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ABSTRACT: The lack of accurate methods for predicting the viscosity of solvent
materials, especially those with complex interactions, remains unresolved. Deep
eutectic solvents (DESs), an emerging class of green solvents, have a severe lack of
viscosity data, resulting in their application still staying at the stage of random trial and
error, and it is difficult for them to be implemented on an industrial scale. In this work,
we demonstrate the successful prediction of the viscosity of DESs based on the
transition state theory-inspired neural network (TSTiNet). The TSTiNet adopts
multilayer perceptron (MLP) for the transition state theory-inspired equation
(TSTiEq) parameters calculation and verification using the most comprehensive DESs
viscosity data set to date. For the energy parameters of the TSTiEq, the constant
assumption and the fast iteration with the help of MLP can allow TSTiNet to achieve
the best performance (the average absolute relative deviation on the test set of 6.84%
and R2 of 0.9805). Compared with the traditional machine learning methods, the
TSTiNet has better generalization ability and dramatically reduces the maximum relative deviation of prediction under the
constraints of the thermodynamic formulation. It requires only the structural information on DESs and is the most accurate and
reliable model available for DESs viscosity prediction.

■ INTRODUCTION
Solvent materials occupy a strategic position in the fields of
biology, pharmacy, medical treatment, chemistry, and chemical
engineering.1−5 Green chemistry requires us to use green
solvents that are nontoxic and harmless to the human body
and the environment. Deep eutectic solvents (DESs) are
expected to achieve the design of chemical processes without
utilizing or generating harmful chemicals, due to their unique
physical and chemical properties such as low vapor pressure,
high thermal stability, low flammability, high solubility, wide
liquid range, and designable structures.6 The synthesis of DESs
is 100% atomically economical, requiring only simple mixing of
the components, without waste generation and further
purification steps.7 These attractive properties make it a
potential substitute for conventional organic solvents and ionic
liquids, and some breakthroughs have been made in the fields
of gas absorption,8,9 extraction and separation,10,11 bioengin-
eering,12 nanotechnology,13 analytical chemistry,14 cataly-
sis,15,16 etc. Although DESs have received widespread
attention, the serious lack of viscosity information has caused
their application to remain in the stage of random trial and
error, and it makes it difficult to apply them on an industrial
scale.17,18

Viscosity is internal friction or resistance to the flow caused
by intermolecular interactions and is very important in all
physical processes involving fluid movement or component
dissolution. Viscosity information determines dimensions for a
pipe system, specifications for pumps or heat exchangers, the

operability of the mixing and separation process, and the
application of the product. Understanding the viscosity of
DESs is considered a top priority in investigating their
applications in different fields and designing the application
processes. To obtain viscosity information on the immeasur-
able number of DESs (the theoretical possible combinations of
components that exhibit eutectic behavior are unlimited19,20),
accurate determination of their viscosity must be done. Most of
the proposed viscosity models of DESs are based on a limited
database and are applicable for only one kind of DES or for
only a limited database of DESs. For example, the viscosity
model for choline chloride-based DESs21 and the viscosity
model that only applies to hydrophobic DESs22 belong to the
former. The latter is common in applications based on some
small modeling databases. For example, the models are
proposed to predict the viscosity of 27 different DESs through
cubic plus association (CPA) and perturbed chain-statistical
associating fluid theory (PC-SAFT) equations of state (EOSs).
Coupling with the friction theory23 or free volume theory,24

their models have deviations of 4.4% and 2.7%, respectively. It
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can be seen that such models can generally achieve small
average absolute relative deviation (AARD), but, limited by
their small scope of application, the practicability of this kind
of model is low. There is only one viscosity model considering
all types of DESs to date.25 However, it is a regression model
that requires some experimental viscosity data as inputs.
Besides, the AARD of the model is as high as 10.4%, and
maximum absolute relative deviation (MARD) achieves 83.9%.
This result is still unsatisfactory. To predict the viscosity of
DESs accurately and efficiently, it is necessary to develop a
comprehensive prediction model with an extensive database
covering every type of DESs and small prediction deviation.
The use of machine learning in physicochemical properties

modeling has great potential to accelerate the discovery and
application of emerging solvent materials. The neural network
(NN) is currently one of the most commonly used machine
learning methods.26−28 With powerful abilities of feature
extraction and function learning, NN has arisen as a potential
and very suitable approach in quantitative structure−property
relationship (QSPR) models and quantitative structure−
activity relationship (QSAR) models.29−33 However, the
main weakness of the plain NN model is its poor portability.
The prediction of the plain NN model is only driven by the
stack of data, while the laws of physics are omitted. Hence, for
an uneven data set (e.g., the viscosity data set has a large
proportion of low viscosity data points), the plain NN models
have difficulty capturing the correct input−output relationships
in the region of the low proportion part in the data set.34

Unfortunately, the data distribution is always biased. The data
augmentation method is one possible way to alleviate this
problem.35 However, research on the data augmentation
method for molecules is still in its early stages, especially in
the field of molecule property prediction. In contrast to the
most prominent fields of NN applications (e.g., computer
vision, natural language processing), most physicochemical
characteristics have theoretical or semiempirical equations that
are represented by temperature and molecular information. A
more efficient and feasible way is to combine the prior
knowledge of humans with machine learning methods, and it
has been proven to do well in various fields.36−38

Absolute rate theory39 and free volume theory40 based on
transition state theory are currently the most commonly
accepted theoretical models for calculating the viscosity of pure
liquids. By introducing appropriate mixing rules, we establish a
transition state theory-inspired neural network (TSTiNet)
model, which needs only structural information on DESs. It is
the most accurate and reliable model currently available for
viscosity prediction of DESs. This work provides an initiative
to develop reliable models to predict the viscosity of DESs and
promote the application and inverse design of DESs.

■ RESULTS AND DISCUSSION
Data Analysis. The database of the viscosity of DESs

covers the viscosity values from 1.3 to 85 000 mPa·s, which
confers higher chances of solvent manipulations to design task-
specific solvents. As shown in Table 1, DESs are divided into
five categories according to their compositions: (I) the
combination of organic salt and metal salt, (II) the
combination of organic salt and hydrated metal salt, (III) the
combination of organic salt and nonionic hydrogen bond
donor (HBD), (IV) the combination of hydrated metal salt
and nonionic HBD, and (V) the combination of nonionic
hydrogen bond acceptor (HBA) and nonionic HBD. The

number of different types of DESs investigated in this work is
shown in Figure 1A. Type I, II, and IV DESs have fewer
examples in the database because of the limitation of hydrated
and nonhydrated metal halides.41 Type III and V DESs have
the most, as they are usually selected from a wide range of
natural compounds and thus are less toxic and less expensive
than other classes.42

The viscosity of DESs is a function of temperature.43 In this
work, the 2229 data points collected have a wide temperature
range of 278.15−378.15 K, which is the operating temperature
range of most solvents. As shown in Figure 1B, we divide the
temperature range into 5 equal intervals, and each range
includes at least 50 data points, which shows the temperature
distribution in our data set is balanced. This feature is helpful
for the viscosity model to learn the relationship between
viscosity and temperature.
The histogram in Figure 1C shows a bimodal distribution of

the viscosity values with 1000 mPa·s as an interval. Most data
points are at a viscosity of less than 1000 mPa·s, and few data
points are in the high viscosity region. That is because solvents
with low viscosity are often of more interest due to energy
consumption considerations. The imbalanced data distribution
leads to poor performance of machine learning models in the
region of high viscosity.44−49 Although limited information is
available, the prediction of viscosity of DESs in the high-value
region is very meaningful in the field of daily chemicals and
petroleum chemicals. Taking the applications of DESs as
lubricants as an example, the oil film with too low viscosity is
unstable and easy to break, and a higher viscosity is preferred.
Viscosity Model from Transition State Theory.

Transition state theory regards chemical reactions and other
processes as continuous changes in the relative positions and
potential energies of the constituent atoms and molecules.
There is an intermediate configuration on the path between
the initial and final arrangements of atoms or molecules, at
which the potential energy has a maximum value. The
configuration corresponding to this maximum is known as
the activated complex, and its state is referred to as the
transition state.50 Both absolute rate and free volume theories
of liquid viscosity based on the transition state theory are
widely accepted for calculating the viscosity of pure liquids.51

Both theories are based on the assumption of a quasi-
crystalline liquid structure.52 The flow process of Newtonian
fluid can be expressed as

X X Y
E

(1)

After the molecule at position X obtains the activation energy
E, the activated molecule X′ will move to the new vacancy Y.
That is, a molecule is considered to be vibrating near the
equilibrium position; when it has enough energy and there is a
free space, the molecule will jump to a new equilibrium
position. The probability of this jump pj can be expressed as

p p pj E v= × (2)

Table 1. General Formula for the Classification of DESs

type general formula terms

Type I Cat+X− + zMClx M = Zn, Sn, Fe, Al, Ga, In
Type II Cat+X− + zMClx·yH2O M = Cr, Co, Cu, Ni, Fe
Type III Cat+X− + zRZ Z = CONH2, COOH, OH
Type IV MClx + RZ M = Al, Zn; Z = CONH2, OH
Type V RZ1 + RZ2 Z1,2 = OH, COOH
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where pE is the probability of attaining sufficient energy to
cross the barrier, and pv is the probability that there is sufficient
local free volume for a jump to occur.
The absolute rate theory simplifies the processing of all

pores in the fluid to have the same volume, so that the
temperature dependence of viscosity is simplified to determine
the number of possible jumps for molecules to cross the barrier
at different temperatures. This simplification leads to
inaccurate calculation of pv. The free volume theory considers
a liquid composed only of hard balls and repulsive force, and
successfully deduced the distribution of pore sizes in the fluid.
However, this theory ignores the role of attraction and is
incomplete in calculating the probability pE of molecular
transitions. It was found that in a narrow temperature range,
either the absolute rate theory or the free volume theory can fit
the experimental data well. However, in a wide temperature
range, neither equation can successfully depict the viscosity−
temperature relationship. For this reason, the concept of
combining absolute rate and free volume theories was
proposed to depict the Newtonian viscosity of liquid under
various temperatures.53

According to the definition of Newtonian viscosity,
considering two layers of molecules in a liquid, at a distance
λ1 apart, the force f applying on per square meter makes one
layer slide past the other. The difference in the velocity of the
two layers is Δu. Then the viscosity η is equal to

f
u
1=

(3)

Absolute rate theory describes the process as molecules
crossing the barrier from one equilibrium position to another.

u
f

kT
2 sinh

2
2 3=

i
k
jjjj

y
{
zzzz (4)

where λ is the distance between the two equilibrium positions
in the direction of movement; λ2 and λ3 are the average
distances between two adjacent molecules in the moving layer
perpendicular and the same to the direction of the movement,
respectively. κ is the number of times a molecule passes over
the barrier per second; k is Boltzmann’s constant, and T is the
absolute temperature.
Substitution in eq 3 then gives

f
f kT2 sinh( /2 )

1

2 3
=

(5)

For normal viscous flow, f is relatively small, and since λ, λ2,
and λ3 are all about molecular dimensions, it follows that 2kT
≫ fλ2λ3λ. It is thus possible, in expanding the exponentials
included in eq 5, to neglect all terms beyond the first, and the
result is

kT1

2 3
2=

(6)

Although λ is not necessarily equal to λ1, the two quantities are
of the same order of magnitude and if, as a first approximation,
they are taken to be identical (λ = λ1). The product λ2λ3λ1 is
approximately the volume inhabited by a single molecule in the
liquid state, and hence it may be put equal to V/N, where V is

Figure 1. Number of DESs’ viscosity data on the training set and test set. (A) Number of DESs’ viscosity data in different types. (B) Number of
DESs’ viscosity data in the different temperature ranges. (C) Number of DESs’ viscosity data in different viscosity value ranges.
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the molar volume and N is the Avogadro number; then eq 6
can be written as

NkT
V

=
(7)

If E is the standard free energy of activation per mole, κ is
given by

kT
h

E Texp( /R )=
(8)

where R is the gas constant; substitution in eq 7 then gives the
classic absolute rate viscosity model54

hN
V

E Texp( /R )=
(9)

According to the free volume theory, the pore size distribution
can be obtained as

P v
r

V
rv V( ) exp( / )

f
f=

i
k
jjjjj

y
{
zzzzz (10)

then P(v) is the probability of finding the free volume v nearby.
The average free volume per molecule is Vf. The constant r is a
numerical factor needed to correct for the overlap of free
volume. Assuming that a minimum local free volume V* is
necessary for a jump to occur, one can calculate the probability
of finding V* and thus the jump probability pv.

p P v v rV V( ) d exp( / )
Vv f= = *

* (11)

So we can get the classic free volume viscosity model55

A
p

A rV Vexp( / )
v

f= = *
(12)

Although these two viscosity models have shortcomings, the
absolute rate model fully expresses pE, while the free volume
model expresses pv better.

p E RTexp( / )E (13)

p rV Vexp( / )v f* (14)

The quasi-crystalline theory of liquid viscosity assumes that the
viscosity is inversely proportional to the jump probability.
Combining the absolute rate and free volume theories, the
viscosity of a liquid can be described as follows,

A p p A
E
T

rV
V

/ exp
RE v

f
= = +

*i
k
jjjjj

y
{
zzzzz (15)

quantity V* should be close to V0, the close-packed molecular
volume per mole, and Vf is defined as

V V Vf 0= (16)

This hybrid equation has been applied to many types of liquid
including polyatomic van der Waals as well as hydrogen-
bonded liquids.56

One method for obtaining Vf is to assume that the free
volume is the total thermal expansion at constant pressure
where V0 is considered to be independent of temperature, and
then, Vf can be obtained approximately by

V V T T( )f 0= (17)

where α is the thermal expansion coefficient, and T0 is the
temperature of completely ordered material.
For this case, eq 15 can be rearranged as,

A
E
T T T

exp
R ( )0

= +
i
k
jjjjj

y
{
zzzzz (18)

where

rV V/0= (19)

As mentioned before, the composition of DES will affect its
viscosity. It is found that57 the DES system formed using
glycerol as the HBD and different types of ammonium salts as
the HBA has the viscosity decreasing along with the reduced
molecular weight of the DES. Hence, in this work, we assumed
that Aη varied with My, and eq 18 thus could be expressed as

AM
E
T T T

exp
R ( )

y

0
= +

i
k
jjjjj

y
{
zzzzz (20)

A, E, α′, T0, and y are adjustable parameters. Equation 20 can
be used to correlate viscosity data of liquids, and these
adjustable parameters can be obtained if viscosity-temperature
data is available.
For temperatures ranging from the melting point to the

normal boiling point, eq 20 can be expressed in a more general
form as follows,

T T
Mln ln0

1 2
3= + + +

(21)

Assuming the temperature of completely ordered material (β)
is ideal, the difference between different substances is slight.
To simplify the model, in this work, we assume that β is a
constant, and the adjustable parameters α0, α1, α2, and α3 are
only molecules dependent.
Therefore, according to the Grunberg−Nissan method,58

the viscosity of the binary nonideal mixture DES can be
expressed as follows (which is called as TSTiEq):

x
T T

x M x x G

ln

ln( )
1
2

(1 )

i
i i

i i
i

i i i i

DES
HBA,HBD

0,
1, 2,

3,= + + +

+

=

i
k
jjjj

y
{
zzzz

(22)

where ηDES is the viscosity of DES, x is the mole fraction of the
component, M is the molecular weight of the component, α0,
α1, α2, and α3 are the structural parameters. G is the interaction
factor of the component HBA and HBD. Both β and G are the
energy parameters. To simplify the model, we supposed that
the values of G, namely, GI, GII, GIII, GIV, and GV, are the same
for the same type of DES, which has been proved to be
reasonable in our previous work.59,60

NN vs TSTiNet. Many metrics can be chosen to evaluate
the performance of the models. Since our database has an
extensive range of viscosity, the frequently used mean square
error (MSE) and mean absolute error (MAE) are not suitable
for evaluating the performance of the models. Therefore, we
evaluate both models using AARD, MARD, and the coefficient
of determination (R2). AARD can tell the average performance
of the model on the data set. MARD and R2 can tell the
reliability of the model, which is essential for practical
applications.
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Figure 2 shows the network architecture of the TSTiNet
model. As shown in Figure 2, we use three multilayer

perceptrons (MLPs) to calculate the parameters in TSTiEq,
and each MLP has different inputs. In addition to the TSTiNet
model, we also implement a plain NN model to predict DESs’
viscosity as a comparison. The plain NN model takes all
features as inputs to calculate logarithmic viscosity directly, and
the architecture of the NN model is as same as the MLP in the
TSTiNet.
The training process and performances of both models are

shown in Figure 3, and the metrics are provided in Table 2. As
shown in Figure 3A, neither model falls into severe overfitting,
which indicates both models achieve a trade-off between
variance and bias. Figure 3B shows a scatter chart correlating
the predicted and reported viscosity values of the training and
test sets. The calculated viscosity of DESs using the TSTiNet
model displays a better agreement with the corresponding
experimental viscosity data than that of the plain NN model. It
can be seen that most of the data points are close to the
identity line on both models, but some noticeable deviation
points appear in the plain NN model. Although the plain NN
model has a higher R2 on the training set (R2 = 0.9999), it has
an unacceptable R2 on the test set (R2 = 0.7464). In
comparison, the TSTiNet model achieves high R2 on both
training and test sets (training set R2 = 0.9997 and test set R2 =
0.9805). Besides, to ensure a better understanding of the
results, the distribution of relative deviations (RD) between
the literature and the predicted viscosity on the training and
test sets is shown in Figure 3C. Although most data points in
the plain NN model are closer to the line with RD = 0, some
data points are far from that line. As mentioned in the Data
Analysis section, most models based on machine learning are
not good at predicting the region of high viscosity. Thus, we
can see that the points with the most significant deviation in
the plain NN model are located in the right area of the figure.
In contrast, the RD distribution in the TSTiNet model is more

evenly on the line with RD = 0, and there are not many large
deviation points appearing in the right region. The box plots of
different types of DESs are plotted in Figure 3D. It can be seen
that the plain NN model has very low median absolute relative
deviation (ARD) (all less than 5%) for different types of DESs
but has many outliers. Further, what is even more difficult to
accept in the plain NN model is that some outliers have
significantly large values, especially in the type IV DESs. This is
further reflected in Figure 3E: the number of data points of
ARD > 25% on the TSTiNet model (1.61%) is less than that of
the plain NN model (2.69%). This result indicates that the
TSTiNet model has a stronger generalization ability than that
of the plain NN model. In other words, the TSTiNet model
can predict the full range of data under the condition of an
uneven distribution of data points.
More detailed information can be found in Table 2. Table 2

shows that the TSTiNet model has comparable AARD with
the plain NN model but performs better on the metrics of R2

and MARD. The plain NN model has a smaller AARD, which
may be attributed to the fact that the plain NN model has
learned a more complicated formula than the TSTiNet model.
In the TSTiNet model, the relationships between viscosity and
molecular weight, mole fraction, type of DES, and temperature
are described by TSTieq whose formula is fixed. The
constraints of the equation make the TSTiNet model perform
slightly worse in AARD. However, from another perspective,
the equation derived from viscosity theory can also limit the
model from fitting incorrect relationships. In contrast, the plain
NN model is completely driven by data, causing it tp not be
well trained in some regions with few data points. Therefore,
the plain NN model has worse performance on R2 and MARD.
In short, although the plain NN model with more flexibility
can get good results in most data points, it is this flexibility that
makes the plain NN model susceptible to the uneven data set
in the training set, which makes the reliability of the model
poor. In contrast to the plain NN model, the TSTiNet model
can give a better prediction on all data sets with high R2, which
indicates that the TSTiNet model has better generalization
ability. In industrial applications, the reliability of the model is
of paramount importance. Since the TSTiNet model can
accurately predict the viscosity of DESs in the full viscosity
range and all types of DESs, it is a more appropriate model to
be applied in the prediction of the viscosity of DESs.
As a comparison, we also test the performance of other

traditional machine learning methods (random forest, gradient
boosting, and LightGBM), after hyperparameter optimization,
all the models cannot get comparable performance with
TSTiNet (R2 > 0.9, MARD < 50%). More detailed
comparisons and discussions are shown in Supporting
Information. To give a more comprehensive perspective of
the proposed model, we also explore the relationships between
viscosity with temperature, mole fraction, and types of HBA
and HBD (as shown in Supporting Information), and the
results show that the trends of model prediction value and
experimental value matched very well.
Ways to Train the Energy Parameters. The energy

parameters refer to β and G in TSTiEq. These two parameters
are closely related to the intramolecular or intermolecular
interaction energy.61 The parameter β affects the relationship
between viscosity and temperature, and the parameter G affects
the relationship between the viscosity of DESs and the type of
HBA and HBD. Therefore, it is crucial to fit the energy
parameters accurately. To achieve a more accurate viscosity

Figure 2. The network architecture of the TSTiNet model. The
model takes the structure information, molecular weight, mole
fraction, types of DESs with one-hot encoding, and temperature as
input features. Then the model uses two MLPs to calculate structural
parameters with molecular structures of HBA and HBD, respectively.
Besides, the model uses one MLP to calculate energy parameters with
all input features. It should be noted that the energy parameters are
treated as constants. In other words, the final value of the energy
parameters is the average of the values on the training set. The
molecular weight, mole fraction, types of DESs, and temperature are
directly driven into the TSTieq. Then TSTieq gives the final value of
the logarithmic viscosity of DESs.
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Figure 3. Training processes and performances of the plain NN model and the TSTiNet model. (A) Learning curve of the TSTiNet model and the
plain NN model. An epoch is when all the training data pass through the network during the training phase. (B) Correlation between the predicted
and reported viscosity values of data sets. The achieved R2 on the training set and test set are given on the top. (C) Relative deviations between the
literature and the predicted viscosity in both data sets. (D) Box plots of ARD on different types DESs. Each box shows the interquartile range (IQR
between Q1 and Q3) for the corresponding set. The central mark (horizontal line) shows the median, and the whiskers show the rest of the
distribution based on IQR (Q1 − 1.5 × IQR, Q3 + 1.5 × IQR). Data outside of this range are considered outliers and represented by dark dots. (E)
Percentage of ARD on the test set in different ranges, which are <5%, 5−15%, 15−25%, and >25%.
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prediction model, we examine three methods to fit the
parameters.
Given that the energy parameters are theoretically related to

the structure information of HBA and HBD, molecular
weights, temperature, etc., we first take all features as input
to train an MLP model, whose outputs are the energy
parameters. The viscosity prediction model including this MLP
is called TSTiNet-variables. As shown in Table 2, although the
TSTiNet-variables model has a higher R2, lower MARD, and
comparable AARD compared with the NN model, its R2 and
MARD are still unacceptable. A possible explanation for this
result is that all the features are involved in the training of the
MLP for energy parameters in the TSTiNet-variables model;
then the model will approximate the NN model to achieve a
lower loss. For example, if the outputs of the MLPs for
predicting structure parameters (α0, α1, α2, α3) get all zeros,
the TSTiEq will degenerate to

x x Gln DES HBA HBD= (23)

This shows that the viscosity prediction is similar to the
prediction of G. This similarity makes the TSTiNet-variables
model and the NN model behave similarly (all have bad R2 and
MARD).
To prevent the TSTiNet model from degenerating to the

NN model, we trained the energy parameters as constants.
Consequently, the energy parameters can be embedded in the
viscosity model as trainable model parameters. The viscosity
prediction model, including this training method of the energy
parameters, is called TSTiNet-constants. As Table 2 shows, the
TSTiNet-constants model performs worse than both the NN
and TSTiNet-variables models. This result suggests that the
TSTiNet-constants model may have fallen into underfitting,
and the higher training loss of the TSTiNet-constants model
(Huber loss approaching 0.007) supports this explanation. As a
comparison, the loss of the TSTiNet-variables model
approaches 0.002. The reason for the underfitting of
TSTiNet-constants model may be due to the model falling
into the local minimum of the loss function. Furthermore,
limited by a low learning rate, the iteration of the energy
parameters is very slow, as shown in Figure 4A,B. Both Figure
4A and Figure 4B show that the value of the energy parameters
change very little from the initial value, which means that the

Table 2. Metrics of Different Models on the Test Set

metric
plain
NN

TSTiNet-
mixed

TSTiNet-
variables

TSTiNet-
constants

R2 0.7464 0.9805 0.8857 0.7320
AARD (%) 5.23 6.85 6.06 9.85
MARD (%) 82.15 49.28 69.47 99.03

Figure 4. Energy parameters during the training process and final distribution on the training set. (A) The parameter β over training epochs on the
TSTiNet-mixed model and the TSTiNet-constants model; (B) the interaction factors of different types of DESs over training epoch on the
TSTiNet-mixed model and the TSTiNet-constants model. (C) The histogram describes the frequency of occurrence of different ranges of values of
the parameter β on the training set. The orange curve is the kernel smooth of the histogram. (D) Box plot of interaction factors on different types of
DES. Each box shows the interquartile range (IQR between Q1 and Q3) for the corresponding set. The central mark (horizontal line) shows the
median, and the whiskers show the rest of the distribution based on IQR (Q1 − 1.5 × IQR, Q3 + 1.5 × IQR). Data outside of this range are
considered outliers and represented by dark dots. Since type I DESs have only one data point in the training set, the interaction factor of type I
DESs is not present in the box plot.
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energy parameters are not well trained. The poor training of
the energy parameters causes the TSTiNet-constants model to
perform poorly.
Since the TSTiNet-variables model has a degeneration

problem and the TSTiNet-constants model has an underfitting
problem, neither model can give good viscosity prediction
performance. To solve these two problems, a novel method for
training energy parameters is constructed. Since the TSTiNet-
variables model can converge faster and converge to a lower
training loss, we still use a two-layer MLP to calculate the
energy parameters. Meanwhile, we still adopt the assumption
that the energy parameters are constant to prevent model
degeneration. Combining these two premises, we divide the
calculation of energy parameters into two processes: the
training and nontraining processes. In the training process, we
use an MLP to calculate the energy parameters (β, GI, GII, GIII,
GIV, and GV) of all the examples in the training set and take the
average in the training set. In the nontraining process
(validation process or test process), we ignore the MLP that
calculates the energy parameters and directly use the average
value of the energy parameters on the training set, which
means all the energy parameters are considered as constants.
The viscosity prediction model, including this training method
of the energy parameters, is called TSTiNet-mixed. As shown
in Table 2 and the results of the previous section, the
TSTiNet-mixed model offers the best performance on R2 and
MARD and comparable performance on AARD with the NN
model and the TSTiNet-variables model. The reason why the
TSTiNet-mixed model performs better than the TSTiNet-
constants model can be seen from Figure 4A,B. Because of the
use of MLP for energy parameters in the training process, the
model parameters are increased, which makes the energy
parameters get more effective training. On the other hand,
treating the energy parameters as constants during model
evaluation avoids the degeneration of the model. Both Figure
4C and Figure 4D show that the assumption that the energy
parameters are constants is reasonable. From the plotting of
the frequency of β on the training set (Figure 4C), parameter β
has 71% of the values between 180 and 220. Therefore, the
assumption that the parameter β can be regarded as a constant
is reasonable. The box plot of the interaction factor on the
training set can be seen in Figure 4D. As shown in Figure 4D,
the intervals between the upper and lower quartiles of the
interaction factor of four types of DESs are small. It shows that
the interaction factor is only related to the type of DESs, and
the interaction factor of DESs under the same type can also be
regarded as a constant. Consequently, the combination of MLP
and assumption of constant energy parameters makes the
TSTiNet-mixed model have the best performance.
Particularly, we wish to point out that our model is also

illuminating for predicting other labels with a theoretical basis
(e.g., density, thermal conductivity). When combining a
theoretical equation with NN, the first thing to note is that
certain features (e.g., temperature, composition) in the
equation should have a fixed and reasonable relationship.
Furthermore, these features should not be involved in the
equation parameters. Otherwise, it will cause the degeneration
of the model. Second, for the constant parameters in the
equation, a feasible training method is to use an MLP to
calculate the mean value of the parameters on the training set
and discard this MLP during model evaluation. This method
can avoid degeneration and underfitting problems according to
the experiments. Finally, the theory-inspired neural network is

especially suitable for occasions with few data points and
uneven data distribution. For giant data sets and even data
distribution, more complex deep neural networks may be more
appropriate.

■ CONCLUSION
In this work, a model combining theoretical equations and NN
is used to predict the viscosity of DESs. This model uses prior
theoretical knowledge to solve the model generalization
problem caused by the lack of data and uneven distribution.
A novel viscosity equation that relates viscosity to molecular
weight is derived based on the transition state theory. Then the
energy parameters and structural parameters in the equation
are calculated through three MLPs. The results show that our
model (the TSTiNet model) exhibits better viscosity
prediction performance compared to the plain NN model.
The TSTiNet model overcomes the shortcoming of most
viscosity models in predicting poorly for larger viscosities and
dramatically improves the performance on R2 and MARD. By
now, the TSTiNet model is the most accurate and reliable
model for predicting the viscosity of DESs.

■ MATERIALS AND METHODS
Databank. The viscosity of DESs is one of the most

challenging properties to predict as the difference in water
content of DESs will dramatically change the viscosity.62

Furthermore, different measurement methods may also cause
deviations in the measured viscosity values. In some cases, the
experimental viscosity data show an undesirable variability; i.e.,
the viscosity presented in the literature shows apparent
inconsistencies, and significant dispersions are present. For
example, choline chloride−malonic acid (1:1) shows an
apparent discrepancy at 293.15 K (2016 mPa·s63 and 900
mPa·s64). This variability in the experimental viscosities limits
the application of these data in research activity and process
development. Hence, experimental data on the viscosities of
these solvents are not a reliable source without appropriate
analysis and re-elaboration.
The data used in the current model development is screened

as follows:65

(1) If there were several reported values of viscosity for a
particular temperature and the difference between these
viscosity values exceeds 50%, the value with the lowest
uncertainty was incorporated into the data set utilized.

(2) If the reported values had the same uncertainties, the
latest published values were utilized.

A sufficiently large database is important for machine
learning. Group values derived from a limited number of
species may overfit and cannot be applied to new species with
the same group. Therefore, a comprehensive literature review
has been carried out in the first step to build an extensive set of
liquid viscosity data for DESs. The data set used consists of
2229 experimental points, including all the experimental
measurements reported in the published literature up to the
date of writing this work to ensure that the developed models
are highly reliable and robust. The collected data set includes
183 DESs that are prepared from 49 HBA and 70 HBD. The
data set covers a wide range of viscosity (1.3−85000 mPa·s)
measurements with a wide range of temperatures (278.15−
378.15 K) and HBA/HBD mole ratios (1:19−49:1) measured
at atmospheric pressure. The viscosity data set (η/mPa·s)
provides a lot of important information, including both HBA
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and HBD names, CAS registry numbers, molecular formulas,
molecular structures, mole masses, mole ratios, references,
measurement methods of the viscosity, uncertainty, sample
sources, purity, sample purification method, and experimental
data of viscosity at different temperatures (Supporting
Information). The complete data set of viscosity values,
including the original reference sources of the experimental
data, is presented in Supporting Information.
During the development of the model, the database for the

viscosity is divided into three subsets: the training, validation,
and test data sets. The training set is utilized to obtain
parameters for the model. The validation set is used to tune the
hyperparameters of the model, and the test set is implemented
to evaluate the reliability and predictive ability of the model. In
this study, we split the viscosity data of DESs into training,
validation, and test set at a ratio of 4:1:1 randomly.
Generation of Chemical Features. The viscosity of a

solvent is mainly determined by the molecular structure.
Therefore, it is necessary to generate a series of chemical
characteristics that can accurately describe the molecular
structure of different solvents, which can be used as the input
of the neural network. Here, the secondary division of groups
has been utilized according to the practice of the group
contribution method.66

In the current method, the molecular structure of a DES is
considered a combination of two types of groups: first-order
groups and second-order groups. The first-order groups are
used to describe the basic structure of DESs, whereas the role
of the second-order groups is to provide supporting
information for the molecular structure of DESs whose
description is insufficient through the first-order groups.
First-Order Groups. The first level of estimation has a large

set of simple groups that describe a wide variety of DESs. At
present, most DESs with experimental data of viscosity can be
described with only first-order groups.
The first-order groups are mainly determined based on the

Joback and Reid method67 and Valderrama method.68 We
selected 45 molecular groups as first-order groups to treat
diverse types of DESs, as shown in Table 3.
There are two points to be noted:

(1). −NH2 is defined in detail: with carbonyl- and with
others. According to the initial fitting of viscosity data by
the model, the viscosity fitting of DESs containing
−NH2 directly connected to the carbonyl group in the

molecular structure is poor. We consider that this
structure has a special effect on viscosity, so it is
considered separately.

(2). If metal ions are divided into different groups, many
model input parameters will be introduced, which will
easily lead to overfitting problems. Here, we assume that
the difference in metal ions’ contribution is only related
to the molecular weight and is equal to (nm + 1)Mm,
where nm is the number of the metal ion, Mm is its
molecular weight.

Second-Order Groups. The second-order groups listed in
Table 3 provide more structural information about the
molecular structure of DESs, which is not sufficiently described
in the first-order groups, such as the differentiation among
isomers for aromatics DESs and chiral DESs. Thus, three
groups of ortho(o-(r)), meta(m-(r)), and para(p-(r)) among
substituent groups in the benzene ring are considered. Using
the primary functional group as the reference (determined
following IUPAC nomenclature for organic compounds), the
occurrence of these groups can be determined. Two
configurations of chiral carbon (i.e., RC and SC) are introduced.
For example, as shown in Figure 5, for thymol, based on the
phenolic hydroxyl group, the second-order groups include one
o-(r) and one m-(r); for D-glucose, the second-order groups
include three RC and one SC.

As mentioned earlier, we divided DESs into five categories
and performed one-hot encoding on them. Therefore, the
input features of the TSTiNet model include 45 × 2 structural
features + G (1 × 5 one-hot vector) + temperature +
composition ×2 + molecular weight ×2.
Model Details. According to the established chemical

characteristics, two NNs are implemented based on Python
and PyTorch libraries. One takes all features as input to
calculate the viscosity of DESs directly. The other (TSTiNet)

Table 3. Chemical Features of the Molecules

without rings with rings

First-Order Groups
−CH3 −COOH >NH/>NH+− −S− −CH2

−CH2 −COO−/−COO− NH4+ −SO2− >CH−
>CH- -CHO �NH −F �CH−
>C< −OH −NH2 −Cl/Cl− >C�
�CH2 −OH(ph) −NH2(C�O) Br− >C<
�CH- −O−/−O− >P<+ Mm >C�O
>C� −C�N P�O H2O −O−
>C�O >N<+/>N− >NH

−N�
>N−

Second-Order Groups
o-(ph) m-(ph) p-(ph) R S

Coefficients
Gl Gll Glll GlV GV

Figure 5. Structural formulas of thymol acid and D-glucose.
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includes three MLPs, two of which take structural information
on HBA or HBD as inputs to calculate the structural
parameters, α0, α1, α2, α3, and the other takes all features as
input to calculate the equation parameters of β and G. On the
basis of the assumption that β, GI, GII, GIII, GIV, and GV are
constants, the average value of all training sets is taken as the
final value. With all parameters’ values obtained, viscosity can
be calculated by the TSTieq.
We have examined a series of hyperparameter settings in

MLPs according to the performance on the validation set,
including network architecture and activation function. The
search space can be found in Table S1. The results show that
the same hyperparameter settings can get better performance
in the two MLPs of calculating structural parameters.
The input features are normalized to make training faster

and reduce the chances of getting stuck in local optima. All
MLPs have two hidden blocks, and each block has a fully
connected layer with 32 neurons, a GELU nonlinearity,69 and a
batch normalization70 (BN) layer. Unlike the ReLU activation
function, the GELU function output can be both negative and
positive, so it can be used in predicting labels that have
negative values. Besides, the GELU function has been widely
used in natural language processing and recent state-of-art
MLP related models. The experiments in this work show that
the GELU function is more suitable for the TSTiNet than
ReLU.
In the regression problem, MSE loss, MAE loss, and Huber

loss are three main loss functions. After a series of experiments,
it was found that Huber loss can obtain the best performance.
This is because Huber loss can reduce the instability of MSE to
outliers and enhance the convergence speed of MAE. The
weights of neural networks are initialized with Xavier
uniform.71 To avoid overfitting, L2 regularization and early
stopping are applied in the models. The models are trained
using AdamW algorithm72 with default parameters, learning
rate = 0.001, weight decay = 0.0001, and patience of early
stopping = 2000.43,57,81,73−80
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