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The emerging chondrocyte channelome
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Chondrocytes are the resident cells of articular cartilage and are responsible for synthesizing 
a range of collagenous and non-collagenous extracellular matrix macromolecules. Whilst 
chondrocytes exist at low densities in the tissue (1–10% of the total tissue volume in mature 
cartilage) they are extremely active cells and are capable of responding to a range of mechanical 
and biochemical stimuli. These responses are necessary for the maintenance of viable cartilage 
and may be compromised in inflammatory diseases such as arthritis. Although chondrocytes 
are non-excitable cells their plasma membrane contains a rich complement of ion channels. 
This diverse channelome appears to be as complex as one might expect to find in excitable 
cells although, in the case of chondrocytes, their functions are far less well understood. The ion 
channels so far identified in chondrocytes include potassium channels (KATP, BK, Kv, and SK), 
sodium channels (epithelial sodium channels, voltage activated sodium channels), transient 
receptor potential calcium or non-selective cation channels and chloride channels. In this 
review we describe this emerging channelome and discuss the possible functions of a range 
of chondrocyte ion channels.
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at the synovial joint and absorbs shock. Friction would be unde-
sirable because it would damage the joint and also generate heat, 
thereby causing pain (Tatari, 2007). Articular cartilage is avascular 
without a perichondrium connective tissue surround. In human 
articular cartilage, chondrocytes may be as far away as 3 mm from 
the nearest artery. Therefore, synovial fluid supplies chondrocytes 
in adult articular cartilage with oxygen and nutrients, and removes 
carbon dioxide and metabolic waste products, by diffusion (Lee 
and Urban, 1997; Allan, 1998). Synovial fluid is periodically washed 
over the surface of the articular cartilage by the movement of the 
joint (Lee and Urban, 1997). Oxygen and substrate concentra-
tions within cartilage reduce near to the cartilage-bone margin to 
almost zero (Otte, 1991). Therefore, chondrocytes generate ATP 
by substrate-level phosphorylation during anaerobic respiration, 
leading to the accumulation of lactate and lowering of the pH 
through the production of H+ ions, which can continue in anoxic 
conditions (Lee and Urban, 1997). The extracellular pH affects the 
chondrocyte metabolism and its ability to synthesize matrix. Low 
pH reduces lactate production, but also slows down the synthesis 
of glycosaminoglycans. However, the rate of collagen synthesis 
appears to be independent of pH (Wu et al., 2007). Chondrocytes 
embedded within the ECM have an unusual ionic environment 
because they are surrounded by negatively charged proteoglycans, 
which attract large numbers of cations, such as Na+ ions, creating 
a high extracellular osmolarity and contributing to the low pH 
(Urban et al., 1993).

Chondrocyte primary function is to synthesize and secrete 
proteoglycans, collagen and non-collagenous proteins to  maintain 
the cartilage ECM (Fassbender, 1987). Chondrocytes maintain 
cartilage by establishing a balance between replacing degraded 

IntroductIon
Chondrocytes are metabolically active cells found in mature articu-
lar cartilage (Iannotti, 1990; Archer and Francis-West, 2003). The 
extracellular matrix (ECM) of cartilage is composed of elastic and 
collagen fibers (mainly type II collagen), which provide tensile 
strength with embedded proteoglycans forming a gel-like ground 
substance that provides elasticity and the ability to resist compres-
sive forces (Buckwalter and Mankin, 1998). Chondrocytes occur 
singularly or in groups or clusters of three or more cells within 
spaces called lacunae in the ECM (Stockwell, 1975). Articular car-
tilage has a high matrix to cell ratio, with chondrocytes occupy-
ing only 10% of the total tissue in mammals (Carney and Muir, 
1988). Articular cartilage is a type of hyaline cartilage that cov-
ers the surface of bones which meet at a synovial joint (Mankin, 
1982). Synovial joints include a cavity between the bones within 
the articular capsule in order to allow free movement (Edwards 
et al., 1994). The synovial cavity contains synovial fluid, which 
acts as a lubricant to decrease friction between the bones meeting 
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(Wu and Chen, 2000), proteins and sulfated glycosaminoglycans 
(Mouw et al., 2007). Chondrocyte proliferation is also inhibited 
by channel blockers lidocaine and verapamil (Wohlrab et al., 2001, 
2005) and apoptosis increased (Grishko et al., 2010). As with other 
cells, the chondrocyte RMP is determined by the balance of positive 
and negative ion permeabilities in the cell membrane (Hodgkin 
and Huxley, 1952a). These permeabilities are, in turn, controlled 
by the chondrocyte channelome (the complement of expressed ion 
channels and porins).

Ion channels are the essential components that control ion 
movement in and out of the cell (Hodgkin and Huxley, 1952a). They 
are embedded within the plasma membrane and usually consist of 
one or more proteins with a central aqueous pore, which opens by 
conformational change (Neher and Sakmann, 1992). The stimulus 
for opening (gating) is specific to each ion channel, and may be volt-
age, chemically or mechanically induced (Hille, 2001). A number 
of studies have now shown the presence of an ever-expanding list 
of ion channels in chondrocytes (Figure 1), and this review will 
summarize the data to date, both on the variety of expression and 
the proposed roles of these channels.

Kv channels
One of the first discovered ion conductances in biology was the 
potassium delayed rectifier (Hodgkin and Huxley, 1952b; Ramage 
et al., 2008). The ion channels underlying this are now known to be 

 macromolecules and increasing synthesis in response to injury 
(Martin and Buckwalter, 2000). Proteoglycans contribute to carti-
lage rigidity, stability and durability during compression (Redini, 
2001). Types II, IX, and XI collagen form the tensile fibril networks 
within cartilage. Type VI collagens form adjacent to chondrocytes 
and may be involved in attachment of the chondrocyte to the ECM 
(Bruckner and van der Rest, 1994). Non-collagenous proteins, 
such as anchorin CII, are also involved in chondrocyte anchorage 
(Fernandez et al., 1990). The cartilage matrix protects chondro-
cytes from mechanical stress placed on the joint (Buckwalter and 
Mankin, 1998; Martin and Buckwalter, 2000). Chondrocyte meta-
bolic activity is directly correlated with the weight of mechanical 
stress placed on the cartilage; increased activity when the cartilage 
is heavily loaded provides maximum proteoglycan content (Urban, 
1994). The ability of articular cartilage to withstand and respond 
to pressure and shearing forces is vital for it to fulfill its function. 
Accumulating evidence suggests that the resting membrane poten-
tial (RMP) is vital for fulfilling this function. The RMP has been 
shown to be central to the secretion and synthesis of substances 
in a variety of other cell types (Breittmayer et al., 1996; McCarty, 
1999; Penyige et al., 2002). It therefore seems likely that if the 
RMP of chondrocytes is changed by ion channel manipulation, 
their ability to produce ECM will be compromised. This conjec-
ture is indeed supported by experiments where RMP modifying 
ion channel blockers reduced the production of matrix mRNAs  

FigurE 1 | Summary of the chondrocyte channelome. Many studies have 
now identified ion channels and porins in chondrocytes. Frequently the 
function of these channels is either unknown or controversial. This figure 
illustrates some of the major channel proteins identified to date, either by 
electrophysiological, immunological or molecular biological techniques. Note in 
this figure, K(Ca) is taken to be equivalent to any calcium activated potassium 
channel including BK and SK. AQP, aquaporin channel; BK, calcium-activated 

potassium cannel, high conductance; ClC, chloride channel; ENaC, epithelial 
sodium channels; KATP, ATP dependent potassium channel; Kv, voltage-gated 
potassium channel; NMDA, N-methyl D-aspartate; SK, calcium-activated 
potassium channel, low conductance; TRP, transient receptor potential 
channel; VGCC, voltage-gated calcium channels; VGSC, voltage-gated sodium 
channel; This data is summarized more fully in Table 1. For references please 
see text and or Table 1.
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and Stanfield, 1978; Barrett-Jolley et al., 1999) and glibenclamide 
is an inhibitor of ATP dependent potassium channels (Tomai 
et al., 1994). So far only K

ATP
 channels have been observed in 

chondrocytes (Mobasheri et al., 2007). K
ATP

 channels are a widely 
expressed subfamily of inwardly rectifying potassium channels. 
These channels are closed by intracellular ATP and thus serve to 
couple metabolism to membrane excitability (Quayle et al., 1997; 
Ashcroft and Gribble, 1998; Minami et al., 2004). Structurally these 
channels exist as heteromultimers. Each functioning protein con-
sists of four ATP binding cassette proteins (SUR) surrounding four 
inwardly rectifying potassium channel subunits (Kir 6.x) (Babenko 
et al., 1998). Of particular interest to investigators of chondrocyte 
function is the fact that, in addition to being opened by decreas-
ing intracellular ATP (Figure 2), K

ATP
 channels are also frequently 

observed to be opened by low oxygen tension and hypoxia (Dart 
and Standen, 1994). This suggests that these channels are impor-
tant in hypoxia-mediated cell signaling (Phillis, 2004). We showed 
recently that K

ATP
 channels were expressed in articular chondro-

cytes (Mobasheri et al., 2007). We used polyclonal antibodies raised 
against the K

ATP
 channel to show expression in both human and 

equine chondrocytes. Expression was largely restricted to the 
superficial and middle zones of normal cartilage and the superficial 
zone of fibrillated osteoarthritic cartilage in clusters (Mobasheri 
et al., 2007). In patch-clamp studies we found the biophysical 
properties of K

ATP
 channels to be broadly similar to K

ATP
 channels 

expressed elsewhere (Babenko et al., 1998; Mobasheri et al., 2007). 
Several K

ATP
 subtypes (i.e., Kir 6.1 and Kir 6.2) are each potentially 

coupled with one of the SUR subtypes; SUR1, 2A or 2B (Babenko 
et al., 1998). Pharmacological properties of K

ATP
 channels are thus 

very different between tissues. Glibenclamide is sometimes used as 
a functional discriminator between K

ATP
 subtypes. It is highly active 

in pancreatic β-cells (IC50 of <10 nM, Krause et al., 1995), but 
rather less potent in muscle (IC50 25–100 nM, Beech et al., 1993; 
Barrett-Jolley and Davies, 1997; Barrett-Jolley and McPherson, 
1998). In pharmacological studies of chondrocytes, the K

ATP
 chan-

nel’s IC50 is within the range seen in muscle (Mobasheri et al., 
2007). It therefore seems highly likely that chondrocytes express 
at least one subtype of K

ATP
 channel and that these may be impor-

tant for regulation of cartilage metabolism and sensing ATP levels 
within the cell (Mobasheri et al., 2005b).

large calcIum-actIvated PotassIum channels
Several studies have putatively identified BK channels in chondro-
cytes (Grandolfo et al., 1990, 1992; Long and Walsh, 1994; Martina 
et al., 1997; Mozrzymas et al., 1997; Mobasheri et al., 2010). In our 
own study (Mobasheri et al., 2010), the principal stretch-activated 
channel we identified had a slope conductance, reversal potential, 
and pharmacology consistent with it being a large calcium-activated 
potassium channel (BK) (Latorre et al., 1989; Cui et al., 2009). 
We found the sensitivity to iberiotoxin to be statistically signifi-
cant but weak (Mobasheri et al., 2010). This is interesting because 
whilst the BK channel can exist as a standalone six trans-membrane 
α-subunit, complete with potassium conducting pore and Ca2+ 
sensor (Wang and Sigworth, 2009), the presence or absence of a 
β-subunit determines many of the channel’s functional properties 
(Salkoff et al., 2006; Torres et al., 2007). In particular, low sensi-
tivity to iberiotoxin is highly characteristic of the expression of 

members of the K
v
 potassium channel family. This family is one of 

the largest ion channel families with at least 40 members (Gutman 
et al., 2005) of six transmembrane domains. Interestingly these 
were also one of the earliest ion channels discovered in chondro-
cytes (Walsh et al., 1992; Sugimoto et al., 1996). K

v
 channels have 

now been reported in chondrocytes by a number of authors and 
have been shown to be archetypal slowly inactivating ion channels 
(Walsh et al., 1992; Wilson et al., 2004; Mobasheri et al., 2005a; 
Ponce, 2006). In essence, these channels are very similar to those 
channels found in skeletal muscle (Pallotta and Wagoner, 1992) 
and in neurones (Barrett-Jolley et al., 2000) where, in those cell 
types, they are critical for repolarization of the membrane fol-
lowing an action potential. The role of a delayed rectifier channel 
in the chondrocyte plasma membrane is far less clear. Since the 
chondrocyte exists at far more depolarized levels than neurones or 
skeletal muscle (Wright et al., 1992; Wilson et al., 2004), logic would 
suggest that these channels would be constantly inactivated. Close 
study of the mathematical relationship between voltage, time and 
fractional inactivation (Hodgkin and Huxley, 1952b) reveals that 
a certain, albeit small, proportion of these channels will remain 
active even at the relatively depolarized RMP of a chondrocyte. 
This is supported by the observation by Wilson et al. (2004) and 
Clark et al. (2010b) that TEA inhibition of the potassium channels 
does have a significantly depolarizing effect on chondrocyte RMP, 
as it does with other non-excitable cells such as those of smooth 
muscle (Telezhkin et al., 2001; Park et al., 2007).

Relatively few studies have attempted to establish the molecular 
identity of the delayed rectifier in chondrocytes. However, reports 
suggest that these channels are similar between species (chicken, 
canine, equine, and elephant) in terms of their steady-state half-
activation voltage and slope (Wilson et al., 2004; Mobasheri et al., 
2005a; Ponce, 2006). Half activation parameters range from 12 to 
25 mV; typical of K

v
 1.x or K

v
 4.x potassium channels (Coetzee et al., 

1999). Activation time constants are, however, quite fast compared 
with many K

v
 channels (Mobasheri et al., 2005a). Such rapid kinetics 

have been reported for members of the K
v
 1.x family and also homo-

meric K
v
 3.4 (Coetzee et al., 1999). The inactivation time constant 

in the order of seconds (Mobasheri et al., 2005a) is typical of K
v
 1.x, 

K
v
 2.x and K

v
 3.x channels (Coetzee et al., 1999). Together these data 

suggested that the potassium channel of chondrocytes is likely to 
be a member of the K

v
 1.x. Pharmacological data are discussed in 

(Mobasheri et al., 2005a) and are not entirely consistent for K
v
 1.x 

channels or one particular K
v
 channel. We therefore feel that the key, 

published data identifying the subunit identity of the chondrocyte 
K

v
 channels are the immunohistochemical and RT-PCR data. Such 

data have unequivocally revealed the presence of K
v
 1.4 subunits 

in equine chondrocytes (Mobasheri et al., 2005a) and K
v
 1.6 in the 

mouse (Clark et al., 2010b). Since K
v
 channels are known to exist 

as functional heteromultimers (Villalonga et al., 2010) we would 
tentatively suggest that articular chondrocytes may express K

v
 1.x, 

probably as a heteromultimer including the K
v
 1.4 or K

v
 1.6 subunits 

and probably some other, as yet unidentified, K
v
 subunit(s).

Inwardly rectIfyIng PotassIum channels
Study of inwardly rectifying potassium channels is greatly ham-
pered by a lack of selective inhibitors. Barium and chloroethyl-
clonidine are inhibitors of the strong inward rectifiers (Standen 
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small calcIum-actIvated PotassIum channels
In addition to the body of work showing the presence of BK chan-
nels, there have also been a few reports of SK activity in chondrocytes 
(Wright et al., 1996; Lee et al., 2000; Ramage et al., 2008; Funabashi 
et al., 2010b). In the study by Wright et al. (1996), osmotic shock led to 
a hyperpolarization, which was largely insensitive to iberiotoxin, but 
highly sensitive to the SK channel inhibitor, apamin. Interestingly, in 
our own study of stretch activated potassium channels in chondro-
cytes (Mobasheri et al., 2010), whilst single channel studies clearly 
identified BK channels, the hypo-osmotic hyperpolarization was 
resistant to the low concentrations of TEA which would be expected 
to block BK channels. The hyperpolarization was, however, inhibited 
by symmetrical 10 mM TEA. This was an observation consistent with 
the original observations of an SK component to the hyperpolariza-
tion shown by Wright et al. (1996), since both SK and BK are rather 
resistant to extracellular TEA (Latorre et al., 1989).

transIent recePtor PotentIal channels
Transient receptor potential (TRP) channels are a family of loosely 
related ion channels that show relatively little selectivity between 
permeable cations such as sodium, calcium, and magnesium1. 
They were initially proposed to couple hypo-osmotic shock to 
intracellular Ca2+ mobilization in chondrocytes on the basis of 
 gadolinium sensitivity (Sanchez et al., 2003), but since then  several 

BK channels consisting of both the α1 and β1-subunits (Lippiat 
et al., 2003). This correlated well with our identification of posi-
tive immunohistochemical staining of normal articular cartilage 
samples with antibodies to both α1 and β1-subunits.

In general terms, there appear to be two possibilities to explain 
the activation of BK channels by stretch. These could be termed 
either calcium dependent or calcium independent mechanisms. 
The calcium dependent hypothesis would require that stretch led 
to an increase in intracellular Ca2+ and that this activated the BK 
channel (Figure 3). Indeed a number of studies show changes in 
intracellular Ca2+ with osmotic or other mechanical challenge 
(Grandolfo et al., 1998; Guilak et al., 1999; Yellowley et al., 2002; 
Sanchez et al., 2003; Sanchez and Wilkins, 2004). The source of 
such Ca2+ is controversial, but potentially, dogma states that it 
must come from either influx (e.g., a channel or other transporter 
protein Sanchez et al., 2003; Sanchez and Wilkins, 2004; Phan 
et al., 2009) or from intracellular stores (e.g., Grandolfo et al., 
1998). The calcium independent hypothesis would involve either 
direct sensing of stretch by the channel itself, or coupling of the 
channel to other mechanoreceptors such as integrins (Mobasheri 
et al., 2002). The function of BK activation by stretch is still 
unknown, but there are a few clear possibilities. Firstly, the BK 
channel could be acting as an “osmolyte” channel (Hall et al., 
1996; Kerrigan and Hall, 2008), since activation of potassium 
conductances will allow potassium ions to leave, decrease intracel-
lular osmotic potential and facilitate regulatory volume decrease. 
Secondly, it is possible that it is the influence of the BK channel 
on the membrane potential which is critical, as it is in vascular 
tissue (Ledoux et al., 2006).

FigurE 2 | KATP channels in chondrocytes. Chondrocytes have been shown to 
express KATP channels. The function of these is generally accepted to be coupling 
metabolic status with membrane potential and thus cell activity. In other cell 
types, endogenous triggers for activation of KATP include decrease of intracellular 

ATP (Babenko et al., 1998), increase in ADP (Dunne and Petersen, 1986), 
extracellular hypoxia (Dart and Standen, 1994) or other chemical signals such as 
adenosine (Dart and Standen, 1993; Barrett-Jolley et al., 1996), angiotensin 
(Sampson et al., 2007) etc., KATP, ATP dependent potassium channel.

1 Transient receptor potential channels. Authors: David E. Clapham, Bernd Ni-
lius, Grzegorz Owsianik. Last modified on 2010-04-07. Accessed on 2010-06-24. 
IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/Family 
MenuForward?familyId=78.
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and  cytoskeletal complexes in close proximity. The presence of L-type 
(and T-type) calcium channels in chondrocytes was recently sup-
ported by Mancilla et al. (2007), however, (Sanchez and Wilkins, 
2004) found that osmotically induced changes in intracellular cal-
cium ions were not influenced by more selective L-type calcium chan-
nel blockers (including verapamil). In contrast aggrecan and collagen 
synthesis induced by electrical stimulation of cartilage is dependent 
upon the activity of VGCCs (Xu et al., 2009). Clearly, further evidence 
for the presence of this channel is needed to clarify these data.

voltage-gated sodIum channels (vgsc)
Voltage-gated sodium channels (VGSC) are integral membrane 
proteins that are activated in response to voltage-changes across the 
plasma membrane (Catterall, 1991, 1992, 1995, 2002). The presence 
of tetrodotoxin sensitive VGSC in rabbit chondrocytes has been 
reported by Sugimoto et al. (1996) and in chondrocytes from oste-
oarthritic cartilage by Ramage et al. (2008). It would be interesting 
to see how the expression of this channel fits into the control of 
the chondrocyte membrane potential, since current studies have 
failed to observe sufficient hyperpolarization of chondrocytes for 
a typical VGSC to be substantially reactivated. Under conditions 
of constant depolarization, for example, these channels would be 
permanently inactivated.

ePIthelIal sodIum channels
Epithelial sodium channels (ENaC) have been identified in 
chondrocytes both immunohistochemically (Trujillo et al., 1999) 
and functionally (Lewis et al., 2008). They are members of the 

TRP  channels have been identified in osteoarthritic cartilage by 
PCR (Gavenis et al., 2009). TRPV4 has also been identified in both 
porcine and canine chondrocytes (Phan et al., 2009; Lewis et al., 
2010) by PCR. TRPV4 is an established stretch activated channel 
and is widely regarded to be a conduit for stretch-activated entry 
of calcium ions (Nilius et al., 2004). TRPV4 has been shown to be 
a regulator of the chondrogenic SOX9 pathway (Muramatsu et al., 
2007) and the deficiency of TRPV4 in knockout mice leads to a 
loss of Ca2+ response to hypo-osmotic challenge and the onset of 
osteoarthritic changes (Clark et al., 2010a). Thus, it may be that 
by linking chondrocyte membrane stretch to calcium mobilization 
TRPV4 is key to regulation of chondrogenesis, activation of calcium 
activated potassium channels and volume regulation.

voltage-gated calcIum channels
Voltage-gated calcium channels (VGCC) are a group of calcium 
permeable voltage-gated ion channels found in excitable cells (e.g., 
muscle, glial cells, neurones, etc., Goldin, 2001; Dolphin, 2009). The 
presence of L-type VGCCs was suggested by Wright et al. (1996) 
on the basis of pharmacological inhibition of calcium dependent 
hyperpolarization by somatostatin and cadmium. It should be noted 
that whilst this is a plausible hypothesis, both somatostatin and 
cadmium affect a range of other ion channels including transient 
receptor potential channels (Carlton et al., 2004; Alexander et al., 
2008), which may be present in chondrocytes. Ultrastructural stud-
ies have confirmed the presence of L-type VGCCs in mouse limb 
bud chondrocytes (Shakibaei and Mobasheri, 2003). These channels 
appear to be organized around β-1 integrin receptors with kinases 

FigurE 3 | Activation of BK by calcium ions. A number of studies have 
identified BK channels in chondrocytes (see text), but the function of these 
channels is not confirmed. Control of RMP or volume would are two theories. It 
is suggested that they are activated by calcium ions, which could be introduced 
to the cytoplasm by either release from stores, or by entry through divalent 

cation permeant ion channels. Both of these pathways could in turn, be activated 
by either mechanical or other (e.g., inflammatory) signals. ECM, extracellular 
matrix; Ins-P3-R, inositol trisphosphate receptor; IP3, inositol trisphosphate; K(Ca), 
calcium activated potassium channels; PLC, phospholipase C; SERCA, sarco/
endoplasmic reticulum Ca 2+-ATPase; TRP, transient receptor potential channel.
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identification will be a tricky task since the ClC family is large and 
the available pharmacological inhibitors are rather non-selective 
between each of the family members (Alexander et al., 2008). In our 
own laboratories we have attempted to locate ClC-1 mRNA using the 
primers based on the sequence already identified for canine skeletal 
muscle (Rhodes et al., 1999). These studies show a lack of ClC-1, 
but as yet there have been no positive studies on chondrocytes. The 
identity was suggested to be the maxi-ClC by Yabu and colleagues 
(Sugimoto et al., 1996; Tsuga et al., 2002), but further studies will be 
needed to clarify this. The ClC identified in rabbit articular cartilage 
by Isoya et al. (2009) proved to be swelling activated, but whilst its 
molecular identity is unknown, ClC-3 was suggested as a possibil-
ity on the basis of its biophysical and pharmacological properties. 
In terms of the function of ClCs in chondrocytes, at least two clear 
possibilities exist; the first would be that they are required for set-
ting of the membrane potential as implied above, but the second 
would be that they could be important as anionic osmolyte channels. 
The latter hypothesis arises from the fact that any osmotic loss of 
K+ ions as a part of volume regulation would need to be matched 
by an effective anion loss. ClCs would be an obvious candidate to 
fulfill such a role.

aquaPorIn channels
Aquaporins (AQP) are a family of small integral membrane pro-
teins related to the major intrinsic protein (MIP), sometimes called 
AQP0 (Agre et al., 1993). The first AQP discovered, AQP1, was iden-
tified during experiments investigating the identity of the rhesus 
blood group antigens (Agre et al., 1987; Denker et al., 1988; Smith 
and Agre, 1991). Oocytes from Xenopus laevis microinjected with 
in vitro-transcribed mRNA of AQP1 (previously known as CHIP28) 
exhibited increased osmotic water permeability compared to unin-
jected controls. This observation, combined with the reversible 
inhibition induced by mercuric chloride, provided the first molecu-
lar evidence for water channels (Preston et al., 1992). Since the 
identification of AQP1 the field has expanded to now include study 
of AQP in all types of organisms. In mammals, over a dozen AQP 
have been identified. The classical AQP transport water exclusively. 
However, a second class of AQP has now been identified (Rojek 
et al., 2008), these so-called aquaglyceroporins also transport small, 
uncharged molecules such as glycerol and urea; examples include 
AQP3, AQP7, and AQP9 (Carbrey and Agre, 2009). Many models 
of chondrocyte function involve changes in volume (Hall et al., 
1996). For this to occur there must be pathways for the movement 
of water into and out of the cell. The discovery of AQP channels in 
chondrocytes would appear to provide an appropriate mechanism 
(Mobasheri and Marples, 2004; Mobasheri et al., 2004a,b; Trujillo 
et al., 2004; May et al., 2007). Whilst studies have already shown a 
loss of volume regulation with inhibition of AQP channels (May 
et al., 2007) and reductions in migration and adhesion (Liang et al., 
2008), it would be interesting to investigate whether cell survival 
or progression of osteoarthritis are also affected by AQP block or 
by AQP knockouts.

nmda channels
There have been a few reports of expression of excitatory neuro-
transmitter receptor (NMDA) channels in chondrocytes (Millward-
Sadler et al., 2001; Salter et al., 2004; Ramage et al., 2008). These are 

degenerin (DEG) and ENaC superfamily (Mano et al., 2009). ENaC 
is a heteromeric channel, formed of up to four subunits; α, β, δ, and 
γ (Canessa et al., 1994). Using immunohistochemistry, the α and β 
subunits have been shown to be present in chondrocytes (Trujillo 
et al., 1999). ENaCs are significantly more permeable to sodium 
than potassium (Eaton et al., 1995) and are sensitive to the channel 
inhibitor amiloride (IC50 100–200 nM; Alexander et al., 2008). The 
ENaCs main function in the kidney, bladder, and colon is control 
of sodium reabsorption (Rossier et al., 2002). They are found in 
lung tissue (Mall et al., 1998) and the taste buds (Lindemann, 2001) 
and are known to regulate blood volume and pressure through 
sodium balance in the cardiac system (Canessa et al., 1993). ENaC 
is known to have roles in various disease states, including cystic 
fibrosis and Liddle’s Syndrome (Snyder et al., 1995; Stutts et al., 
1995). Differential expression and up-regulation of the subunits 
between normal and disease states is thought to contribute to cel-
lular changes in disease (Burch et al., 1995; Greig et al., 2004). In 
chondrocytes the role of ENaC is less clear; however, it is thought 
to be one of mechanotransduction, possibly where the channel 
contributes to the maintenance of the RMP. This, in turn, may 
regulate signaling pathways that allow chondrocytes to maintain 
their ECM and prevent chondrocyte apoptosis (Wright et al., 1996; 
Shakibaei et al., 2001; Shakibaei and Mobasheri, 2003). It is thought 
that the mechanotransduction pathways involving ENaC become 
progressively defective during osteoarthritis, leading to a loss of 
chondroprotective mechanisms (Salter et al., 2004). It is possible 
that ENaC subunits are differentially expressed in chondrocytes, 
potentially to cope with different mechanical stresses throughout 
the zones of articular cartilage, and changes in chondrocytic prop-
erties during disease (Trujillo et al., 1999; Shakibaei et al., 2001).

chlorIde channels
The chloride channel family (ClC) is widely expressed in many tissue 
types. It was first discovered by Jentsch et al. (1990) using Xenopus 
oocytes, who isolated and sequenced the channel primary structure 
using cDNA. Using the same cDNA, ClC-1 was identified in rat 
skeletal muscle. In skeletal muscle, ClC-1 is involved in stabilization 
of the RMP (Gronemeier et al., 1994). ClCs have been identified in 
rabbit articular cartilage (Sugimoto et al., 1996; Tsuga et al., 2002; 
Isoya et al., 2009) and in OUMS-27, the human chondrocyte-derived 
cell line (Funabashi et al., 2010a). A commonly used pharmacologi-
cal inhibitor of ClCs is 4-acetamido-4′-isothiocyanatostilbene-2,2-
disulfonic acid (SITS) (Pesente and Signorile, 1979; Lefevre et al., 
1996; Vaca, 1999; Alexander et al., 2008). This and other ClC inhibi-
tors were used by Sugimoto et al. (1996) and Tsuga et al. (2002) to 
show that ClCs are important for control of the RMP. Furthermore, 
exposure of chondrocytes to high concentrations of SITS leads to 
signs of necrotic damage (Wohlrab et al., 2004) suggesting that 
activity of ClCs may be critical to the survival of chondrocytes. 
Chondrocytes may express a number of ClCs. So far the only one 
successfully identified in molecular terms is the cystic fibrosis trans-
membrane conductance regulator (CFTR) (Liang et al., 2010). This 
is particularly interesting since CFTR is known to function both as 
a channel in its own right, and as a regulator of other ion channels 
known to be expressed in chondrocytes (Mall et al., 1998; Nilius 
and Droogmans, 2003; Arniges et al., 2004). As yet no studies have 
successfully identified other ClCs expressed by chondrocytes. Such 
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conclusIons
There is growing interest in the expression and function of ion 
channels in chondrocytes. Part of this interest stems from the reali-
zation that many ion channels are involved in mechanotransduc-
tion, chemotransduction and osmoregulation. It is important to 
bear in mind that ion channels are also important drug targets 
because of their localization in the chondrocyte plasma mem-
brane. A number of research groups, including ours, have used 
electrophysiology, molecular biology and immunohistochemistry 
to study ion channels in articular chondrocytes. Table 1 contains 
a summary of the ion channels studied in the chondrocyte chan-
nelome so far. It is likely that some ion channels in chondrocytes 
are multifunctional, serving a number of different physiological 
purposes. The processes of mechanical and chemical sensing and 
metabolic regulation may well be intricately linked and make use 
of a number of ion channels as common denominators. In sum-
mary, ion channels are important for chondrocyte function and 
further investigations are required to explore the full complement 
of channels present in the chondrocyte channelome. This knowl-
edge will help us understand the unique biology of chondrocytes 
and may lead to the development and formulation of therapeutic 
strategies to treat arthritis.
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interesting observations however the role of these ligand-gated ion 
channels in chondrocyte function is not yet understood. It does not 
seem likely that they are involved with neurotransmission because, 
despite some similarities between neurone and chondrocyte pheno-
type, no “pre-synaptic” neurones project to the immediate vicinity 
of the chondrocytes. It again appears likely that NMDA channels are 
in someway involved in the mechanotransduction pathway, since 
mechanically induced hyperpolarizations are reduced by NMDA 
antagonists (Salter et al., 2004). Furthermore, glycine induces a 
number of changes on chondrocytes in cartilage explants (including 
accumulation of calcium) and these effects can be reduced with 
an NMDA antagonist as, presumably, glycine acts via the glycine 
binding site of the NMDA receptor (Takahata et al., 2008).

other Ion channels
Two further ion channels recently identified in chondrocytes are 
the acid sensing channel, ASIC1a and ASIC3 (Kolker et al., 2010; 
Yuan et al., 2010) and the connexin 43 hemichannel (Knight et al., 
2009). ASIC are very small cation selective channels closely related 
to ENaC (reviewed by Wemmie et al., 2006). As their name implies, 
they are opened by extracellular protons. This is particularly relevant 
to chondrocyte biology since chondrocytes are routinely exposed to 
relatively acidic conditions, as low as pH 6.6 for example (Wilkins 
et al., 2000). In vitro studies show that these channels mediate an 
increase in intracellular calcium upon exposure of chondrocytes 
to acidic conditions. This intracellular Ca2+ is likely to be a signal 
for production of enzymes and for proliferation. Potentially, inap-
propriate increases in calcium could result in cell death from either 
necrosis or apoptosis (Kolker et al., 2010; Yuan et al., 2010). The role 
of the connexin 43 is possibly more complex. Knight et al. (2009) 
found it to be constitutively active in about 40% of chondrocytes, 
and as such it might be expected to profoundly depolarize the mem-
brane. In summary, the suggested scheme of connexin 43 involve-
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