
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14924  | https://doi.org/10.1038/s41598-022-19213-5

www.nature.com/scientificreports

Cognitive load affects early 
processes involved in mentalizing 
robot behaviour
Nicolas Spatola1,2, Serena Marchesi1 & Agnieszka Wykowska1*

How individuals interpret robots’ actions is a timely question in the context of the general approach 
to increase robot’s presence in human social environment in the decades to come. Facing robots, 
people might have a tendency to explain their actions in mentalistic terms, granting them intentions. 
However, how default or controllable this process is still under debate. In four experiments, we 
asked participants to choose between mentalistic (intentional) and mechanistic (non-intentional) 
descriptions to describe depicted actions of a robot in various scenarios. Our results show the primacy 
of mentalistic descriptions that are processed faster than mechanistic ones (experiment 1). This 
effect was even stronger under high vs low cognitive load when people had to decide between the 
two alternatives (experiment 2). Interestingly, while there was no effect of cognitive load at the 
later stages of the processing arguing for controllability (experiment 3), imposing cognitive load on 
participants at an early stage of observation resulted in a faster attribution of mentalistic properties to 
the robot (experiment 4). We discuss these results in the context of the idea that social cognition is a 
default system.

The future of human–robot interactions (HRI) will be framed by the way individuals will represent robots and 
robots’ actions. Facing a robot (especially if it has human-like appearance), humans tend to attribute to it human 
characteristics such as the capacity to reason or to have intentions1. However, the influence of the context, 
especially the modulation of the cognitive resources allocated, on this process remains poorly understood. In 
the present study, we investigated the tendency to attribute intentionality to robots’ behaviours in the context 
of cognitive control.

According to Dennett2,3, whenever individuals try to predict a physical phenomenon such as the trajectory of 
a kicked ball they rely on rules determined by physics. This strategy is what Dennett defines as physical stance. At 
a more abstract level, when systems are more complex, individuals would rely on how the system was designed to 
function, in doing so, they are adopting the design stance. However, more complex phenomena, such as human 
behaviour, are difficult to be efficiently predicted or explained using physical or design principles. To explain 
others’ behaviour, people tend to adopt the intentional stance. The intentional stance relies on mentalizing, and 
in particular on the attribution of mental states such as intentions, in order to explain behaviour. In a nutshell, 
Dennett’s philosophical proposal assumes a distinction between how physical phenomena are explained and 
how social phenomena are explained (Dennett4). This philosophical framework echoes in the cognitive sys-
tems theory that posits the existence of two potentially exclusive cognition systems, a social cognition system 
(i.e. processing of the social phenomena) and a physical cognition system (e.g., the processing of phenomena 
occurring in the non-social domain)5–7. This distinction has been supported by neural imaging studies provid-
ing evidence for two distinct neural networks that are specialized in processing information in one of these 
domains6–8. Interestingly, the social network (i.e. the network of brain regions that are involved in understanding 
and interacting with other people) shows overlap with the default mode network (i.e. a network of interacting 
brain regions that is active by default)9, leading some authors to propose that social cognition is the baseline/
default state of thought6,7. Therefore, people might have the tendency to explain their environment in mentalistic 
terms by default, rather than entertaining more physical explanation. Thus, these strategies, or “stances”, explain 
and predict the behavior according to different levels of abstraction: 1—with reference to the physical domain 
of the agent, such as the trajectory of a ball (physical stance); 2—with reference to how the system was designed 
to function, for example, one expects the car to stop if they push the brake (design stance); 3—with reference to 
the agent’s mental states and beliefs, i.e. expecting that our friends would grasp a bottle of water when they say 
they are thirsty (intentional stance).
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The social cognition system is obviously activated by observing other humans. However, apart from human 
conspecifics, also humanoid robots are one type of entities that might be capable of activating the social cognition 
system10–12, triggering mentalistic and social attributions1,13,14. In this context, it is important to examine how 
humans develop mental representation of robots. Mental representation are structured by processing external 
and internal information in working memory15. Here, we consider a general view of the working memory as a 
construct denoting a system that encodes, processes and retrieves stored and ongoing information for a limited 
amount of time16. Importantly, information processing in working memory is not without cognitive cost17.

By facing robots or any other agents, people develop a mental representation of the agent in working memory 
(encompassing physical or mental characteristics of the agent as well as contextual information) in a process 
that allows for making sense of their environments15,18,19. However, one feature that will determine whether the 
observers will incorporate more (or less) specific information related to the target (mechanistic information in 
the case of a robot) is the amount of cognitive resources available. Since we do not have an unlimited amount 
of cognitive resources, we need to select which information we will process or prioritize and how deep we will 
process it. The fewer available resources, the more superficially is the information processed. In other terms, 
we may consider that, under high cognitive load, people tend to use shortcuts to process information by using 
easily accessible information to build a representation. In HRI, the result would be using mentalistic (or anthro-
pomorphic) representation to understand, and predict robots behaviours1,20.

However, the few recent studies investigating this issue show puzzling results. For instance, facing unpredict-
able behaviour people tend to attribute more intentionality to agents under cognitive load21. Conversely, Spunt 
and Lieberman22 showed that individuals tend to mentalize more when they are explicitly asked to. However, 
Spunt and Lieberman’s22 results showed that mentalization activity decreased as the function of the cognitive 
load when individuals are instructed to focus on the goals and intentions of the observed agent. To resolve these 
conflicting results we may refer to de Lange and colleagues study23. The authors showed that asking partici-
pants to reflect deliberately on goals and intentions could bias how the mirror neurons and mentalizing areas 
interconnect23 and could impact the synergy between the two systems24,25. In other words, explicit reflection on 
goals and intentions could bypass the default process of mentalization that is, according to Spunt and colleagues’ 
further study, automatically primed by the default mode network26. Therefore, we may assume that primed goal 
could produce different results than those obtained when cognitive load is manipulated and that focusing on 
goals and intentions would only result in bypassing the default mode, it is to say mentalizing agents’ actions.

The present study
In the present series of experiment, we sought to study the tendency to mentalize the behaviors of robots, tak-
ing into account the role of cognitive control and the depletion of cognitive resources during the observation. 
To do so, participants were asked to choose which description (mentalistic vs. mechanistic) fitted the best to 
scenarios depicting various robot actions27. The scenarios were designed by Marchesi et al.27 and depict an iCub 
robot (Metta et al.28) acting in various activities depicted in sequences of 3 pictures. Each scenario is both asso-
ciated with a mentalistic and mechanistic description (Fig. 1). This paradigm allows a measure of attribution 
of intentionality without explicitly requiring participants to deliberate on the goal of the robot and has already 
been used in RT based experiments29.

We manipulated the level of cognitive load during the task (at various processing stages) to investigate the 
modulating role of cognitive resources on the adoption of intentional stance (i.e. mentalization bias). Assuming 
a two-phase model, in which at early stage information is accumulated with relatively limited selectivity to build 
the representation and a late stage which consists of using the representation (e.g. to formulate a judgment).

We hypothesized that when individuals engage in explaining the behaviour of a robot under the situation of 
scarce resources, they will first develop a representation of the action using the most accessible representations 
at disposal. This strategy aims at reducing the cognitive cost while maintaining a control, an understandability 
of the situation. In addition, we have to consider that social cognition system (i.e. social-information process-
ing of subjects) is more default than the cognitive domain related to physical systems (i.e. physical processing 
of objects)9. In other words, humans process social information of a scene by default (compared to physical 
information). Because the default mode network overlap with the social network6,7,9,30,31, the result would be, in 
an early stage, to form a representation of the robot’s behaviour with reference to mental states (i.e. mentalizing 

Figure 1.   Example of an item from Marchesi et al.27.
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the behaviours, referring to beliefs, desires and intentions) faster than with reference to mechanistic states [43] 
as a form of automatic32,33 initial tendency stream34,35. However, because robots are not human, when a sufficient 
amount of cognitive resources are available, inhibition of the default path could occur and activate the physical 
cognition system instead36,37. With this system being active, mentalistic inferences stream would be bypassed 
and the weight of mechanistic information embedded in the representation of the scene should increase (Fig. 2). 
Importantly, while we consider mentalistic inferences as a default stream (faster than the alternative mechanis-
tic one), we do not hypothesize uncontrollability38,39. In other terms, the higher speed of mentalistic inference 
(compared to mechanistic) is not controllable while the bypass, the ability to switch between the mentalistic and 
mechanistic stream is33,40. Therefore, the crucial question is not whether the switch occurs but when it occurs. As 
a consequence, in this series of study we are interested by the speed rate rather than decision rate.

In this study, we conducted 4 experiments to evaluate the impact of cognitive load on the speed to interpret 
robotic actions with mentalistic (compared to mechanistic) properties. We therefore measure the response time 
of participants (as a proxy for the mentalistic and mechanistic stream speed) to select between the two alterna-
tives manipulating their level of cognitive load (high vs low) at different stage of the processing (early, when the 
mental representation is forming vs. late, when the judgment is elaborated).

Experiment 1
The idea behind our study is that mentalistic and mechanistic descriptions result from the activation of the social 
and physical cognition systems, respectively.

The social cognition system is activated by default, the switch from social to physical processing should 
therefore result from a cognitive control process and, as a result, use cognitive resources. This reasoning entails 
that switching from a mental representation to a mechanistic one imposes a cognitive cost. Thus, the switch 
from a mentalistic representation of the scenario to a mechanistic one should be more difficult (slower) while 
there should be no difference between retaining a mechanistic representation, or switching from mechanistic to 
a mentalistic representation41. We tested this hypothesis by presenting mentalistic and mechanistic descriptions 
sequentially, asking participants to process and choose which description they thought best fits each scenario.

Method experiment 1.  Participants.  Seventy-nine participants were recruited online to take part in this 
experiment (43 females, 30 males and 6 others, Mage = 22.5, SD = 4.9). All participants completed the experiment 
online in OpenLab42 and were not informed bout the purposes of the study The sample size was determined 
based on the desired power (0.80), alpha level (0.05), number of conditions (two in the main analysis)43, and 
anticipated medium effect size. Using G*Power 3.144, the minimum required sample size was calculated as 66. As 
the experiment was conducted online, and all participants were recruited online on social media, we considered 
this minimum required sample size as a minimum per se, without setting a maximum threshold (the experiment 
remained accessible online for one week).

Before the beginning of the experiment, a screen described the data protection policies and participants’ 
rights in accordance with the European Union General Data Protection Regulation. This procedure was the 
same in all four experiments.

Procedure.  Participants were instructed that they will be evaluating scenarios depicting the action of a robot. 
These stimuli have already been used for RT measures29. For each trial (Fig. 3) a first description was presented 
with the scenario (6000 ms) and a second after the scenario (5000 ms). Participants had then to decide whether 
the second description described the scenario better than the first description using the S (“Change”) and L 
(“Retain”) keys. Before each trial, a 500 ms fixation cross was displayed at the centre of the screen. For half of 
the trials, the first description was mechanistic (e.g. iCub tracked the girl’s hand movements”), for the other half, 

Figure 2.   From the social and physical cognition system to mentalistic vs mechanistic representation of a 
robot’s actions.
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the first description was mentalistic (e.g. iCub understood that the girl wants the ball”). The order of items was 
randomly selected.

Material experiment 1.  To provide a sufficient number of trials to test the mentalistic-to-mechanistic 
(50% of the trials) and mechanistic-to-mentalistic switches (50% of the trials), we used the 34 items designed by 
Marchesi and colleagues27.

Results experiment 1.  Data pre‑processing.  We excluded response times (RTs) that were ± 3 standard 
deviations from participants’ individual mean per each individual condition. This resulted in exclusion of 1 
trial that corresponded to 0.04% of trials. One participant was excluded from the analyses because constantly 
retained the first description.

Analyses.  Analyses of Experiment 1 and the following experiments were conducted in R using the package 
lme4.

As recommended by Steegen and colleagues, and Botvinik-Nezer and colleagues45,46, we present two analyses 
(mixed model analysis on reaction times and linear integrated speed-accuracy scores) to evaluate the reliability 
of the results across statistical analysis choices. The second analyses makes it also possible to control for potential 
trade-off effects.

Response time analysis.  To evaluate the RT of participants when changing or retaining the first description 
(mentalistic vs mechanistic) we conducted a mixed model analysis including the RTs of participants as depend-
ent variable, the type of the first description (mentalistic vs. mechanistic) and the choice of the participant 
(change vs. retain) as within-participants factors. Also, we introduced the participants and the items as random 
factors.

Results showed an interaction between the type of the first description and the choice of participants, 
B = 177.54, t(2308.52) = 2.18, p = 0.034, CI95% [12.90, 341.80] (Fig. 4). Contrast analyses with Bonferonni cor-
rection showed that while participants were faster when retaining the mentalistic description compared to 
changing to the mechanistic one, B = 155.20, t(1162.56) = 2.35, p = 0.019, CI95% [24.93, 284.85], there was no 
significant difference when following the mechanistic description, B = − 53.08, t(1182.38) =  − 0.93, p = 0.408, 
CI95% [− 178.98, 72.58]. In addition, as a main effect, results showed that participants were faster to change from 

Figure 3.   Experiment 1 trial sequence.

Figure 4.   Time to choose retain/change between the first description and second description as a function of 
the description type (mechanistic vs mentalistic). * = p < 0.050.
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mechanistic to mentalistic description compared to the opposite pattern, B = 373.79, t(46.26) = 3.90, p = 0.006, 
CI95% [116.65, 626.09].

There was no difference on the proportion of choice after mentalistic or mechanistic description, B = − 0.01, 
t(75.14) = − 0.26, p = 0.799, CI95% [− 0.10, 0.07].

Integrate score analysis.  Analyses were also conducted on an adapted composite linear integrated speed-accu-
racy score (LISAS) (Vandierendonck47,48). The initial LISAS score represents response times weighted by the 
proportion of responses A vs an alternative response B. We adapted the computation to our paradigm and 
defined the new computed score (LISASb) as RTj+ SrtSpe  × PCj. RTj is the participant’s mean RT in condition j, 
PCj is the participant’s proportion of choice of response A (vs B) in condition j, SRT is the participant’s overall 
standard deviation in RTs, and SPE is the participant’s overall standard deviation in proportion of errors (PE). 
Weighting of the PE with the ratio of the RT and PE standard deviations is done to achieve a similar weight of 
the two components, RT and PE. This measure yields an estimate of RT corrected for the choice of participants 
(Vandierendonck48). This score allows to take into account both the response times of participants and the pro-
portion of mentalistic vs mechanistic choices and to compute a score of “time to choose the mentalistic descrip-
tion weighted by the proportion of mentalistic vs mechanistic choices”.

In line with the mixed model, participants were faster to change from the mechanistic to the mentalistic 
description rather than the opposite, F(1, 77) = 5.11, p = 0.027, CI95% [29.65, 468.29].

Discussion experiment 1.  Experiment 1 aimed to test whether the mentalistic representation is indeed a 
default. To do so, we tested whether the switch from a mentalistic representation to a mechanistic one was more 
effortful (in terms of cognitive resources demand) compared to the reverse.

The results showed that while there was no significant effect after the mechanistic description between retain-
ing or changing, for a mentalistic alternative when the first description was mentalistic, participants were slower 
to change for the mechanistic alternative than retaining the mentalistic description. These results were confirmed 
by the LISAS analysis in which participants were faster to change from the mechanistic to the mentalistic descrip-
tion rather than the opposite.

Response times are a well-established method to evaluate the accessibility of information and the bias towards 
one representation compared to an alternative one49,50. Therefore, the present results argue for better accessibility 
of the mentalistic representation compared to the mechanistic one when describing a robot’s behaviour. Our 
change/retain paradigm makes it possible to confirm that it is more difficult to switch from a (default) mentalistic 
representation to a mechanistic representation than the opposite.

Ethics.  The study was approved by the local Ethical Committee (Comitato Etico Regione Liguria) and was 
conducted in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki).

Experiment 2
The second experiment aimed to test how the amount of cognitive resources available influences mentalistic 
versus mechanistic descriptions of robots’ behaviours when the two options are available at the same time. We 
hypothesized that, in high-cognitive load situation, participants should use accessible heuristics (i.e. mentalistic 
schemas) to interpret robot’s behaviours more easily (faster)49,50. Therefore, in high-cognitive-load compared 
to low-cognitive-load condition, in a binary choice between mentalistic and mechanistic descriptions of robot 
behaviours, participants should be faster to choose a mentalistic rather than a mechanistic option18.

Method experiment 2.  Participants.  Seventy-two participants recruited online took part in this experi-
ment (43 females, 24 males and 5 others, Mage = 21.2, SD = 4.4). All participants completed the experiment online 
on OpenLab and were not informed about the purpose of this study. For this experiment and the following one, 
the sample size was determined based on the desired power (0.80), alpha level (0.05), within design43, and antici-
pated medium effect size. Using G*Power 3.144, the minimum required sample size was calculated as 66. Again 
we did not set a maximum threshold (the experiment remained accessible online for one week).

Procedure.  Participants were instructed that they would be presented with various scenarios depicting a robot 
in daily activities. Their task would be to choose, among two descriptions, which one described best, according 
to them, the scenario depicted in the pictures using the S (left description) and L (right description) keys. One 
of the description involved mentalistic terms, while the other, mechanistic terms. In addition, participants were 
instructed that they had to remember a pattern matrix at the beginning of each trial. At the end of each trial, 
a second pattern matrix was displayed and they had to judge whether the two matrices were same or not. To 
respond, they used the S and L key of their keyboards. The purpose of introducing the matrices was to manipu-
late the amount of cognitive resources available for processing the presented scenario using complex (high-load) 
and simple (low-load) pattern matrices.

Task design.  The experimental design was as depicted in Fig. 5. First, each trial started with a fixation cross for 
500 ms. Then, participants had to memorize, for half of the trials, a complex matrix, and for the other half, a sim-
ple matrix (3000 ms). Matrices were randomly selected (without replacement) for each trial. Complex matrices 
used 4 × 5 pattern with 10 black and 10 white squares. Simple matrices used 4 × 4 pattern matrices with 6 black 
and 6 white squares (The matrices were pretested with 20 participants, the average recall accuracy was 80.83% 
for the simple matrices and 70,83% for the complex matrices. The pretest consisted in the presentation of the 
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matrices for 3000 ms, the presentation of 9 digits presented in a random order at the speed of 1 per second as a 
distraction, and the recall task without response time limit (t(19) = 3.79, p = 0.001, CI95% [0.05, 0.16]).). A second 
fixation cross (500 ms) preceded the presentation of the scenario involving the robot. We used the scenarios 
designed by Marchesi et al.27 that depict an iCub robot (Metta et al.28) acting in various activities depicted in 
sequences of 3 pictures [5000 ms, the presentation time was pretested (Twenty participants were asked to evalu-
ate between different presentation time (3000 ms, 4000 ms, 5000 ms, 6000 ms, 7000 ms), the minimum presenta-
tion time needed to accurately be able to describe the scenarios.)]. After the scenario, the two descriptions were 
presented. Participants were asked to respond to the scenario descriptions with “S” and “L” response keys, where 
S was mapped to the Description 1 (right) and L was mapped to Description 2 (left). The response keys were 
only activated after 3000 ms [defined by pretesting (Twenty participants were ask to evaluate between different 
presentation time (1000 ms, 2000 ms, 3000 ms, 4000 ms), the minimum presentation time of the sentences to be 
read. We choose the minimum presentation time to ensure control over the tendency to select the first sentence 
read and reduce intra-participant variability while not providing sufficient time to bias the hypothesized auto-
matic process of mentalistic bias.)] to partially control the reading speed inter-individual differences. Finally, 
participants had to decide whether the new matrix displayed on the screen was similar to the first one with the 
“S” and “L” keys, where S was mapped to the NO response and L was mapped to the YES response for half of 
the trial, the other half displaying a reverse mapping to control for response carry-over effects. Half of the trials 
presented two identical matrices and the other half displayed different matrices.

Material.  The experiment was programmed in JavaScript and displayed in participants’ web browser in full-
screen using OpenLab51. The position of mentalistic/mechanistic description was counterbalanced (among the 
total 25 trials, 12–13 trials presented the mechanistic response on the right and 12–13 trials presented the men-
talistic response on the right). We selected 25 scenarios among the 34 developed by Marchesi et al.27. Nine of the 
scenarios of the original set of Marchesi et al.27 were presented with descriptions that differed between mentalis-
tic and mechanistic condition in more than 15 characters. This difference between mentalistic and mechanistic 
descriptions could bias the difficulty of processing the sentence and then bias participants’ responses. This is why 
we excluded them from our present set of stimuli.

Results experiment 2.  Data preprocessing.  Based on Cook’s distance we excluded two outliers52,53.
The RTs correspond to the time of response after the activation of the responses keys (or 3000 ms after the 

display of the descriptions). We then considered trials with reaction times (RT) lower or higher than 3 standard 
deviations from the mean per condition for each participant as outliers (for similar procedure see54–57. This 
criterion resulted in 0 trials excluded.

Analyses.  Response times analysis.  To evaluate the time of Mentalistic vs Mechanistic response selection, 
we conducted a mixed model analysis including the RTs of participants as dependent variable, the matrices’ 
difficulty (Complex vs Simple) and the choice of the participant (Mechanistic vs Mentalistic) as within-subjects 
factors. Finally, we introduced the participants and the items as random factors.

The results showed an interaction of Matrix Difficulty by Choice on RTs, B = 181.18, t(1501.82) = 2.17, 
p = 0.031, CI95% [17.09, 345.06] (Fig. 6). Contrasts with Bonferroni correction showed that, while there was no 
difference in simple matrix trials, B = − 69.23, t(765.36) =  − 0.96, p = 0.336, CI95% [− 210.69, 71.74]; in complex 
matrix trials, participants were faster to select the mentalistic than the mechanistic explanation, B = − 207.22, 
t(784.51) =  − 3.18, p = 0.002, CI95% [− 335.62, − 79.08]. We also found a main effect of Choice. Participants were 
faster to select the mentalistic response compared to the mechanistic one, B = − 221.87, t(1539.92) =  − 3.50, 
p = 0.001, CI95% [− 346.19, − 97.65].

To check if the effects were not due to accuracy of matrices retrieval, we then isolated and examined only 
trials where participants accurately recalled (both complex vs simple) matrices. The interaction Difficulty by 
Choice was still significant B = 244.13, t(1022.62) = 2.40, p = 0.017, CI95% [44.88, 443.19]. Analyses showed a main 
effect similar to the previous analysis, B = − 288.27, t(1061.54) =  − 3.57, p = 0.001, CI95% [− 446.70, − 130.05].

Figure 5.   Experiment 2 trial sequence (without the fixation crosses).
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Results did not show any significant difference in the number of mentalistic vs mechanistic choices in complex 
vs simple matrix trials, B = − 0.01, t(1517) =  − 15, p = 0.879, CI95% [− 0.04, 0.04].

Integrated score analyses.  We used the same procedure as presented in Experiment 1 to compute the integrated 
linear scores.

Including the time to choose the mentalistic response in complex vs simple matrix trials in a repeated measure 
ANOVA, we found an effect congruent with analysis on RT data. Participants took less time to choose the men-
talistic description in complex compared to simple matrix trials, F(1, 69) = 4.82, p = 0.032, CI95% [20.78, 434.38].

Discussion experiment 2.  The second experiment aimed to test whether the amount of available cognitive 
resources could influence participants’ time in choosing a description of robots’ behaviours using a mechanistic 
or a mentalistic vocabulary. While the analyses did not show any significant differences between mechanistic and 
mentalistic selection time in low cognitive load trials (simple matrices), when participants’ cognitive load was 
high (complex matrices), they were faster to select the mentalistic description of the robot’s behaviour compared 
to the mechanistic one. These results are in line with the idea that mentalization is a default mode of reasoning 
about others’ behaviour, which is also more accessible and cognitively less demanding.

However, the present results do not make it possible to disentangle whether the effect occurs at a late or early 
stage of processing. At a late stage, the cognitive load effect would occur during semantic processing of the mecha-
nistic vs mentalistic descriptions content. According to this hypothesis, participants would be faster in choosing 
the mentalistic descriptions because mentalistic terms would be easier to process58. An alternative explanation 
could be that at an early stage, during the perception of the scene, the cognitive load could bias the mental rep-
resentation of the scene in working memory. Considering that goal is encoded more strongly in memory and 
reactivated much more quickly than other more specific inferences59 and that mentalization descriptions are 
more related to goal than mechanistic descriptions 3,60, it would be easier for participants to rely on mentalistic 
descriptions to describe the scene61. Note that we do not assume these two interpretations as mutually exclusive.

Experiment 3
In the third experiment, we investigated the late-stage cognitive load interpretation, while keeping the visual pro-
cessing of the scene clear of any cognitive load manipulation. In this experiment, the perception of the scenario 
was the primary task and the memory task was only secondary. Participants could build a representation of the 
scenario before the cognitive load manipulation was introduced. The cognitive load occurred only during the 
choice between the mechanistic vs mentalistic descriptions. Therefore, the present experiment makes it possible 
to isolate the influence of the cognitive load on the later stage of processing when judgments are being made.

According to the late-stage interpretation, the cognitive load should impair the processing of the semantic 
content of the descriptions. As a result, the mentalistic terms relying on the default mode should be easier (faster) 
to use to describe the robot’s behaviours compared to the mechanistic terms. As such, we should observe lower 
response times for the mentalistic choices compared to mechanistic choices in high-load trials62.

Method experiment 3.  Participants.  Seventy-two participants took part in this experiment on a volun-
tary basis (34 females, 25 males and 2 others, Mage = 20.8, SD = 3.6). All participants were recruited online and 
completed the experiment on OpenLab and were not informed about the purpose of this study.

Procedure.  The procedure was identical to the second experiment except that, in Experiment 3, the scenario 
was presented before the cognitive load manipulation (Fig. 7).

Figure 6.   Time to select mechanistic and mentalistic descriptions as a function of the cognitive load level 
induced by the complex vs simple matrices. * = p < 0.050; ** = p < 0.010. The RTs correspond to the time of 
response after the activation of the responses keys (or 3000 ms after the display of the sentences).
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Results experiment 3.  Data preprocessing.  The RTs correspond to the time of response after the activa-
tion of the responses keys (or 3000 ms after the display of the descriptions). Using Cook’s distance we excluded 
one outlier52,53. Correct trials with reaction times (RT) lower or higher than 3 standard deviations from the 
mean per condition for each participant were considered outliers and then removed from RT analyses, which 
corresponded to 4 trials (0.24% of trials).

Analyses.  Response time analysis.  To evaluate the time of Mentalistic vs Mechanistic response selection, we 
conducted a mixed model analysis including the RTs of participants as dependent variable, the matrix difficulty 
and the choice of the participant as within-subjects factors. Finally, we introduced the participants and the items 
as random factors.

Results did not show a significant interaction of matrix difficulty and choice, B = − 146.74, t(1581.76) =  − 1.30, 
p = 0.194, CI95% [− 367.83, 74.35], no significant main effects (all ps > 0.10). The same was true when controlling 
for only accurately recalled matrices (all ps > 0.10).

Analyses on the frequencies of mechanistic vs mentalistic choices showed no difference in participants’ 
mechanistic/mentalistic descriptions choice in simple than complex matrix trials, B = − 0.02, t(1639.99) =  − 0.82, 
p = 0.410, CI95% [− 0.07, 0.03].

Integrated score analysis.  We used the same procedure as presented in Experiment 1–2 to compute the inte-
grated linear scores. Including the time to choose the mentalistic response in complex vs. simple matrix trials in 
a repeated measure ANOVA, we did not find any significant effects (all ps > 0.05).

Discussion experiment 3.  The third experiment aimed to test the effect of cognitive load on a late seman-
tic processing stage during evaluation of robot behaviour in a mentalistic vs. mechanistic description decision 
task. Results showed no significant differences on response time and proportion of mentalistic choices in com-
plex compared to simple matrix trials. In sum, and most importantly for the purposes of this study, results of 
Experiment 3 did not support the hypotheses that cognitive load affected late, semantic, stages of processing 
during evaluation of descriptions of robot behaviours.

Experiment 4
Experiment 4 aimed to investigate the effect of the cognitive load on the stage of processing when mental repre-
sentation of the presented scenarios is being built. If cognitive load affects this earlier stage of processing of the 
presented scenarios, participants should be faster to select a mentalistic description compared to a mechanistic 
one when the scenario was presented under a high cognitive load (complex matrix trials) compared to low cogni-
tive load (simple matrix trials). The reason would be that goal representation would be encoded more strongly 
in memory and reactivated much more quickly than other more specific inferences59 favouring mentalistic 
descriptions of the scene61.

Method experiment 4.  Participants.  Seventy-two participants took part in this experiment on a volun-
tary basis (32 females, 16 males, Mage = 20.7, SD = 6.1). All participants were recruited online and completed the 
experiment on OpenLab and were not informed about the purpose of this study.

Procedure.  The procedure was identical to Experiment 2 and 3 except that the cognitive load manipulation 
occurred before the scenario was presented and the recall occurred before the participants had to decide which 
description was the best fitting to the scenario (Fig. 8).

Results experiment 4.  Data preprocessing.  The RTs correspond to the time of response after the activa-
tion of the responses keys (or 3000 ms after the display of the descriptions).As in previous experiments, we 
excluded response times (RTs) that were ± 3 standard deviations from participants’ individual mean, per each 
individual condition. This resulted in exclusion of 1 trial (0.06% of the trials).

Figure 7.   Experiment 3 trial sequence (without the fixation crosses).
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Response time analysis.  To evaluate the time of Mentalistic vs Mechanistic response selection as a function of 
the difficulty of the matrices, we conducted a mixed model analysis including the RTs of participants as depend-
ent variable, the matrix difficulty and the choice of the participant as within-participants factors. Finally, we 
introduced the participants and the items as random factors.

The results showed a significant interaction of difficulty and choice on RTs, B = 276.13, t(1486.16) = 2.87, 
p = 0.004, CI95% [87.26, 464.93] (Fig. 9). Contrasts with Bonferroni correction showed that, while there was no 
difference in simple matrix trials, B = − 42.51, t(753.87) =  − 0.57, p = 0.568, CI95% [− 189.69, 103.60]; in com-
plex matrix trials, participants were faster to select the mentalistic compared to the mechanistic explanation, 
B = − 402.59, t(766.81) =  − 5.20, p < 0.001, CI95% [− 554.48, − 251.03]. We also found a main effect of choice: 
participants were faster to select the mentalistic description compared to the mechanistic one, B = − 336.60, 
t(1512.88) =  − 4.74, p < 0.001, CI95% [− 475.82, − 197.69].

We controlled for the effect of accuracy by isolating trials where participants accurately recalled the matrices. 
The interaction difficulty by choice (mentalistic vs mechanistic) reached significance, B = 337.27, t(679.82) = 2.47, 
p = 0.014, CI95% [68.00, 606.27]. Analyses showed the same main effects; participants were faster to select the men-
talistic description compared to the mechanistic one, B = − 278.79, t(697.03) =  − 2.78, p = 0.005, CI95% [− 475.87, 
− 82.60].

Analyses on participants’ choice showed a higher number of mentalistic vs mechanistic choices in complex 
vs simple matrix trials, B = − 0.05, t(1506.81) = 2.01, p = 0.044, CI95% [− 0.09, − 0.01].

Integrated score analysis.  We used the same procedure as presented in Experiment 1–3 to compute the inte-
grated linear scores. Including the time to choose the mentalistic response in complex vs simple matrix trials 
in a repeated measure ANOVA, unlike mixed model, the present result failed to reach significance (ps > 0.05).

Discussion experiment 4.  Experiment 4 aimed to test the effect of cognitive load on speed of choosing 
mentalistic/mechanistic descriptions when the load was introduced during the processing of visual information 
depicting a robot’s actions. Our multiple-analysis approach yielded mixed effects. In response times, we found 
an impact of cognitive load on explanations (mentalistic vs. mechanistic). Participants were faster to select the 

Figure 8.   Experiment 4 trial sequence (without the fixation crosses).

Figure 9.   Time to select mechanistic or mentalistic descriptions as a function of the cognitive load induced by 
the complex vs simple matrices. The RTs correspond to the time of response after the activation of the responses 
keys (or 3000 ms after the display of the descriptions).
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mentalistic compared to the mechanistic response, but only in the high load condition. In the low load condition 
this effect was not observed, a pattern paralleling results of Experiment 2. However, the effect of load on speed 
of responding became non-significant in the second analysis on response times weighed by the proportion of 
mentalistic vs mechanistic choices.

To explain these mixed results we can formulate two hypotheses. First, a loss of statistical power switching 
from the mixed model to computed score analysis. Second, a cumulative effect when cognitive load impact both 
perception and judgment of the scenario. Indeed, the range of effect was higher in the Experiment 2 compared 
to Experiment 4. However, with respect to this second option, we have to consider that experiment 3, presenting 
cognitive load manipulation during judgment, did not show any significant results, therefore the cumulative 
effect hypotheses cannot be evaluated in details in the present series of experiments.

General discussion
How humans explain robots’ action is a timely question with respect to the development of social robotics. 
Indeed, how people will behave towards robots, collaborate with them or accept them in their environment 
will depend on their representation of these artificial agents: will they be incorporated into the social cognition 
system? Or rather into a more “physical” system, related to non-social phenomena. The cognitive systems theory 
posits the existence of two potentially exclusive cognition systems: (i) a social cognition system, potentially the 
default system, and (ii) a physical cognition system5–7. While the social cognition system is default and more 
“accessible” (faster), the physical cognition system requires perhaps more effort. This has a direct implication for 
the relationship between the amount of available cognitive resources and processing information within each 
of the systems. Social cognition, being more accessible and default should require less cognitive resources than 
physical cognition. Thus, under high cognitive load, the more “physical”-cognitive processes should be affected 
more than socio-cognitive processes. This is what our study with four experiments aimed to test. Using the 
Instance items27 we evaluated to what extent (speed and decision) participants use mentalistic (vs mechanistic) 
information to describe the scenarios displaying robotic actions, as a function of high (vs low) cognitive load.

Experiment 1 was designed to first test the idea whether the mentalistic representation of robot actions (thus 
within the social cognition realm) is indeed default. We designed an experiment in which participants could 
either switch from one description of the scenario to another (from mentalistic to mechanistic or vice versa) or 
keep the initial description. If mentalistic representation is default, it should be more costly (i.e. slower) to switch 
from mentalistic to mechanistic than vice versa. This is indeed what our results showed.

In subsequent Experiments (2–4) we tested the idea that physical cognition representation should be more 
prone to interference by cognitive load than the more default, easier to access socio-cognitive reasoning. In 
Experiment 2 we introduced a cognitive load and we found that this was indeed the case. In the high cognitive 
load condition, participants were faster in choosing mentalistic descriptions relative to mechanistic descriptions. 
The remaining question was whether this interaction between cognitive load and social vs. physical reasoning 
processes occur at early or late stages of processing. In Experiment 3, we introduced the cognitive load at the stage 
of processing when participants should be evaluating the semantic content of the descriptions, leaving the earlier 
stages of processing when the mental representation is being formed untouched by the cognitive load manipula-
tion. Results showed no effect of cognitive load on performance. However, when the load was introduced at an 
earlier stage of processing (Experiment 4), when the representation is being formed, it had a significant impact 
on the speed of choosing mentalistic vs. mechanistic descriptions, replicating results of Experiment 2 and argu-
ing for a role of goal representation rather than purely linguistic differences.

In sum, our study showed that (i) interpreting behaviour of other (robotic) agents within the social cognition 
domain is more default (and less costly) than physical interpretations; (ii) social interpretation (social cogni-
tion)—being less costly—is easier (faster) to choose under high cognitive load condition, relative to mechanistic 
interpretation; (iii) the need for cognitive resources (and thus interference) occurs primarily at the earlier stages 
of processing, when representations are being formed.

To explain these results, we assume a cognitive control process that switches from the default mode of analy-
sis that is the mentalization network to the more specific mode of analysis (in our case a mechanistic mode of 
analysis of robot’s behavior). This process would be modulated by the amount of cognitive resources available. 
As a consequence, when under cognitive load, people would rely on a default mode of thought (i.e., social cogni-
tion network), less demanding and more automatic41,63–65 because the control would be less effective. The result 
would be to analyze and build a mental representation of the scenes using more general and easy accessible 
information66. From a process perspective, it would be faster to accumulate evidence to fill a representation with 
(more general) mentalistic compared to (target specific) mechanistic information observing robotic actions. The 
control of this mentalistic bias would depend on the amount of resources available to bypass the social/mentalistic 
stream by a physical/mechanistic stream (Fig. 1). We may link this model to the anthropomorphism framework 
proposed by Epley and colleagues1. The dynamic would depend on the level of cognitive control modulated, for 
example, by the amount of cognitive resources available (as demonstrated in the present series of studies, but also 
perceptive features (e.g. human-likeness of the robot or the action67, or dispositional features (e.g. imaginative 
anthropomorphism68). Importantly, the timeframe for the effect of cognitive load (presented here) is early, dur-
ing the generation of the representation. Therefore, we could summarize the process as follows: when perceiving 
a robotic agent, the observer develops a representation of this agent (and agent’s actions). During this phase, 
contextual and dispositional factors trigger the activation of the default social cognition system. The mentalistic 
inferences made based on this state may be controlled dependent on to the amount of resources available. In 
a subsequent phase of this dynamic process, once the representation is stable, the influence of contextual and 
dispositional factors decreases.
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It remains to be discussed how long-term interaction affects this effect. Lemaignan and colleagues have pro-
posed to distinguish three main phases in anthropomorphism: initialization, familiarization and stabilization69. 
During the initialization phase, anthropomorphism is proportional to the novelty effect70, the lack of knowledge 
to develop a target-specific representation about the robot1, the will to efficiently interact with the robot (and 
other motivational factors)71 and the activation of human-centric information41. The second phase is the famil-
iarization phase when the user is getting acquainted with the robot. This phase corresponds to the development 
of the model of the robot using target-specific information rather than human-related information. A decrease 
in anthropomorphic attribution occurs at this phase because the initial apparent complexity of the robot dimin-
ishes. At last, the level of anthropomorphism in the stabilization phase is multi-factorial and will depend on the 
robot72,73, the user71,73–77 and the context1,78.

Therefore, considering this inevitable decrease in anthropomorphic attributions toward robots we could 
assume the same for mentalization. In line with this assumption is one of the most standard results in long-term 
HRI research: as the time goes by, the interest toward a robotic agent decreases70,79–81. The reason would be that 
when the novelty effect wears off, individuals lose interest and change their attitudes towards the artificial agent.

Limitations of the study.  One of the limitations of the present study is that we did not make a comparison 
between the robot to a human condition. It would be very interesting to compare mentalistic attribution across 
these two types of agents. However, it is very difficult to do so with our intentional stance tool, as it is difficult 
to provide mechanistic descriptions that make sense in the case of a human agent. Thus, due to the lack of this 
comparison, even if participants use more mentalistic inferences in high cognitive load condition for the human 
agent, we cannot discuss whether this phenomenon differs across the two types of agents.

Second potential limitation is that confidence intervals in the results of our study were relatively large, which 
argues for strong inter-individual differences. While we aimed to provide a general approach for the mentalization 
of robots in the cognitive control framework, it seems reasonable to assume that the present model is a simplified 
view of the process in which we could add dispositional but also cultural components1.

Third, we only used one type of robot. Research showed that the human-like appearance could influence the 
extent to which individuals attribute human-like characteristics to robots82,83. Therefore, manipulating the shape 
of the robot could reinforce or interfere with the weighting of social vs. physical processes. The nature of the 
relations between social and physical processes remains an open question. In the parallel-competitive model, 
both processes are activated in parallel streams that weigh automatic and controlled information to provide a 
single output84. In the default system theories, the social cognition system produces the initial output that can 
be corrected at a later stage by the physical cognition system, similar to evidence-accumulator models that are 
computed until the production of the final output37. Since the present results cannot argue in favour of one or 
the other model, future research could aim at disentangling the two theoretical proposals.

Fourth, participants may vary in their prior representation of robots which could potentially moderate the 
observed effect as well as personality traits such as the need for cognition or need for closure73. Therefore, in a 
follow-up study it would be relevant to investigate the effect of cognitive load on mentalization according to the 
prior representations of individuals.

Future directions for examining cognitive load in HRI.  Future studies could aim at disentangling the 
relationship between the physical cognition system and the default (social) system and how our social–cogni-
tion system processes input related to a humanoid robot78. Moreover, since our results suggest interindividual 
differences, future studies could explore and model the inter-individual variability in mentalistic attributions 
related to robots. Several factors, such as occupation or type of education can play a role in the inter-individual 
variability. One approach would be, for example, to model participants RTs with the help of Bayesian Inference 
or clustering algorithms. Such models allow researchers to take into account the inter-individual variability of 
participants during the task, and thus, allow for a better understanding of how the behaviour showed by partici-
pants changes along the experimental session, on a trial-by-trial basis. Finally, since robots are going to be more 
and more present in our daily interactions, it is crucial to understand how robust these results are across various 
contexts and how these results generalize to more daily-life scenarios. More specifically, it is crucial to examine 
which environmental and social context factors induce cognitive load in humans during human–robot interac-
tion. One of clear candidate factor is certainly a learning context such as schools. Considering that, first, context 
may affect cognitive load; second, cognitive load the extent to which one would mentalize a robot; and third that 
mentalistic attributions to a robot may alter cognitive performance of individuals due to social presence effect 
induced by the robot85,86, or social comparison effects87, therefore it is crucial to understand clearly these interac-
tions before introducing robots in schools.

Conclusion
To better understand how humans engage in HRI, it appears inevitable to define the underlying cognitive mecha-
nism involved. At first, people perceive and create representations of their artificial counterparts’ actions. This 
balance between representations and interpretations of these representations are poorly understood in HRI, 
which is paradoxical with respect to its social cognitive importance in social evaluation and interaction with 
both humans and robots88,89. The present series of experiments aimed at providing an understanding of the 
interaction between available cognitive resources and type of representation one builds. Our results show how 
that representing a robotic agent within a social cognition domain is more default and easily accessible, and thus 
occurs more readily when cognitive resources are less available as an interplay between a functional tendency 
and the environment. What follows is that representing a robot within the physical cognition domain is more 
effortful and thus less likely to be activated when cognitive resources are scarce. This pattern of results casts a light 



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14924  | https://doi.org/10.1038/s41598-022-19213-5

www.nature.com/scientificreports/

on how humans’ representation of a robots depends on their own cognitive state. In general, it shows that under 
cognitive load, humans tend to resort to the social cognition domain as an easily accessible mode of processing 
information. Activation of social cognition mechanisms is thus a shortcut for explaining behaviours of other 
systems, even if those systems are not humans, and could have important impact on how one could consider 
and behave toward these new artificial agents.

Data availability
All raw data will be available at OSF upon acceptance of the manuscript (https://​osf.​io/​5gv7k/).
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