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Abstract

Introduction: MRI can be used to non-invasively monitor tumour growth and response to treatment in mouse models of
prostate cancer, particularly for longitudinal studies of orthotopically-implanted models. We have optimized the balanced
steady-state free precession (bSSFP) pulse sequence for mouse prostate imaging.

Methods: Phase cycling, excitations, flip angle and receiver bandwidth parameters were optimized for signal to noise ratio
and contrast to noise ratio of the prostate. The optimized bSSFP sequence was compared to T1- and T2-weighted spin echo
sequences.

Results: SNR and CNR increased with flip angle. As bandwidth increased, SNR, CNR and artifacts such as chemical shift
decreased. The final optimized sequence was 4 PC, 2 NEX, FA 50u, BW 662.5 kHz and took 14–26 minutes with 200 mm
isotropic resolution. The SNR efficiency of the bSSFP images was higher than for T1WSE and T2WSE. CNR was highest for
T1WSE, followed closely by bSSFP, with the T2WSE having the lowest CNR. With the bSSFP images the whole body and
organs of interest including renal, iliac, inguinal and popliteal lymph nodes were visible.

Conclusion: We were able to obtain fast, high-resolution, high CNR images of the healthy mouse prostate with an
optimized bSSFP sequence.
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Introduction

Prostate cancer is the most-diagnosed non-melanoma cancer in

Canadian men and the third-leading cause of cancer death [1].

Mouse models of prostate cancer are valuable for pre-clinical studies

of prostate cancer and include transgenic models such as the

Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model

[2], and xenograft models [3–5] that typically involve subcutaneous

or orthotopic (intra-prostatic) injection of cancer cells. Subcutane-

ous tumours are easy to implant and measurable with calipers, but

orthotopic tumours are superior for studies in which metastasis is

desired [6–9]. In the case of intra-prostatatic tumours, without

imaging, tumour volume can only be estimated by palpation and

then measured after sacrifice, which requires a single measurement

for each animal and potentially a large number of animals with

separate groups of mice sacrificed at multiple timepoints.

The use of magnetic resonance imaging (MRI) allows for the non-

invasive quantification of tumor size, so that multiple timepoints are

measured in each animal, allowing for smaller sample sizes and

more complete data. There is also the opportunity to manipulate the

tissue contrast to better visualize the tissue of interest and to gain

different information about pathology. The prostate is adjacent to

the bladder and surrounded by fatty tissue, which must be taken into

account when determining which imaging pulse sequence and

parameters to use. MRI has been used to monitor prostate tumour

growth in mice, primarily at high field strengths (.4T), but also at

clinical field strengths (1.5T and 3T). Most investigations have used

2D T1- or T2-weighted spin echo sequences (T1wSE and T2wSE),

but 3D imaging sequences have also been used [9–23].

The purpose of this study was to optimize 3D imaging of the

mouse prostate to achieve high SNR, high CNR and high

resolution between the prostate and surrounding tissues, using the

balanced steady state free precession (bSSFP) pulse sequence. This

SNR-efficient sequence has not previously been used for mouse

prostate imaging, and has the advantage of sensitivity to iron,

which will be useful in future studies of iron-labeled cell tracking in

a mouse model of prostate cancer.

Methods

Animals
Healthy male nude mice (5–12 weeks of age) were studied. Mice

were housed in a specific pathogen-free barrier facility in between
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scanning sessions. All animal experiments were approved by the

Animal Use Subcommittee of the University Council on Animal

Care at The University of Western Ontario following the

guidelines of the Canadian Council on Animal Care (protocol #
2006-03).

MRI
Scans were performed on a 3T GE Excite MR750 system using

a custom-built high-performance gradient insert with an inner

diameter of 17.5 cm, maximum gradient strength of 500 mT/m

and peak slew rate of 3,000 T/m/s, and a custom solenoidal

whole-mouse body RF coil 4 cm in length and 3 cm in diameter.

For live mouse imaging, mice were anaesthetized with isoflurane

(2% in oxygen) and placed supine in the coil, warm saline bags

were taped near the RF coil to maintain body temperature, and

the mice were wrapped with gauze and tape for consistent

positioning and to minimize motion artifact due to respiration. For

ex vivo imaging, a mouse was euthanized by euthanyl then

immediately scanned in the same manner.

Images acquired using the bSSFP pulse sequence had the

following parameters at 200 mm isotropic spatial resolution. For

axial scans, the field of view (FOV) was 363 cm (14 minutes) or

464 cm (20 minutes), and for coronal scans it was 663.3 cm

(26 minutes). The flip angle (FA) was varied between 30u, 40u and

50u. The receiver bandwidth (BW) was varied from 631.25,

641.67, 662.5 and 683.3 kHz. Repetition time (TR) was

automatically set by the scanner software in accordance with

BW and FOV, and echo time (TE) was set to be half of TR. Thus,

TR ranged from 3.3–4.6 ms and TE from 1.7–2.3 ms. The

number of signal averages (NEX) ranged from 1–4. An RF phase

cycling scheme with a sum of squared reconstruction was

implemented and the number of phase cycles (PC) was varied

between 2–8. Axial bSSFP images (FOV 363 cm, 14 minutes)

were compared with the more traditionally-used spin echo (SE)

images acquired with the following parameters: axial orientation,

FOV 363 cm, TR/TE = 600/25 ms (T1w), 2000/70 ms (T2w),

1 mm slice thickness, 1286128 matrix, 234 mm in-plane resolu-

tion, and acquisition time of 20 (T1w) or 17 (T2w) minutes.

Image Analysis
Images were compared based on signal to noise ratio (SNR),

contrast to noise ratio (CNR), and presence of artifacts such as

chemical shift. SNR was calculated as the mean signal from the

hindlimb muscle divided by the standard deviation of the

background signal. CNR was calculated as the difference in

SNR between the prostate and the surrounding fatty tissue. In

order to compare sequences with different scan times and slice

thicknesses, SNR efficiency was calculated as the SNR divided by

the square root of the scan time (in minutes) and was normalized

by slice thickness (in mm).

Results

Effect of phase cycles and averaging
Phase cycling is used with the bSSFP sequence to avoid the

appearance of characteristic dark banding artifacts that are caused

by sensitivity to local field inhomogeneities and which degrade

image quality considerably. Figure 1 shows the effect of phase

cycling (2, 4 and 8 PC) and averaging (4, 2 and 1 NEX) on

prostate image quality in a sacrificed mouse. All scans took

20 minutes. SNR values did not vary significantly with different

amounts of phase cycling, and CNR was highest for 4 PC, 2 NEX

and 8PC, 1 NEX. There was no banding artifact in any of the

images. The shape of the prostate in these ex vivo images is

different from the prostate in vivo due to deflation of the bladder

in the sacrificed mouse. For all future bSSFP acquisitions, 4 PC

and 2 NEX were used.

Effect of bandwidth and flip angle
When flip angles were compared, image SNR (based on muscle

signal) was approximately equal between flip angles, ranging from

20 to 23 (Figure 2). CNR increased with flip angle, with values of

40, 54 and 77 for 30u, 40u and 50u, respectively. With a flip angle

of 50u, the best SNR and CNR was obtained with a bandwidth of

631.25 kHz (SNR = 25, CNR = 116); however, there were

artifacts such as a slight chemical shift between the urethra and

prostate tissue, as well as a blurring of the edges of the prostate, at

the lowest bandwidth (D) compared to the highest bandwidth (F).

When the bandwidth was set to 662.5 kHz, the artifacts were

reduced with a higher CNR than was seen at a bandwidth of

683.5 kHz.

Comparison of bSSFP with T1w and T2w SE
Axial scans of a mouse were acquired with bSSFP with 4 PC, 2

NEX, FA 50u and BW 662.5 kHz (14 minutes) as determined

above and compared to T1wSE (20 min) and T2wSE (17 min)

scans with parameters as indicated in the methods section

(Figure 3). The T1wSE image had the highest CNR of the

Figure 1. Effect of phase cycling and averaging on ex vivo prostate image quality. Cropped and enlarged sections of axial scans: A: 2 PC, 4
NEX, B: 4 PC, 2 NEX, C: 8 PC, 1 NEX. Black arrowheads indicate prostate, white arrowheads urethra, FP is the fat pad used for CNR measurements and
LN are the inguinal lymph nodes. Scale bar is 1 cm. Axial scan, FOV 464 cm, 200 mm isotropic resolution, TR/TE = 3.9/2.0 ms, FA 30u, BW 662.5 kHz,
20 minutes.
doi:10.1371/journal.pone.0018361.g001

Mouse Prostate MRI with bSSFP Sequence
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prostate relative to the surrounding fat (114), compared to 84 for

the bSSFP image and 12 for the T2wSE. While the overall SNR

was highest for the T1wSE image at 41, it must be noted that the

slice thickness for the bSSFP, which had an SNR of 17, was

0.2 mm, compared to 1 mm for T1wSE. The SNR for the

T2wSE, also acquired with 1 mm slices, was 16. The SNR

efficiency was calculated and normalized by slice thickness: the

bSSFP had the largest SNR efficiency at 23, compared to 9 for the

T1wSE and 3 for the T2wSE.

3D nature of bSSFP
Since bSSFP is a 3-dimensional sequence, the image can be re-

oriented to view the prostate from any angle (Figure 4). This is

valuable to visualize the morphology and size of the prostate. A

simple re-orientation of the scan plane and enlargement of the

field of view allows for acquisition of whole mouse-body images, in

a short scan time, that include clear views of the prostate and other

organs of interest, such as lymph nodes and lymph vessels

(Figure 5).

Figure 2. Effect of flip angle and bandwidth on prostate visibility and artifacts. Flip angle of A: 30u vs B: 40u vs C: 50u at BW of 662.5 kHz.
Bandwidth of D: 631.25 kHz vs E: 662.5 kHz vs F: 683.3 kHz. Red arrowheads indicate prostate boundaries. White arrows point to fat pad used for
CNR calculations (FP) and to inguial lymph nodes (ILN). Scale bar is 1 cm. Scan parameters: Axial scan, FOV 363 cm, 200 mm isotropic resolution, TR/
TE = 3.3–4.6 ms/1.1–2.3 ms, 4 PC, 2 NEX, 14 minutes.
doi:10.1371/journal.pone.0018361.g002

Figure 3. Comparison of in vivo axial views acquired with A: bSSFP, B: T1wSE and C: T2wSW. Black arrows indicate prostate, white arrows
indicate urethra. Scale bar is 1 cm. bSSFP images acquired using optimized sequence with 363 cm FOV. Spin echo sequences acquired with axial
orientation, FOV 363 cm, TR/TE = 600/25 ms (T1w), 2000/70 ms (T2w), 1 mm slice thickness, 1286128 matrix, 234 mm in-plane resolution, and 20
(T1w) and 17 (T2w) minutes acquisition time.
doi:10.1371/journal.pone.0018361.g003

Mouse Prostate MRI with bSSFP Sequence
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Discussion

MRI measurements of the mouse prostate are desirable for

visualizing the prostate over time with the flexibility of being able

to manipulate contrast. An advantage of MRI is sensitivity for

early detection: measurements of the long and short axes of the

prostate in 2D T1wSE images acquired at 7T were able to detect

prostate cancer 4 weeks sooner than by palpation [12,16].

Previous work on imaging the mouse prostate has been

primarily with 2-dimensional T1W [12,16,19,21] or T2W

[9,11,18–20,22,23] spin echo pulse sequences that provide only

a single orientation for viewing. With these 2D sequences it is often

necessary to use thick slices in order to obtain a reasonable SNR in

a reasonable scan time – these have been as high as 500–2000 mm

[14,15,19,22,23] sequences, although in one case it was reduced to

50 mm when field strength was increased to 4.7T from 1.5T [10].

In plane resolution is higher, typically ,100 mm. Three-

dimensional sequences such as T1W and T2W fast spin echo

and fast low angle shot also yield a variety of slice thicknesses from

300–2000 mm and in-plane resolutions of ,80–400 mm at clinical

and high field strengths [11,13–15,17].

Even at high field strength, scan time can be quite long, for

example 2.5 hours with an additional hour for setup [18]. While

this protocol at 7T allowed for impressive discrimination of the

ventral from the dorsolateral lobes of the prostate using a 2D

T2WSE sequence with CHESS (chemical shift selective sequence),

this scan time is impractical for studies involving more than a few

mice. More reasonable scan times of 10–15 minutes at 7T were

achieved through the use of techniques such as RARE and multi-

echo sequences [9,11].

Techniques for enhancing prostate contrast include using a long

TE and fat saturation in a 5–15 minute 2D fast spin-echo (FSE)

Figure 4. 3 views of prostate from one in-vivo scan. A: axial, B: coronal, C: sagittal. White arrows indicate prostate. Scale bar is 0.5 cm. Axial
scan, FOV 363 cm, 200 mm isotropic resolution, TR/TE = 4.6 ms/2.3 ms, 4 PC, 2 NEX, FA 50u, BW 662.5 kHz, 14 minutes.
doi:10.1371/journal.pone.0018361.g004

Figure 5. Sections of coronal view of mouse with prostate and lymph nodes identified. Tail is at left, head at right. White arrows indicate
organs of interest as follows. A: popliteal lymph nodes; B: prostate; C: iliac lymph nodes; D: inguinal lymph nodes with lymph vessels visible; E: Renal
lymph nodes. Scale bar is 0.5 cm. Coronal scan, FOV 663.3 cm, 200 mm isotropic resolution, TR/TE = 4.6/2.3 ms, BW 662.5 kHz, FA 40u, 8 PC, 2 NEX,
26 minutes.
doi:10.1371/journal.pone.0018361.g005

Mouse Prostate MRI with bSSFP Sequence
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scans at 3T [19]. Also at 3T, a 3D fast low-angle shot sequence

with fat suppression was used to obtain scans with 400 mm

isotropic voxel size in 10 minutes [17]. Additionally, fat suppres-

sion by saturation pre-pulses has been used at 7T [9,17–19].

Gadolinium has also been used to enhance contrast [21,24]. Other

methods of visualizing prostate tumours include using diffusion

weighted imaging, which improved detection of small tumours

(,1mm in diameter) compared to T2W imaging in a transgenic

mouse model of prostate cancer [20].

In this study, we did not use any additional contrast enhance-

ment techniques such as fat suppression; consequently, the seminal

vesicles were not detectable from the surrounding fat in healthy

mice. It is common for prostate tumours to spread to the seminal

vesicles; however, the seminal vesicles can be completely destroyed

by large prostate tumours [16], and the tumour-fat contrast may

be different from healthy seminal vesicle-fat contrast. Nevertheless,

it might be helpful in the future to exploit the chemical shift

artifact of the second kind to suppress mixed water-fat pixels using

a TE and TR such that the water and fat frequencies are out of

phase; fat-tissue interfaces would be black. However, the TR

would have to be increased, leading to a longer scan time [25].

The bSSFP pulse sequence is very SNR efficient and produces

unique T2/T1 contrast [26]. This sequence has been recently

applied to investigations of glioma in the mouse brain [27,28]. A

challenge presented by bSSFP, however, is its high sensitivity to

local field inhomogeneities. The result is a characteristic ‘‘banding

artifact’’ that worsens at higher field strengths and with longer TR

[26]. Multiple acquisition RF phase cycling techniques ameliorate

this problem and have allowed for bSSFP imaging at higher field

strengths and with longer TR [28,29].

Although the sensitivity of bSSFP to local field inhomogeneities

can be problematic, it has also been what has enabled this

sequence to be used for highly sensitive cellular imaging, which has

allowed the detection of iron-labeled single cells and cell clusters at

1.5 T and 3 T [30–35]. This feature of bSSFP may be useful in

mouse models of prostate cancer for detecting and monitoring

metastases.

We have obtained excellent high resolution, high SNR images

of the healthy mouse prostate in a relatively short scan time using

the bSSFP pulse sequence. For our mouse studies, this was

achieved using a custom-built high-performance gradient insert on

a clinical 1.5T system. While the maximum strength of the

insertable gradient coil used in this study is 500 mT/m, we

operated below this. For example, with receiver BW of 662 kHz,

and FOV of 3cm, (gamma is 4257 Hz/g), the strength of the

readout gradient is approximately 10g/cm = 100mT/m [G(read-

out) = 2*BW/(gamma*FOV)]. The gradient strength used to

excite the slab is also far below this maximum strength since a

thick slab is used that encompasses the whole mouse body. Clinical

gradients of 50 mT/m and higher are now available on whole

body scanners; therefore, b-SSFP protocols similar to that used in

this study are not out of the question for modern-day clinical

gradients.

In conclusion, this study shows that with optimized imaging

parameters, 3D mouse body images acquired with bSSFP allow

for the simultaneous visualization of the prostate and its draining

lymph nodes, the iliac and renal lymph nodes, as well as the

nearby inguinal and popliteal lymph nodes. The ability to detect

both the prostate and the lymph nodes in a single fast, high-

resolution scan will be useful for studies that aim to investigate

prostate cancer metastasis.
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