaptic bouton may
contain multiple active zones or release sites (Korn et al., 1987;
Korn and Faber, 1991; Maass and Zador, 1999), each of which
are capable of probabilistically secreting a single quantum of
neurotransmitter in response to an action potential (Isaacson and
Walmsley, 1995; Korn and Faber, 1998; Maass and Zador, 1999).
Although the release of multiple quanta has been documented
many times (Tong and Jahr, 1994; Auger et al., 1998; Oertner
et al., 2002; Lisman, 2009; Jensen et al., 2019), evoked responses
are typically assumed to be due to the linear summation of
single quanta released across multiple sites. Release at single
sites has thus long been thought to be uniquantal as opposed
to multiquantal (Lisman and Harris, 1993), even though recent
studies suggest otherwise (Jensen et al., 2019). This assumption
is central to the use of the binomial release model in CV analysis
(see below and Box 1).

Stochastic Release Is a Useful Source of
Noise
The stochastic properties of neurotransmitter release result in
fluctuations of the postsynaptic response (Otmakhov et al., 1993;
Neher and Sakaba, 2003; Saviane and Silver, 2007), which are
a prominent source of noise (Otmakhov et al., 1993; Neher
and Sakaba, 2003). In contrast to experimental noise, which

BOX 1 | Assumptions underlying the binomial release model.
Using the binomial distribution as a model of neurotransmitter release implies
that several key assumptions were made. Here, we highlight several of
these assumptions.

1. The release probability, p, of one quantal unit is uniform across all n
release sites (Johnson and Wernig, 1971; McLachlan, 1978; Redman,
1990; Faber and Korn, 1991; Quastel, 1997). There is some evidence
that this is in fact the case, for e.g., in the neocortex (Koester and
Johnston, 2005) and hippocampus (Branco et al., 2008) (although see
Walmsley et al., 1988).

2. The quantal size, q, is uniform across all n release sites and over a
given epoch (McLachlan, 1978; Korn et al., 1987; Redman, 1990;
Faber and Korn, 1991; Quastel, 1997). This requirement seems less
biologically plausible. For example, because synaptic contacts are
distributed in the dendritic arbor (Markram et al., 1997), dendritic cable
filtering (Sjöström et al., 2008; Maheux et al., 2016) would likely ensure
that the quantal size, q, varies from release site to release site.
Although there is some evidence for mechanisms normalizing synaptic
weights across the dendritic arbor (Magee, 2000; Magee and Cook,
2000; Häusser, 2001), there is also evidence to the contrary (Williams
and Stuart, 2002; Nevian et al., 2007).

3. Each of the n release sites may secrete at most one quantum per
action potential (Triller and Korn, 1982; Korn et al., 1987; Korn and
Faber, 1991; Quastel, 1997), which is known as the “one vesicle
hypothesis” (Korn and Faber, 1991; Quastel, 1997) (although see Tong
and Jahr, 1994; Auger et al., 1998; Oertner et al., 2002; Lisman, 2009;
Jensen et al., 2019). Considering that the neurotransmitter contents of
one quantum is likely sufficient to saturate postsynaptic receptors
(Redman, 1990; Lisman and Harris, 1993), it follows that—to satisfy
the requirement for linear summation—uniquantal release from central
synapses is thought to occur across multiple, spatially segregated
release sites (Lisman and Harris, 1993).

4. Release is independent across all n sites (Johnson and Wernig, 1971;
McLachlan, 1978; Quastel, 1997). This implies that there is no
interaction or correlation of release events across adjacent sites and
that released quanta summate linearly (Quastel, 1997).

5. The number of n release sites remains constant. This is probably true
for early LTP in many cases, although new synaptic contacts are likely
to be formed in late LTP (2–3 h after induction) (Geinisman et al., 1993;
Bolshakov et al., 1997; Korn and Faber, 1998; Loebel et al., 2013). But
n can also be affected by so-called “AMPAfication” of silent NMDA-only
synapses, which occurs in very early development (Isaac et al., 1995,
1996; Liao et al., 1995; Kerchner and Nicoll, 2008)

Whether or not all five points hold true for all synapses is thus not always
clear. As an example, the majority of Schaefer collateral inputs to hippocampal
CA1 PCs are thought to feature a single active zone, yet multi-vesicular
release has been suggested at these connections (Tong and Jahr, 1994;
Oertner et al., 2002; Jensen et al., 2019). Either multiple vesicles can be
released from one release site, or each active zone hosts multiple release
sites. Either way, both points 3 and 4 above may thus be violated, calling into
question the validity of the binomial release model. Having said that, the CV
analysis method may still work, even if e.g., a Poisson rather than a binomial
model of release should be employed (Korn and Faber, 1998), it is just that
the analytical treatment becomes considerably more complex if e.g.,
multivesicular release occurs. It is furthermore possible to test experimentally
for uni-vesicular versus multi-vesicular release (Saviane and Silver, 2007).

an investigator aims to reduce (Neher and Sakaba, 2003), the
pattern of response noise fluctuations recorded from a neuronal
connection provides insight into the molecular regulation of
synaptic transmission (Katz and Miledi, 1972; Neher and Sakaba,
2003). This response noise is examined as part of fluctuation
and quantal analysis to determine parameters governing synaptic
efficacy (Scheuss and Neher, 2001) and has long been used for
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determining the pre- versus postsynaptic site of modification
(Bekkers and Stevens, 1990; Bliss, 1990; Redman, 1990).

Another source of noise are membrane potential fluctuations
produced by e.g., release from other synapses. As opposed to the
experimental noise, this source of noise is intrinsic to the cell and
cannot be reduced. It is possible, however, to subtract both these
sources of background noise (see below) (Faber and Korn, 1991).

Quantal Theory
The quantal theory of neurotransmitter release and the notion of
a “quantum” was first described by Del Castillo and Katz (1954)
at the neuromuscular junction in order to describe parameters
influencing synaptic function and efficacy. Through their seminal
recordings of the amphibian neuromuscular junction, it was
observed that evoked potentials in a muscle fiber randomly
fluctuate between integer multiples of the spontaneous miniature
potential or basic quantal unit, q (Del Castillo and Katz, 1954;
Korn and Faber, 1991, 1998). This finding has since been
replicated at other synapse types (Redman and Walmsley, 1983;
Korn et al., 1987; Isaacson and Walmsley, 1995). Quantal analysis
relies on the pattern of fluctuations in evoked responses to
calculate presynaptic factors influencing neurotransmitter release
and postsynaptic factors influencing synaptic responsiveness,
thereby allowing the locus of plasticity expression to be
determined (Malinow and Tsien, 1990; Redman, 1990; Isaac et al.,
1996; Reid and Clements, 1999; Enoki et al., 2009).

Quantal Analysis Relies on Response
Fluctuations
In quantal statistical models of neurotransmitter release, the
mean synaptic response, µ, and its variance, σ2, depend on: (1)
the probability that one quantum will be released, p, from the
readily releasable pool of vesicles at the nerve terminal; (2) the
total number of active release sites, n; and (3) the amplitude of
the synaptic response produced by one quantum, q (Del Castillo
and Katz, 1954; Martin, 1966; Korn et al., 1986). If a binomial
distribution of responses is assumed (Box 1), the mean and
variance are the expected value, E [X], and the variance, Var [X],
of the response statistic X:

E [X] = µ = npq (1)

Var [X] = σ 2
= np

(
1− p

)
q2 (2)

In this view, the parameter n corresponds to the number of
active zones (Triller and Korn, 1982; Faber and Korn, 1991) or
independent functional release sites (Bekkers and Stevens, 1990;
Bliss, 1990; Korn and Faber, 1991). However, some debate still
remains surrounding this definition (Scheuss and Neher, 2001).
For example, n has alternatively been proposed to represent the
maximum number of quanta available for evoked release at a
given synapse (Redman, 1990; Isaacson and Walmsley, 1995),
i.e., the number of docked vesicles or the size of the readily
releasable pool (Kaeser and Regehr, 2017). Here, we are adhering
to the more common view that n corresponds to the number
of release sites.

Changes in p and q Reveal the Locus of
Expression
Presynaptic expression of plasticity is mediated by changes to the
properties of vesicular release, typically the probability of release,
p (Bekkers and Stevens, 1990; Chen and Regehr, 1997; Enoki
et al., 2009) (reviewed by Castillo, 2012). Classically, the number
of active release sites, n, was also considered to be a presynaptic
parameter (Bekkers and Stevens, 1990; Faber and Korn, 1991).
However, n has also been shown to be affected by postsynaptic
events such as the unsilencing of AMPA receptors, which occurs
more commonly in early development (Isaac et al., 1995, 1996;
Liao et al., 1995; Kerchner and Nicoll, 2008). Furthermore,
changes in n likely occur during the protein synthesis-dependent
phase of late LTP (Geinisman et al., 1993; Bolshakov et al., 1997;
Korn and Faber, 1998; Loebel et al., 2013). Here, we consider n
to be stable for the duration of our experiments (∼1 h; Box 1).
A presynaptic locus is then assumed to be mediated by changes
in p (Box 2).

Conversely, postsynaptic expression of plasticity is reflected
as a change in the regulation, turnover, or responsiveness of
postsynaptic receptors (Sheng and Kim, 2002; MacDougall and
Fine, 2014; Costa et al., 2017). The quantal size, q, depends upon
the number and properties of postsynaptic receptors activated by
a quantum as well as by the amount of transmitter contained
in one vesicle (Korn and Faber, 1998). Although q may thus in
principle be influenced by both pre- and postsynaptic factors,
the quantal size is commonly assumed to relate to postsynaptic
mechanisms. In other words, vesicle size and transmitter loading
are assumed to be both stereotyped and not plastic (Bliss, 1990;
Faber and Korn, 1991; Korn and Faber, 1998).

Statistical Models Are Used to Estimate
Synaptic Parameters
According to Del Castillo and Katz (1954) and many others
(Johnson and Wernig, 1971; McLachlan, 1978; Korn et al.,
1987; Bekkers and Stevens, 1990; Redman, 1990), the frequency
distribution of evoked postsynaptic responses due to probabilistic
presynaptic release follows binomial statistics. Poisson statistics
may be more realistic in certain cases, for example in low Ca2+-
to-Mg2+ conditions when p is very low (Del Castillo and Katz,
1954; Martin, 1966). However, binomial statistics are assumed in
the majority of studies of release.

The choice of release statistics comes with inherent
assumptions. When the binomial model is relied upon, it is
for example implicitly assumed that the release probability,
p, and quantal size, q, are uniform across all n release sites
(Box 1). These assumptions have the added benefit of simplifying
the relationships between the synaptic parameters n, p, and
q (McLachlan, 1978; Redman, 1990; Faber and Korn, 1991;
Korn and Faber, 1991; Costa et al., 2017). Another useful
consequence is the binomial model provides a simple theoretical
framework for identifying the locus of expression of long-
term plasticity by analysis of the CV (Box 2; Bekkers and
Stevens, 1990; Malinow and Tsien, 1990; Faber and Korn, 1991).
However, even if the constraints for the binomial release model
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BOX 2 | What is the point of using 1/CV2 instead of CV?
It may seem counterintuitive and unnecessarily cumbersome to plot 1/CV2,
normalized, versus the normalized amplitude in CV analysis. The rationale for
this practice stems from the fact that—if you assume a binomial model of
vesicular release—the probability of release, p, is proportional to 1/CV2. In
other words, you can to a first approximation read off the change in release
probability, p, from the y-axis when the CV analysis is represented in this
manner, which is a handy advantage.

To show that p ∝ 1/CV2, we combine the expected value E [X ] (Eq. 1) and
the variance Var [X ] of the binomial distribution (Eq. 2), and plug these into the
expression for the CV, which is the standard deviation over the mean.

CV =
σ

µ

E [X ] = npq = µ

Var [X ] = np (1− p)q2
= σ2

⇒ CV2
=

(
σ

µ

)2

=
np (1− p)

(np)2
=

1− p
np

Here, the scaling resulting from the quantal amplitude, q, vanishes. Solving for
p gives:

p =
1

nCV2
+ 1

So, if we assume that the number of release sites, n, does not change after
the induction of plasticity, it follows that:

∴ p ∝
1

CV2

Although the number of release sites, n, may change in late LTP by growth of
new synaptic connections (Geinisman et al., 1993; Bolshakov et al., 1997;
Korn and Faber, 1998; Loebel et al., 2013), it is reasonable to assume that n
does not change in early LTP (Box 1). This assumption, however, is a key
caveat of assuming the binomial distribution in CV analysis.

What is special about the diagonal?
One additional advantage of plotting 1/CV2 versus the mean is that the
diagonal line, 1y/1x = 1, can be used as a demarcation line to determine
whether expression is pre- or postsynaptic (Figure 1). To show this, we again
use the expressions for the expected value, E [X ], and the variance, Var [X ], of
the binomial distribution (Eqs 1 and 2), and combine these with the expression
for the CV. 

CV =
σ

µ

E [X ] = npq = µ

Var [X ] = np (1− p)q2
= σ2

⇒ CV2
=

(
σ

µ

)2

=
np (1− p)

(np)2
=

1− p
np

We solve for 1/CV2 and normalize with respect to the initial probability of
release, p0. We also define a presynaptic change in synaptic strength due to
altering the probability of release, cpre = p/p0, to explore what happens when
expression is only presynaptic. In this scenario, the y coordinate in the CV
analysis plot is:

1

CV2
norm
=

p
1− p

1− p0

p0
=

cpre (1− p0)

1− cprep0

Here, it is useful to note that this above expression does not depend on the
quantal amplitude, q. Similarly, the x coordinate, µnorm, in the CV analysis plot
is:

µnorm =
npq

n0p0q0
= cprecpost

where 
n = n0

cpre =
p
p0

cpost =
q
q0

(Continued)

BOX 2 | Continued
As before, we assume that the number of release sites, n, remains unaltered.
In the scenario where plasticity is solely presynaptic, cpost reduces to 1, so we
are left with µnorm = cpre. Here, the end coordinate becomes:(

cpre,
cpre (1− p0)

1− cprep0

)
Therefore, the slope of an imagined line from the starting coordinate (1,1) to
this end point is:

1y
1x
=

cpre(1−p0)
1−cprep0

− 1

cpre − 1
=

1
1− cprep0

Since both cpre and p0 are positive, non-zero numbers, it follows that
1y/1x > 1. Ergo, presynaptically expressed plasticity gives rise to data
points above the unitary diagonal line 1y/1x = 1 for LTP. In the case of LTD,
the scenario is the inverse; presynaptically expressed plasticity gives rise to
data points below the diagonal (Figure 1).

In the case where plasticity is solely postsynaptically expressed, we are left
with µnorm = cpost, so the final CV coordinate is now:(

cpost,
cpre (1− p0)

1− cprep0

)
=

(
cpost,

1− p0

1− p0

)
=
(
cpost,1

)
which implies a line parallel to the x-axis:

1y
1x
=

1− 1
cpost − 1

= 0

This finding is in effect trivial, since we already observed above that 1/CV2
norm

did not depend on the quantal amplitude, q. It is also consistent with the
above observation that p ∝ 1/CV2 since a line parallel to the x-axis implies
that the probability of release p remains unaltered as the mean µ is
increased or decreased.

In practice, since CV analysis relies on a finite number of data points in the
baseline and post-induction period, the slope of the line between the
coordinate (1, 1) and the end point will suffer from inaccuracy, due to the noise
inherent in the stochasticity of release. This means pre- and postsynaptically
expressed plasticity will not always give rise to data points on opposite sides
of the diagonal demarcation line (e.g., see Figures 4 and 5), especially for
experiments with baseline period with relatively few responses. Plasticity can
of course also be expressed as a mixture of pre- and postsynaptic
mechanisms (Sjöström et al., 2007; Costa et al., 2015), in which case data
points may consistently end up on or close to the diagonal line.

are not met, CV analysis may still work adequately (Box 1;
Faber and Korn, 1991).

PRINCIPLES OF CV ANALYSIS

The Basis for CV Analysis in Intuitive
Terms
In probability theory and statistics, the CV—which is defined as
the standard deviation σ divided by the mean µ—is a general
standardized measure of dispersion of a probability or frequency
distribution. The CV is, in other words, an experimentally useful
measure of noise, or normalized overall variability (Abdi, 2010).
For this reason, the CV is also known as the relative standard
deviation. Since the majority of the noise at a synapse is due to the
stochastic nature of quantal neurotransmitter release (Otmakhov
et al., 1993; Costa et al., 2017), changes in noise as indicated
by alterations in the CV are useful, since such changes suggest
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a presynaptic locus of that change, i.e., due to a change in p
(Bekkers and Stevens, 1990; Malinow and Tsien, 1990; Faber and
Korn, 1991). Conversely, an on-average alteration in synaptic
strength without a concomitant change in the CV would by the
same line of reasoning appear to be due to postsynaptic changes
in q, e.g., by regulation of AMPA receptors (Kauer et al., 1988;
Isaac et al., 1995; Liao et al., 1995; Barria et al., 1997; Nicoll and
Malenka, 1999). This latter observation, however, assumes that
vesicle neurotransmitter loading is fixed and stereotyped (Box 1).
In summary, an overall intuitive understanding of CV analysis
should thus be based on the observation that changes in synaptic
noise are primarily due to presynaptic expression. Conversely,
no changes in noise during long-term plasticity suggests that
expression is postsynaptic.

Binomial Release Statistics
In the context of neurotransmission, the CV is represented by
the standard deviation, σ, of a set of evoked synaptic responses
divided by their mean, µ, taken over a given time period (Bekkers
and Stevens, 1990; Malinow and Tsien, 1990; Faber and Korn,
1991; Costa et al., 2017):

CV =
σ

µ
(3)

To extract specific synaptic release parameters, it is useful to apply
a specific statistical model. A typical choice is the binomial release
model (Box 1), although it is important to understand that the
CV is a general measure of noise and that the CV is not in and of
itself linked to any particular statistical model.

In terms of binomial statistics, µ is the mean synaptic efficacy
given by the expected value of the random variable X, which is
E [X] = µ = npq (Eq. 1), and the standard deviation is derived

from the variance (Eq. 2) as σ =
√
Var [X] =

√
np
(
1− p

)
q2.

These mathematical relationships have been described many
times in greater detail in the previous literature, and we refer the
reader to these papers for a more in-depth treatment (Johnson
and Wernig, 1971; McLachlan, 1978; Faber and Korn, 1991).

Typically, 1/CV2 rather than CV is plotted in most studies
(Figure 1). This perhaps counterintuitive practice can be
explained by the fact that 1/CV2 is proportional to the probability
of release (Box 2). This practice is furthermore justified by the
observation that the unitary diagonal line in a 1/CV2 versus µ

plot (Figure 1) is a handy demarcation line between pre- and
postsynaptic expression (Box 2). In this context, it is worth noting
that the analytical expression for the CV is independent of the
quantal size, q (Bliss, 1990; Malinow and Tsien, 1990; Faber and
Korn, 1991; Korn and Faber, 1991; Costa et al., 2017), as derived
from Eqs 1–3:

CV =
(

σ

µ

)
=

√
1− p
np

This fact reflects the observation in the above intuitive
introduction to CV analysis that postsynaptic changes should not
affect synaptic noise levels. Again, this is because the variation at
individual release sites predominately stems from the stochastic
nature of neurotransmitter release (Otmakhov et al., 1993;

Costa et al., 2017) and the CV is a metric of noise (Abdi, 2010;
Costa et al., 2017).

To ensure that the CV reflects synaptic noise, characteristic of
stochastic release, it has been argued that it should be corrected
for the background noise (Faber and Korn, 1991):

σ2
= σ2

measured − σ2
background

In practice, we find that subtracting the background noise has
little or no impact on the locus of expression, as long as the
background noise is stable across recordings.

RESULTS

Expected Outcomes
Coefficient of variation analysis compares the relative change
of synaptic parameters before and after induction of plasticity
(Faber and Korn, 1991), which in practical terms means
we work with normalized values of CV and mean synaptic
strength, µ. In the standard CV analysis plot (Figure 1), the
normalized change in synaptic strength, µ(norm), thus indicates

FIGURE 1 | Locus of expression areas in the CV analysis plot. Normalized

1/CV2, a proxy for the probability of release p (Box 2), is plotted against the
normalized mean µ(norm), which is a measure of synaptic strength. The solid
horizontal line at y = 1 indicates 100% 1/CV2(norm), or no change in p. The
dotted vertical line at x = 1 delineates LTP (to the right) from LTD (to the left).
The dashed diagonal line with slope 1y/1x = 1 demarcates presynaptic from
postsynaptic expression of plasticity (Box 2). In other words, data that falls on
or close to the continuous horizontal line should be considered to be
postsynaptically expressed, whereas data that is above the dashed diagonal
for LTP, or below it for LTD, should be considered presynaptically expressed.
Mixtures of pre- and postsynaptic expression is also possible (Sjöström et al.,
2007), which results in data points scattered between the dashed diagonal
and the continuous horizontal lines.
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whether LTP or LTD took place, while appreciable changes in
1/CV2(norm) serve as a proxy for modifications in presynaptic
release (Bekkers and Stevens, 1990; Malinow and Tsien, 1990;
Faber and Korn, 1991; Costa et al., 2017), as outlined above.
Whether a change in 1/CV2(norm) is appreciable or not is
determined by comparing the outcome to the diagonal line
(Figure 1 and Box 2; Sjöström et al., 2003, 2007; Buchanan et al.,
2012; Abrahamsson et al., 2017).

If 1/CV2(norm) changes at least to the same degree as
the mean synaptic efficacy, µnorm, this supports a presynaptic
locus of plasticity expression (Figure 1). On the contrary, if
1/CV2(norm) remains relatively unaffected as the mean response
µ(norm) changes, this is evidence to support a postsynaptic locus
of plasticity expression (Figure 1; Korn and Faber, 1991; Reid and
Clements, 1999). Of course, forms of plasticity may involve both
pre- and postsynaptic modifications (Kullmann and Nicoll, 1992;
Sjöström et al., 2007; Loebel et al., 2013; Costa et al., 2015).

Overall, CV analysis provides an estimate of the locus of
plasticity expression without having to resolve precise changes
in n, p, or q (Costa et al., 2017). This is useful, because
quantifying changes in n, p, or q—known as quantal analysis—
is labor intensive and typically requires specific experimental
conditions (Larkman et al., 1992, 1997a,b). Another approach
for directly quantifying changes in n, p, or q, known as
variance-mean analysis, requires sequential changes in cation
composition (Clements and Silver, 2000; Clements, 2003).
However, CV analysis can readily be performed following

plasticity experiments without prior preparation (Figure 2A),
but this relative simplicity comes at the cost of not knowing
the precise changes in n, p, and q. The two sample paired-
recording experiments show how both LTP (Figure 2A) and
LTD (Figure 2B) at L5 PC-PC connections are presynaptically
expressed according to CV analysis (Figure 2C), in agreement
with our prior findings (Sjöström et al., 2003, 2007).

To be able to draw robust conclusions about the locus
of plasticity, it is essential to repeat across several long-term
plasticity experiments (Figure 3). Here, the statistical significance
of CV analysis can be assessed by comparing the angle ϕ of the
outcome relative to the diagonal (Figure 3C and Box 2), as we
have done before (Sjöström et al., 2003, 2007; Buchanan et al.,
2012; Abrahamsson et al., 2017).

In summary, CV analysis is a straightforward method for
estimating the locus of expression that can easily be implemented
following a standard plasticity experiment without the need for
any special preparations (Bekkers and Stevens, 1990; Malinow
and Tsien, 1990; Sjöström et al., 2003, 2007). It is important,
however, to be aware of the assumptions of the binomial
distribution (Box 1) as well as several experimental pitfalls
associated with CV analysis (see below).

Caveats of CV Analysis
Like any other method, CV analysis comes with caveats (Faber
and Korn, 1991; Korn and Faber, 1991; Costa et al., 2017). As
a consequence, CV analysis may be misleading in some cases

FIGURE 2 | Sample LTP and LTD experiments show presynaptic expression. (A) Sample spike-timing-dependent plasticity experiment with 1t = 10 ms temporal
difference between pre- and postsynaptic spike trains evoked at 50 Hz (Sjöström et al., 2001) for which LTP was evoked (EPSP before, dark blue: 0.58 ± 0.03 mV
versus after, light blue: 0.92 ± 0.02 mV, p < 0.001). Inset: average EPSP traces showed a change in paired-pulse ratio suggesting presynaptic expression (Sjöström
et al., 2007). Scale bars: 0.5 mV, 20 ms. Bottom: membrane potential and input resistance of pre- and postsynaptic PCs were stable (red and blue, respectively).
Right: flattened 2-photon imaging stack of Alexa-594-filled cells verified PC identity, with pre- and postsynaptic PCs denoted by 1 and 2, respectively. (B) Sample
spike-timing-dependent plasticity experiment with 1t = −25ms temporal difference between pre- and postsynaptic spike trains evoked at 20 Hz (Sjöström et al.,
2001, 2003) for which LTD was elicited (before: 2.0 ± 0.04 mV versus after: 1.0 ± 0.02 mV, p < 0.001. Inset: change in paired-pulse ratio suggested presynaptic
expression (Sjöström et al., 2003, 2007). Scale bars: 0.5 mV, 20 ms. Bottom: membrane potential and input resistance of pre- and postsynaptic PCs were stable
(red and blue, respectively). Right: pre- and postsynaptic PCs are indicated by 1 and 2, respectively. (C) Coefficient of variation analysis of LTP (right-side-up triangle)
and LTD experiments (upside-down triangle) in (A,B) both indicated a presynaptic locus of expression, in keeping with prior findings (Markram and Tsodyks, 1996;
Sjöström et al., 2003, 2007).

Frontiers in Synaptic Neuroscience | www.frontiersin.org 8 March 2020 | Volume 12 | Article 11

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-12-00011 March 25, 2020 Time: 17:9 # 9

Brock et al. A Guide to CV Analysis

FIGURE 3 | Neocortical LTD in L5 PCs is presynaptically expressed. (A) LTD
expression at 20 Hz with 1t = −25 ms like in Figure 2B was robust across
paired recordings, while no-induction controls were stable (LTD, blue triangles;
65 ± 5%, n = 9 versus control, gray circles; 97 ± 2%, n = 8, p < 0.001).
(B) Coefficient of variation analysis consistently suggested a presynaptic locus
of LTD expression, as all paired recordings gave rise to data points below the
diagonal (angle ϕ = 16◦ ± 2◦, n = 9, p < 0.001; see Figure 1).

(Faber and Korn, 1991). Here, we show how to anticipate and
circumvent some of the key shortcomings.

The Number of Activated Inputs Should Remain
Constant
A constant number of afferents should be activated within
and across trials (Redman, 1990; Faber and Korn, 1991;
Saviane and Silver, 2007). Although it is possible to conduct
CV analysis on synaptic responses evoked with extracellular
stimulation (Bekkers and Stevens, 1990; Malinow and Tsien,
1990), there is with extracellular stimulation the potential for
loss or gain of afferent fibers throughout the recording, which
may complicate CV analysis by requiring corrections (Faber
and Korn, 1991; Costa et al., 2017). This potential problem
is not specific to CV analysis per se, but also applies to
e.g., quantal analysis and variance-mean analysis. Furthermore,
recordings that show evidence of polysynaptic connectivity
violate the simple binomial model (McLachlan, 1978) and
therefore complicate the interpretation of quantal parameters
by precluding CV analysis (Faber and Korn, 1991; Korn
and Faber, 1991; Costa et al., 2017) and require statistical
adjustments (Faber and Korn, 1991; Reid and Clements,
1999).

Avoiding these problems can be achieved by interrogating
monosynaptic connections using paired recordings (Korn and
Faber, 1998; Saviane and Silver, 2007), which have been carried
out e.g., in neocortex (Figure 2; Sjöström et al., 2003, 2007;
Song et al., 2005; Lalanne et al., 2016) and hippocampus (Sayer
et al., 1989; Bekkers and Stevens, 1990; Malinow, 1991; Debanne
et al., 1999). However, identifying monosynaptic connections
is technically challenging and time consuming, especially for
synapse types with low connectivity rates. To alleviate this
problem, multiple whole-cell recordings may be employed
to increase the yield of identified monosynaptic connections
(Figures 2, 3), as previously described by us (Sjöström et al., 2003,
2007; Song et al., 2005; Lalanne et al., 2016) and others (Perin
et al., 2011; Perin and Markram, 2013; Peng et al., 2019).

It is also possible to circumvent the problem of accidental loss
or gain of afferent inputs by using more direct optical methods

such as 2-photon glutamate uncaging (Ellis-Davies, 2019;
Mitchell et al., 2019) or optical quantal analysis (Oertner
et al., 2002; Emptage et al., 2003; MacDougall and Fine, 2019;
Padamsey et al., 2019). However, even with paired recordings
or these more direct optical methods, it is still possible for the
number of release sites n to change (Box 1).

Outlier Synaptic Responses Distort CV Analysis
The variation at single synaptic contacts—primarily driven by
the stochastic and probabilistic nature of presynaptic release
(Otmakhov et al., 1993; Costa et al., 2017)—significantly
influences the overall observed variability i.e., fluctuations in
evoked potentials between neuronal connections in the brain
(Otmakhov et al., 1993; Crochet et al., 2005). This makes
the CV an excellent proxy for presynaptic changes in release
(Malinow and Tsien, 1990; Faber and Korn, 1991; Costa et al.,
2017). However, it also indicates that the CV is sensitive to the
variation and stability of synaptic parameters at each release
site and is therefore vulnerable to measurement error in the
presence of additional sources of variation (Faber and Korn, 1991;
Korn and Faber, 1991).

Extraneous sources of variation—for e.g., outliers due to
stimulus failure or electrical artifacts (Oleskevich et al., 2000) and
baseline trends and/or rundown (Reid and Clements, 1999)—
significantly affect the CV and may mask the true locus of
expression (Figures 4, 5). A straightforward solution to this
caveat is to carefully inspect experiments for outlier responses
and then individually exclude them from the CV analysis
(Figures 4D,E). However, careful selection criteria for removing
data points should be applied, otherwise bias will certainly be
introduced. For example, electrical artifacts or spurious spiking
(Figure 4D) are quite striking and useful selection criteria for
identifying outliers. In other words, outliers should not be
removed merely on the basis of being an outlier. Outliers should
only be removed based on evidence for a cause of it being an
outlier, such as spurious spiking (Figure 4D). Nevertheless, bias
is a concern so removal of data points should be rare.

Unstable Baseline Distorts CV Analysis
Recordings should be evaluated for any trends resulting from
rundown or instability, which may inflate estimates of the
standard deviation, σ (McLachlan, 1978; Scheuss and Neher,
2001). The effect of baseline drift is illustrated in Figure 5;
note that it is quite substantial even for relatively small
baseline trends. Such trends can arise from gradual changes
in cell input resistance, resting membrane potential, et cetera
(Figure 5Di). It is therefore important to continuously monitor
such parameters throughout long-term plasticity experiments
(Figures 2A,B).

One solution to this problem is to systematically eliminate
experiments above a threshold trend value, using a numerical
selection criterion based on e.g., linear regression or bisection of
the baseline period (Lalanne et al., 2016). By applying the same
selection criteria to condition as well as control experiments (e.g.,
Figure 3), bias is avoided. We advise against detrending data, as it
may introduce bias depending on the assumptions underlying the
detrending algorithm. It is possible, however, to remove a portion
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FIGURE 4 | A single outlier response may corrupt CV analysis. (A) Sample Monte-Carlo simulation of an individual presynaptically expressed LTD experiment in
which a single EPSP was shifted by 3.2 mV (z-score: 8.2) to produce a striking outlier (red dots). To enable comparison with experimental data (Figures 2, 3), the
number of EPSPs, interstimulus intervals, background noise levels, amount of LTD, initial EPSP amplitude, et cetera were set to representative values (see section
“Materials and Equipment”). (B) With a single outlier in the baseline period (z-score 8.2 as in A), CV analysis of LTD was on average biased to erroneously indicate
post-instead of presynaptic expression (arrow). In the case of LTP, CV analysis would instead be biased toward presynaptic expression (not shown, but possible to
simulate in downloadable code, see section “Materials and Equipment”), because the outlier would still artificially elevate the y-axis coordinate, just as for LTD.
However, if the outlier is in the post-induction period, the bias is in the opposite direction. (C) As in (A), 150 individual simulations (gray circles) were systematically
repeated for single outliers of increasing z-score values (0, 4.1, and 8.2 shown in Ci–iii). The increasing outlier values systematically biased outcome toward a
postsynaptic interpretation (summarized in B). (D) Sample LTD experiment (Di, 1t = −25ms and 20 Hz as in Figures 2, 3) for which a spurious presynaptic spike
(arrow, Dii, top red trace) resulted in undesirable short-term depression of subsequent EPSP (* in Dii, compare top to bottom blue sample traces), leading to an
outlier EPSP in the time course (* in Di). (E) By including the outlier (* in Di,ii), CV analysis was biased toward postsynaptic interpretation (arrow). Here, this pitfall was
avoided by removing the outlier (arrow starting point).

of the baseline period that is unstable (Figure 5D), especially if
doing so is supported by some independent selection criterion
such as change in input resistance, resting membrane potential,
or similar (Lalanne et al., 2016).

Gradual trends in variance or mean may also be addressed
by binning 1/CV2 over time (Scheuss and Neher, 2001). For
simplicity, we do not show this here, but we have relied on this
approach before (Sjöström et al., 2003).
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FIGURE 5 | Baseline trends may corrupt CV analysis. (A) Sample Monte-Carlo simulation of an individual presynaptically expressed LTD experiment that was
suffering from a strong baseline run-up (115.2 µV/min, see section “Materials and Equipment”). (B) With baseline trend (115.2 µV/min as in A), CV analysis was on
average biased to erroneously indicate post-instead of presynaptic expression (arrow). In the case of LTP, CV analysis would instead be biased toward presynaptic
expression (not shown, but possible to simulate in downloadable code, see section “Materials and Equipment”), because the baseline trend artificially elevates the
y-axis coordinate. However, if the baseline trend is in the post-induction period, the bias is in the opposite direction. (C) As in (A), 150 individual simulations (gray
circles) were systematically repeated for different baseline trends (0, 57.6, and 115.2 µV/min shown in Ci–iii). The increasing baseline trend systematically biased
outcome toward a postsynaptic interpretation (summarized in B). (D) Sample LTD experiment (Di, 1t = −25ms and 20 Hz as in Figures 2, 3) at PC1→ PC2
connection (Dii) that suffered from an increasing baseline trend, coincident with a significant change in postsynaptic input resistance (bottom: blue circles, asterisk).
Presynaptic input resistance and membrane potential are indicated in red. (E) By including the entire baseline period, CV analysis was biased toward postsynaptic
interpretation (arrow). Here, this pitfall was avoided by removing the unstable baseline period, which was further supported by a significant change in input resistance
(* in Di).
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Alternative Interpretations Are Possible
Even under the best of circumstances, the results of CV
analysis should be interpreted while considering the structure
and function of the synapse type under investigation
(Costa et al., 2017). To illustrate this point, consider NMDA-
receptor-dependent LTP in hippocampal area CA1. Some studies
have found that this form of plasticity is expressed as an increase
in the probability of release, p, suggesting a presynaptic locus
(Kullmann and Nicoll, 1992). However, this apparent change in
the release probability may in fact be achieved postsynaptically
by the conversion of silent to functional synapses (Glasgow et al.,
2019). In this scenario, postsynaptic insertion of AMPA receptors
may be erroneously interpreted as a presynaptic increase in
the probability of release (Isaac et al., 1995, 1996; Liao et al.,
1995; Kerchner and Nicoll, 2008). Synaptic unsilencing at the
neuromuscular junction, on the other hand, is a mechanistically
distinct presynaptic phenomenon (Wojtowicz et al., 1994).

In summary, alternative interpretations are often possible.
This pitfall, however, is not limited to CV analysis as such
but is a general caveat. Nevertheless, this means CV analysis
should generally be supported by other methods for localizing
the expression locus, such as analysis of failure rate (Malinow
and Tsien, 1990; Faber and Korn, 1991), paired-pulse ratio
(Figures 2A,B; Poncer and Malinow, 2001; Sjöström et al.,
2007; Abrahamsson et al., 2017), NMDA:AMPA ratio (Watt
et al., 2004; Sjöström et al., 2007), FM1-43 dye loading (Murthy
et al., 1997; Zakharenko et al., 2001), spontaneous release
(changes in frequency versus amplitude; Malgaroli and Tsien,
1992; Manabe et al., 1992; Abrahamsson et al., 2017), etc. Of
these approaches, evaluating the paired-pulse ratio is likely the
most straightforward option, as it can be readily performed
in parallel with CV analysis, provided the experiments were
carried out with paired pulses (Figures 2A,B). Since it relies
on two responses rather than one as for CV analysis, paired-
pulse ratio analysis is furthermore mathematically independent
from CV analysis. Failure-rate and CV analyses, however, are
essentially relying on the same theoretical framework and so are
not independent methods, which means the corroborative power
is limited. For further information regarding these techniques,
we invite the reader to the review by Glasgow et al. (2019) in
this research topic. Furthermore, modern techniques enable more
direct measurements of locus of expression, e.g., using 2-photon
glutamate uncaging (Ellis-Davies, 2019; Mitchell et al., 2019),
optical glutamate sensors (Jensen et al., 2017, 2019; Durst et al.,
2019), or optical quantal analysis (Oertner et al., 2002; Emptage
et al., 2003; MacDougall and Fine, 2019; Padamsey et al., 2019).
These more advanced methods may however require expensive
specialized equipment.

DISCUSSION

We have provided a practical guide to using CV analysis for the
purposes of investigating the locus of expression of long-term
plasticity. We primarily directed this guide to beginners in the
field, so we have tried to simplify key concepts to make them
more accessible. We acknowledge that others have delved into

the mathematical background with greater detail and rigor than
we have here (McLachlan, 1978; Faber and Korn, 1991; Quastel,
1997); this was intentional.

Binomial statistics have been successfully applied to the
study of quantal release at peripheral and central synapses for
decades (Johnson and Wernig, 1971; McLachlan, 1978; Korn
et al., 1987; Bekkers and Stevens, 1990; Malinow and Tsien,
1990). Nonetheless, the simplifying assumptions inherent in this
model may not hold in all cases. Therefore, if resolving precise
changes in synaptic parameters is required, it is possible to use
alternative albeit more laborious approaches to accommodate
potential non-uniformities in p and q (Silver et al., 1998; Reid
and Clements, 1999; Saviane and Silver, 2007). However, it
appears that the locus of plasticity expression can be reliably
and easily estimated with CV analysis—using alternative methods
such as analysis of NMDA:AMPA ratio, paired-pulse ratio, or
quantal analysis in parallel with CV analysis generally give
rise to the same interpretation (Reid and Clements, 1999;
Sjöström et al., 2007). Modern and more direct methods
based on optical activation or readout are especially attractive
alternatives (Jensen et al., 2017, 2019; Durst et al., 2019; Ellis-
Davies, 2019; MacDougall and Fine, 2019; Mitchell et al.,
2019; Padamsey et al., 2019), since they in many cases are
virtually free of assumptions. Still, all methods come with
their own advantages and caveats, e.g., analysis of paired-
pulse ratio may erroneously suggest presynaptic expression
for NMDA-only silent synapses that undergo postsynaptic
expression (Poncer and Malinow, 2001), glutamate uncaging
can necessarily only explore postsynaptic expression, and dyes
used with optical methods may distort plasticity mechanisms
by buffering calcium (MacDougall and Fine, 2019). It therefore
remains important to use several methods in parallel. Classical
CV analysis is one method that is both straightforward and
inexpensive to use.

Here, we have listed a set of key pitfalls and shortcomings
of the CV analysis method, which we have also illustrated in
the form of simple downloadable computer simulations (see
GitHub link in section “Materials and Equipment”). We have
also provided a number of straightforward solutions for the most
obvious issues. From this simple guide, it should be clear that
CV analysis is a powerful and easy-to-use method, especially
when combined with other approaches such as analysis of paired-
pulse ratio or NMDA:AMPA ratio (Watt et al., 2000, 2004;
Sjöström et al., 2007).
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