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Wound healing is a complex process involving a number of processes. Fetal regeneration has been shown to have a number of
differences compared to scar-forming healing. This review discusses the number of differences identified in fetal regeneration.
Understanding these differences may result in new therapeutic targets which may reduce or even prevent scarring in adult healing.

1. Introduction

Since the 1970s it has been well established that early human
fetuses can heal cutaneous wounds without the formation of
scar tissue [1]. This regeneration appears organ specific, as
in early fetuses which heal cutaneous wounds with perfect
regeneration other organs such as the gut heal with the
formation of scar tissue. Studies on the marsupial embryo,
Monodelphis domestica, have shown that fetal regeneration is
not due to the moist, sterile environment of the uterus [2].
Further, this regenerative phenotype is cell specific with fetal
skin transplanted subcutaneously onto adults continuing to
show a regenerative phenotype [3] whereas skin from the
adult transplanted onto the fetus demonstrate an adult-like
scarring phenotype [4].

Wound healing is an inherent response resulting in
restoration of tissue integrity. It is a complex process involv-
ing cell migration, proliferation, differentiation, apoptosis,
and the synthesis and remodelling of the extra cellular
matrix (ECM). A number of factors are involved in the
various stages of tissue repair including cell-cell interactions,
cell-matrix interactions, a number of different cell types,
and a large number of growth factors and cytokines. The
regenerative phenotype of the fetus has shown a difference
in a number of processes involved in wound healing, which
may be manipulated to reduce or even prevent scarring.

2. Inflammation

Fetal wound healing compared to adult wound healing has
been shown to have a different and reduced inflammatory
response [5, 6]. The levels of immune cells are reduced
which include macrophages, which are also less activated,
and, in addition, the presence of inflammatory cells is short
lived in fetal wound healing compared to the adult [5–7].
The reduced number of inflammatory cells also means
lower expression levels of some growth factors and cytokines
and for a shorter duration of time [8, 9]. However, studies
have shown that fetuses which are artificially stimulated
to produce an inflammatory response show an adult-like
response with scar formation [10, 11]. It appears that no
single immune cell is essential for wound healing [12–14]
with PU.1 knockout mice, which lack both macrophages and
neutrophils, showing improved rates of reepithelisation and
reduced scarring compared to their wild-type equivalents
[15].

The proinflammatory cytokines interleukin-6 (IL-6) and
interleukin-8 (IL-8) have been found to be decreased during
scarless fetal repair even when fetal fibroblasts are stimulated
with platelet-derived growth factor (PDGF) [16, 17]. IL-
10 is known to be a major regulator in suppressing the
inflammatory response, including IL-6 and IL-8, and IL-
10 also inhibits the migration of inflammatory cells to sites
of injury [18–22]. Knockout animals for IL-10 demonstrate
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scar formation in fetal wounds which would have healed
without a scar [23] while over expression of IL-10 in adult
wounds, using genetic manipulation, decreased the inflam-
matory response, decreased abnormal collagen deposition,
and restored normal architecture [24].

Cyclooxygenase-2 (COX-2), part of the arachidonic acid
cascade, is upregulated in response to an inflammatory
response such as an injury. COX-2 functions by producing
prostaglandins which control many aspects of inflammation.
A murine model of scarless healing demonstrated low levels
of COX-2 and prostaglandin-2 (PGE2), whereas the addition
of exogenous PGE2 induced scar formation in a fetal model
of wound healing [25]. Blocking the COX-2 enzyme in
adult wounds results in a fetal-like phenotype with reduced
scarring [26]. However, both fetal and adult fibroblasts
show expression of the PGE2 receptors [27]. PGE2 inhibited
fibroblast migration, in both the fetus and adult, through
the EP2/EP4-cAMP protein kinase A pathway, though fetal
fibroblasts appeared refractory requiring a higher concen-
tration to achieve the same effect. The inhibition of adult
fibroblast migration by PGE2 correlated with the disruption
of the actin cytoskeleton, and PGE2 also inhibited the
contraction of adult derived fibroblast populated collagen
lattices. PGE2 however, did not disrupt the actin cytoskeleton
in fetal-derived fibroblasts and further did not prevent
fetal fibroblast populated collagen lattices contraction [27],
possibly because fetal fibroblasts are thought to have a more
migratory phenotype [28].

3. Extra Cellular Matrix (ECM)

The ECM is known to play an important role in wound
healing as it can play a part in regulating growth factors and
cytokines and alter cell behaviour [29]. Fetal wounds have
been shown to have increased levels of glycosaminoglycans
such as hyaluronic acid (HA) and chondroitin sulfate,
which are long unbranched polysaccharides comprising of
repeating disaccharides found on the cell surface or in the
ECM. HA is found at higher levels and for a longer duration
in fetal wounds compared to adult wounds [30, 31]. This
increased expression is possibly due to the reduced activity
of hyaluronidase in the fetus [32] while fetal fibroblasts also
express higher levels of the hyaluronic acid receptor (CD44)
compared to adult fibroblasts [33]. Exogenous addition of
HA reduces the formation of scar tissue in adults [34, 35]
while reducing HA expression results in a phenotype more
akin to adult healing [36]. Increased levels of HA as identified
in the fetus promotes both the proliferation and migration
of a number of cell types [37]; HA-rich matrices can bind
growth factors and cytokines which can result in temporal
and spatial differences of these factors.

Glycoproteins, such as fibronectin, laminin, and tenascin
C, bind integrins, collagen, and proteoglycans and are inte-
gral components of the ECM playing a role in cell adherence
[38]. Fibronectin is involved in the migration of a number
of cells involved in wound healing including fibroblasts,
keratinocytes, and endothelial cells. The fibronectin family
consists of numerous splice variants in humans with a

number of variants being involved in both fetal development
and wound healing [39–41]. Fibronectin which is part of
the provisional matrix, shows similar temporal and spatial
expression in both fetal and adult sheep and mice [42, 43]
while another animal model (rabbit) suggests that fetal
wounds show an earlier expression of fibronectin [44].
Tenascin C has shown earlier deposition in fetal wounds
which may be associated with the rapid reepithelisation seen
in fetal wounds [42, 43]. The wounded fetal human skin has
shown increased expression of integrin subunits α2, α3, α6,
and β4, (laminin and collagen receptors) and neoexpression
of α5, αV, and β6 (fibronectin and tenascin C receptors), and
this may further explain the fetuses’ ability to reepithelise
wounds rapidly with a reduced presence of inflammatory
cells [45].

The proteoglycans decorin and fibromodulin which are
known to regulate collagen fibrillogenesis, growth factor
activity, and cellular proliferation have shown variation in
fetal wound healing. Decorin showed reduced expression in
fetal fibroblasts and fetal skin compared to adult fibroblasts
and skin [46]. While decorin was upregulated during adult
wound healing, it has also been shown that reduced or
delayed expression of decorin is associated with pathological
scarring in a number of adult models [47, 48]. Fibromod-
ulin, a further proteoglycan, showed an increase protein
expression in scarless wounds compared to scarring [49] and
similarly to decorin [50] is believed to alter the biological
activity of TGF-β.

Fetal and adult wounds show a number of differences in
collagen synthesis; these differences include speed of depo-
sition, variations in collagen ratios and quantity of collagen
itself [51–53]. Studies suggest that fetal fibroblasts not only
show increased collagen III expression, but the new collagen
is deposited in a fine reticular or basket weave pattern similar
to uninjured skin [54, 55]. However uninjured fetal skin
does show increased collagen III compared to collagen type I
[51–53]. Others have suggested that the collagen deposited
by fetuses is less mature with less cross-linking reducing
rigidity but not affecting tensile strength [52]. This reduced
collagen cross-linking may be due to a lower expression of
lysyl oxidase, which is known to play a role in both collagen
cross-linking and influences collagen architecture [56]. Chin
et al. [57] also showed that fetal fibroblasts show increased
expression of the collagen receptor DDR1 thought to be
important for both collagen expression and organization.
Though fetuses may show increased collagen production
they do not exhibit excessive collagen deposition, and this
may be through rapid turnover of the ECM components.

Fetal wounds show increased levels of the urokinase plas-
minogen activator and matrix metalloproteinases (MMPs)
while their inhibitors (PAI-1 and TIMPs) are reduced during
fetal wound healing [58–60]. Higher levels of MMPs result
in matrix degradation compared to matrix deposition. Dang
et al. [60] showed that scarless fetal healing expresses MMP-
1, MMP-9, and MMP-14 mRNA quicker and at higher levels
than fibrotic fetal wounds. While MMP-2 and TIMP1 and
TIMP 3 expression are not altered during scarless healing,
whereas fibrotic wounds show decreased levels of MMP2 but
with an increase in TIMPs [60].



ISRN Dermatology 3

4. Myofibroblasts and Contraction

Fetal studies have indicated that, unlike adult wound closure,
fetal wounds close through an actin cable which acts like a
purse string [61]. This cable assembles within minutes of
an injury and requires a GTPase, Rho, to reepithelise fetal
wounds [62]. Studies have shown that this cable may contain
myosin which acts in a zipper-like manner to close incisional
wounds in fetal skin [62], and paxillin mRNA expression
was upregulated and colocalised with actin in the fetus but
not in the adult [63]. Adult wound closure involves active
movements of connective tissue and epidermis. The adult
wound contracts to bring the two sides of the wound edges in
close proximity to allow the epidermis to migrate and cover
the exposed connective tissue [64].

Granulation tissue is thought to play a considerable
part in wound contraction in adult wound healing. Migrat-
ing adult fibroblasts are capable of generating some ten-
sile strength to start contraction, and the myofibroblast
(differentiated fibroblast expressing alpha smooth muscle
actin) is the main cell responsible for wound contraction.
Differentiation of fibroblasts to myofibroblasts requires a
combination of growth factors, mechanical cues, and the
presence of the EDA variant of fibronectin. The presence of
myofibroblasts in fetal wounds remains controversial with
a murine model showing no alpha smooth muscle actin
expression (except associated with blood vessels [65]), which
was further replicated in a fetal sheep model [66]. However,
Cass et al. [67] did detect myofibroblasts in fetal wound
healing but at earlier time points than in postnatal (scarring)
wound healing. Furthermore, others in an in vitro study
have shown that human fetal fibroblasts can differentiate into
myofibroblasts when stimulated with exogenous TGF-β1 but
again at earlier time points than postnatal fibroblasts [68].

5. Growth Factors

Growth factors and their receptors play a vital role in
wound healing with a number of aberrations associated with
abnormal wound healing such as pathological scarring. A
number of growth factors have shown different expression in
fetal or scarless wound healing compared to adult or scarring
wound healing (Table 1).

The TGF-β family is multifunctional and is believed to
be important in both tissue repair and scarring. The three
isoforms of TGF-β are synthesized as latent precursors which
require activation before they can exert their biological
activity through binding to their heteromeric receptor
complexes. Fetal wound healing has shown a rapid induction
of TGF-β1 mRNA in fetal repair but at lower levels and
with a more rapid clearance from the wound site compared
to adult wounds [8, 69, 70]. Interestingly TGF-β2 levels,
also considered to be profibrotic, was found to be lower in
adult-like repair compared to fetal repair [69]. The third
isoform, TGF-β3, is expressed in adult animal wound healing
[69, 71], though its expression is delayed [69], and with
lower levels [69] compared to fetal wounds and in in vitro
studies [68]. Studies have shown that blocking TGF-β1 and
TGF-β2 may reduce scar tissue formation [72, 73]. Whereas,

the addition of exogenous TGF-β3 has in some animal
models shown improved scar formation [74]. Further, early
human clinical studies showed that exogenous TGF-β3 if
administered prior to the injury could reduce scarring [75].
However, other studies using a different animal model have
shown that TGF-β3 had no effect in reducing scar tissue
formation [76]. There have been three TGF-β receptors
identified (TβRI, TβRII, and TβRIII), and variations in the
TGF-β receptor expressions have been identified in fetal
wound healing [8, 77].

Epidermal growth factor (EGF) is known to be involved
in wound healing and is thought to be mitogenic for a
number of cell types including fibroblasts and keratinocytes.
EGF mRNA showed decreased levels with increasing ges-
tational age (scarring) [78]. Surprisingly, the profibrotic
platelet-derived growth factor (PDGF) mRNA has also been
shown to be elevated in fetal skin compared to adult skin
[78] though similar to TGF-β it appears to have quicker
clearance in fetal wound healing [42]. However, fetal wounds
when treated with exogenous growth factors such as PDGF
showed a fibrotic response, with increased inflammation,
fibroblast recruitment and collagen deposition indicating
that fetal wound can respond in an adult manner in
response to exogenous PDGF [79]. The fibroblast growth
factors (FGF) stimulate proliferation and regulate migration
and differentiation in a number of target cells [80]. FGF
isoforms are regulated in a complex manner during fetal skin
development, and though most do not change expression
in scarless healing, both FGF7 and FGF10 were found to
be downregulated [60]. The FGF receptor 2 (FGFR2) was
down regulated in wound healing, in both scar-forming
and scarless healing, but the downregulation was earlier
and more sustained in scarless healing [60]. While bFGF
(otherwise known as FGF2) and the FGF receptor-1 (flg)
expressions were found to be higher in fetal skin than later
gestational skin [81].

The role that angiogenesis and in particular VEGF has in
scar formation remains unclear. Scarless fetal repair has not
only shown reduced angiogenesis in fetal wounds [82], but
growth factors associated with angiogenesis show reduced
or no expression [25, 70, 79]. Wilgus et al. showed in
a murine model that scarless fetal repair heals without
either increased VEGF or vascularity [9]. However, other
studies have suggested an increase in VEGF mRNA [83]. The
variation of the results may be due to the wound model
itself, that is, incisional versus excisional, different time and
methods used and variations in animal model.

Insulin-like growth factors (IGF) are known profibrotic
mitogens known to play a role in wound healing and fetal
development. Treating wounds with exogenous IGF-I has
been shown to accelerate wound healing through increased
collagen synthesis and its mitogenic effect on keratinocytes
and fibroblasts [84, 85]. IGF-1 has been implicated in fibrotic
conditions including pathological scars possibly due to the
increase in collagen synthesis [86, 87]. However, human fetal
fibroblasts showed a lower mitogenic response to IGF-I and
with a lower level of collagen synthesis compared to adult
fibroblasts [88].
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Table 1: Differences identified in fetal wound healing compared to adult wound healing.

Growth factor Role in wound healing Adult wound healing Fetal wound healing

EGF
Reepithelisation. Stimulate fibroblasts to
secrete collagen

Decreased levels mRNA with
increasing gestational age [78]

VEGF Angiogenesis Remains unclear [9, 82]

PDGF
Fibroplasia. Attract fibroblast to wound
area.

Elevated levels but quicker
clearance from wounds [77].
Exogenous addition causes
fibrosis [79]

FGF
Matrix deposition, reepithelisation,
angiogenesis, endothelial, keratinocyte,
and fibroblast migration

FGF7 and 10 downregulated [60]
FGF2 increased expression [81]

TGF-β1
Neutrophil infiltration, macrophage
infiltration, fibroplasia, matrix
deposition, scarring/fibrosis angiogenesis

Increased levels, long intracellular
signalling. Causes increase in own
gene expression

Low levels with increased
clearance [8, 70, 71].
No increase in own gene
expression [101]

TGF-β2
Neutrophil infiltration, macrophage
infiltration, fibroplasia, matrix
deposition, scarring/fibrosis angiogenesis

High levels mRNA but not
protein [69]

TGF-β3 As above but possibly antiscarring Delayed expression
Increased levels and quicker and
prolonged expression [69, 71]

IGF-I
Matrix deposition, scarring,
re-epithelisation

Higher proliferation increased
collagen synthesis

Lower proliferation and collagen
synthesis [88]

6. Cell Signalling, Transcription, and
Gene Expression

Fetal wound healing and fetal derived cells have indicated
that there may be differences in intracellular signalling
following the binding of the ligand (growth factor) to its
receptor. Martin et al. [70] demonstrated that TGF-β1 is
rapidly cleared from fetal scarless wounds. While others
have shown that the phosphorylation of receptors and some
intracellular signalling proteins differ between fetal and adult
fibroblasts [68, 88, 89]. The TGF-β1 signalling pathway has
been shown to be short lived in human fetal fibroblasts
after stimulation with exogenous TGF-β1 [68], while others
found no difference [90, 91]. Variation in results between the
studies may be explained through different species (human
and mouse) and different intracellular proteins studied
(Smad 2 or Smad 3 or Smad 2/3).

Wound healing requires the expression of a number of
genes which are regulated by a number of transcription
factors such as activator protein 1 (AP1) and the Hox genes.
The AP-1 transcription factor is a heterodimeric protein
composed of Fos, and Jun and activating transcription
factor protein family members. AP-1 induction has been
demonstrated in fetal mouse skin, while c-Fos protein was
demonstrated to be upregulated in the epidermis after
wounding [62, 92]. The increase in AP-1 and c-Fos is linked
to Rho, a GTPase, which is linked to the formation of
the actin cable in fetal wound closure. Others, have also
shown that AP-1 transcription factors were induced after
wounding in both scarless and scarring wounds. However, c-
fos and c-jun induction was transient in fetal skin while AP-1
expression persisted in scarring tissue [93].

Hox protein activity is essential during embryogenesis,
and the Hox genes have been implicated in limb regeneration
[94, 95]. A number of Hox genes are expressed in both
fetal and adult skin [96, 97], however, fetal wounds show
an increase in expression of a number of the Hox genes
during fetal scarless repair [98, 99].Though HoxB 13 was
downregulated in fetal scarless wounds [99] and in an adult
model, Hoxb13 knockout animals showed a more fetal-like
healing phenotype [100].

Gene expression in fetal fibroblasts shows difference gene
expression compared to adult fibroblasts in response to
TGF-β1 in a number of experimental models [101, 102].
Colwell et al. [102] using genomic microarray demonstrated
that fetal wounds have greater increased expression in the
fraction of genes immediately after injury. As time after
injury lengthened, adult wounds showed the fraction of
genes with increased expression increasing. By twenty four
hours after injury there were fewer genes with differential
expression between the fetus and adult, with the majority
having greater expression found in the adult wound [102].
Chen et al. [103] showed that there were fifty three genes
(0.93%) differentially expressed between early gestational
skin and late gestational skin from rats; 27 genes were
upregulated including FGF8, follistatin, and 26 genes were
downregulated including beta-catenin in fetal skin when
compared to adult skin [103].

7. Apoptosis, Proliferation, and Migration

A number of studies suggest that fetal fibroblasts proliferate
more rapidly than adult fibroblasts [104]. Though others
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Table 2: Summary of differences identified in fetal wound healing.

Fetal wound healing

Inflammation

Reduced immune cells, less activated,
lower levels of cytokines, and growth
factors due to reduced immune cells
[5–9]
Decreased expression IL-6 and IL-8
[16, 17]
Low levels of COX-2 and PGE2 [25]
Appear refractory to exogenous PGE2
[27]

ECM

Higher expression of hyaluronic acid
[30, 31]
Increased CD44 (hyaluronic acid
receptor) [33]
Tenascin C earlier deposition [42, 43]
Increased expression of some subunits
integrins [45]
Fibronectin isoforms
Reduced decorin [46]
Increase fibromodulin [49]
Collagen ratio remain unclear but fetal
wounds [51, 52]
Have reduced cross-linking but
increased expression DDR [57]
Increased levels of MMPs and
urokinase plasminogen activator
reduced TIMPs and PAI-1 [58, 59]

Wound closure
Myofibroblasts quick but transitory
appearance [67, 68]
Close wounds by actin cable [61, 62]

Growth factors See Table 1

Cell-signalling
transcription and
gene expression

Difference in phosphorylation in some
intracellular signalling pathways
[88, 89]
Transient increase in AP-1 [93]
Hox gene expression differ [98, 99]

Cell behaviour
Increased cleaved caspase 7
Increased cleaved PARP [106]

suggest that there is no difference between fetal epidermal
proliferation and adult proliferation [105].

Apoptosis is an important process in wound healing
occurring in inflammatory cells, myofibroblasts, and vas-
cular cells, for example. Studies have shown that scarless
healing shows no difference in total caspase 3 or any cleavage
of caspase 3 compared to scarring healing in a murine model.
However, scarless healing showed an increase in cleaved
caspase 7 after wounding while scar-forming wounds showed
no increase. Further scarless healing showed increased levels
of cleaved PARP while scar-forming healing only showed a
small amount of cleaved PARP [106].

8. Problems in Fetal Wound-Healing Research

A number of animal models have been used to study fetal
wound healing in vivo [54, 67, 107]. In addition a number
of in vitro studies have used human fetal-derived cells [68,
88, 90]. The use of different species in wound healing studies

can make direct comparisons either difficult or impossible
with different species demonstrating variations in a num-
ber of wound-healing processes. Further complications in
comparing fetal wound healing are in the wound itself with
some studies using incisional wounds, excisional wounds, or
even wounds created by burns. Interestingly the ability of
the fetus to heal excisional wounds with perfect regeneration
has been shown to be species dependent [54, 108]. Further
some fetal excisional wounds undergo contraction (sheep)
[108] while others show no contraction in closing excisional
wounds (rabbits and monkeys) [107, 108].

9. Conclusion

The precise mechanism of fetal regeneration remains unclear
with a number of differences identified between the fetal and
adult wound healing (Table 2). A number of potential anti-
scarring therapeutics have evolved from understanding fetal
regeneration though to date none have completely prevented
scar formation. Recent studies have further suggested a role
for fetal cells in difficult-to-heal wounds [109] through their
promoting effect on adhesion, proliferation, and migration
of existing cells.

Further work is required to understand how fetal cells
promote regeneration and wound healing and if this can
be promoted in adult wound repair. Work will also need
to study the role that stem cells play in both adult and
fetal wound repair. However, understanding fetal wound
healing and regeneration will impact adult repair in the
future and may lead to the reduction or even prevention in
the formation of scar tissue in a number of organs.

Abbreviations

AP-1: Activator protein 1
COX-2: Cyclooxygenase-2
ECM: Extra cellular matrix
EGF: Epidermal growth factor
HA: Hyaluronic acid
IL: Interleukin
MMP: Matrix metalloproteinase
PDGF: Platelet derived growth factor
PGE2: Prostaglandin 2
TGF-β: Transforming growth factor-beta.
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