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Abstract

Background: Somatic stem cell transplantation has been performed for cartilage injury, but the reparative mechanisms are
still conflicting. The chondrogenic potential of stem cells are thought as promising features for cartilage therapy; however,
the correlation between their potential for chondrogenesis in vitro and in vivo remains undefined. The purpose of this study
was to investigate the intrinsic chondrogenic condition depends on cell types and explore an indicator to select useful stem
cells for cartilage regeneration.

Methods: The chondrogenic potential of two different stem cell types derived from adipose tissue (ASCs) and synovium
(SSCs) of mice and humans was assessed using bone morphogenic protein-2 (BMP2) and transforming growth factor-β1
(TGFβ1). Their in vivo chondrogenic potential was validated through transplantation into a mouse osteochondral defect
model.

Results: All cell types showed apparent chondrogenesis under the combination of BMP2 and TGFβ1 in vitro, as assessed by
the formation of proteoglycan- and type 2 collagen (COL2)-rich tissues. However, our results vastly differed with those
observed following single stimulation among species and cell types; apparent chondrogenesis of mouse SSCs was observed
with supplementation of BMP2 or TGFβ1, whereas chondrogenesis of mouse ASCs and human SSCs was observed with
supplementation of BMP2 not TGFβ1. Human ASCs showed no obvious chondrogenesis following single stimulation. Mouse
SSCs showed the formation of hyaline-like cartilage which had less fibrous components (COL1/3) with supplementation of
TGFβ1. However, human cells developed COL1/3+ tissues with all treatments. Transcriptomic analysis for TGFβ receptors and
ligands of cells prior to chondrogenic induction did not indicate their distinct reactivity to the TGFβ1 or BMP2. In the
transplanted site in vivo, mouse SSCs formed hyaline-like cartilage (proteoglycan+/COL2+/COL1−/COL3−) but other cell
types mainly formed COL1/3-positive fibrous tissues in line with in vitro reactivity to TGFβ1.
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Conclusion: Optimal chondrogenic factors driving chondrogenesis from somatic stem cells are intrinsically distinct among
cell types and species. Among them, the response to TGFβ1 may possibly represent the fate of stem cells when locally
transplanted into cartilage defects.

Keywords: Chondrogenesis, Stem cell transplantation,, Transforming growth factor β (TGF-β), Adipose stem cells, Synovial
stem cells, Somatic stem cells

Introduction
It is widely accepted that local injury of articular cartilage as-
sociated with joint trauma does not regenerate spontan-
eously. Transplantation of mesenchymal stem cells (MSCs)
derived from bone marrow, synovium, and adipose tissue
has shown to be a promising strategy for cartilage regener-
ation. Several clinical trials using MSCs have been completed
or are ongoing [1, 2], although the actual outcome of trans-
plantation of MSCs remain unclear.
There are conflicting reports on the reparative mecha-

nisms of local transplantation of MSCs. Koga et al. re-
ported that transplantation of bone marrow MSCs
(BMSCs) or synovial MSCs (SMSCs) repaired cartilage
defects with differentiation of transplanted cells to chon-
drocytes in an in vivo environment in a rabbit osteo-
chondral defect model [3]. After transplantation, the
cells were engrafted and functioned as chondrocytes/car-
tilage over 6 months [4]. On the other hand, Nakamura
et al. found in a porcine study that the transplanted
SMSCs repaired the cartilage defect without differenti-
ation to chondrocytes; moreover, the transplanted
SMSCs disappeared within a month [5]. Recently, many
studies have highlighted that the signaling effects of
transplanted stem cells lead to endogenous repair by
host stem cells through the secretion of growth factors,
cytokines, microRNAs, extracellular vesicles, and/or cell-
cell contact [6, 7]. Thus, distinct mechanisms may be in-
volved in transplantation therapy.
Several studies have suggested a relationship between

in vitro chondrogenic potential and in vivo cartilage regener-
ation [3, 8, 9]. Among MSCs, SMSCs are reported to provide
superior chondrogenic potential in humans [10, 11], rodents
[12, 13], rabbit [3], pigs [5], and dogs [14]. Based on those
findings, clinical trials of transplantation of SMSCs for articu-
lar cartilage defects have been recently reported [15, 16].
However, Dickhut et al. showed that transforming growth
factor-β3 (TGFβ3) completely induced chondrogenesis from
BMSCs, which was evident with the formation of tissue rich
in type 2 collagen (COL2) and proteoglycan in vitro, whereas
the stimulation with TGFβs alone was insufficient for SMSCs
and adipose MSCs (AMSCs). The formed tissues contained
a low amount of glycosaminoglycans and COL2 [17, 18].
Previous studies have shown that supplementation with bone
morphogenic proteins (BMPs) is necessary for induction of
chondrogenesis from SMSCs and AMSCs [17, 19–21].
Moreover, other supplements such as serum and

glucocorticoids also affect the chondrogenesis [19, 22–26].
Thus, conditions for adequate chondrogenesis are intrinsic-
ally different among MSCs, implying that chondrogenic po-
tential is probably miscalculated depending on assay
conditions.
For further understanding the mechanisms underlying

the action of stem cells transplantation for cartilage re-
pair therapy, we aimed to evaluate the in vitro and
in vivo chondrogenic potential of two different somatic
stem cell types derived from synovium and adipose tis-
sue in mice and humans, respectively.

Materials and methods
Isolation and culture of somatic stem cells
Mouse somatic stem cells were isolated from 8-to-10-week-
old C57BL/6 or CAG-EGFP C57BL/6. Mouse synovial stem
cells (mSSCs) were established from knee infrapatellar fat
pad as previously reported with slight modifications [13, 27].
In brief, synovium containing infrapatellar fat pad was surgi-
cally dissected and incubated in 10% fetal bovine serum
(FBS; Sigma-Aldrich, MO, USA)-DMEM (Nacalai Tesque
(Nacalai), Kyoto, Japan) containing 500U/mL collagenase
type 1 (Worthington, NJ, USA) at 37 °C with gentle rotation.
After 1 h, the digested tissues were passed through a 70-μm
strainer and washed twice. The isolated cells were cultured
with growth media (10% FBS-DMEM supplemented with 1
ng/mL bFGF (FUJIFILM Wako Pure Chemical Corporation
(Wako), Osaka, Japan) at 37 °C in a humidified atmosphere
with 5% CO2 and 3% O2. Mouse adipose stem cells (mASCs)
were obtained from the stromal vascular fraction of the in-
guinal fat tissue by collagenase digestion for 30 min. Only
dissociated cells were collected using a 70-μm strainer and
cultured with growth media at 37 °C in a humidified atmos-
phere with 5% CO2 and 3% O2. Cultured cells were passaged
with 0.25% trypsin/ethylenediaminetetraacetic acid (EDTA)
at 80% confluency and replated at a density of 5000 cells/
cm2. The medium was changed three times per week. These
cells have been already characterized in our previous report
[27]. The cells were used for further experiments after 12–
14 days of culture, as mouse somatic stem cells are sensitive
to senescence [27, 28]. We prepared over three batches ob-
tained from several mice with mixed gender at different
timings.
Human subcutaneous adipose tissue and synovium

were obtained from osteoarthritis (OA) patients (N = 6)
during total knee arthroplasty (TKA) in accordance with
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a protocol approved by the institutional ethics commit-
tee. Written informed consent was obtained from all pa-
tients. The age, gender, and Kellgren-Lawrence grade of
the patients are listed in Additional file 1. Adipose tis-
sues were resected from the incision site at the knee,
and synovium was resected from the suprapatellar
pouch. Human ASCs (hASCs) were isolated as men-
tioned above and human SSCs (hSSCs) were isolated as
previously established [18]. Human cells were cultured
with growth media at 37 °C in a humidified atmosphere
with 5% CO2. Those cells were passaged by treatment
with 0.25% trypsin/EDTA at 80% confluency (approxi-
mately once per week) and replated at a density of 5000
cells/cm2. The media was changed twice per week. Hu-
man cells at passage 3 were used for further
experiments.

Chondrogenic induction
To obtain cell pellets, 2 × 105 cells were centrifuged in
polypropylene tube and cultured in growth medium.
The next day, the medium was exchanged to chondro-
genic medium (DMEM, 1% ITS+Premix (Corning, NY,
USA), 50 μg/mL L-ascorbic acid 2-phosphate (Sigma-Al-
drich), 40 μg/mL L-proline (Sigma-Aldrich)) supple-
mented with 100 ng/mL BMP2 (Medtronic, Dublin,
Ireland), and 10 ng/mL TGFβ1 (ORIENTAL YEAST,
Tokyo, Japan). Dexamethasone (Sigma-Aldrich) was
used with TGFβ1 at concentration of 10 nM [19]. The
cell pellets were maintained with 0.5 mL medium at
37 °C in a humidified atmosphere with 5% CO2. The
medium was replaced twice per week.

Animal experiment
Twelve-week-old male mice were anesthetized by an in-
traperitoneal injection of a mixture of 0.3 mg/kg of
medetomidine, 4.0 mg/kg of midazolam, and 5.0 mg/kg
of butorphanol. For both knees, the femoral trochlear
grooves were exposed via a medial parapatellar incision
with laterally patellar dislocation. An osteochondral de-
fect (diameter, 0.5 mm; depth, approximately 0.5 mm)
was created in both knees by manual drilling. A pellet of
5 × 104 cells prepared by overnight culture with growth
media were transplanted into the defects, and then patel-
lar dislocation was reduced. The joint capsule and the
skin were sutured as separate layers. After surgery, mice
were allowed to be active without any fixation device or
immobilization. C57BL/6 and CAG-EGFP C57BL/6 mice
were used for allograft study and C.B-17 SCID mice
were used for xenograft study.

Micro-computed tomography
Whole knee joints were scanned using micro-computed
tomography (μCT; inspeXio SMX-100CT system (Shi-
madzu, Kyoto, Japan)) at a resolution of 12 μm per voxel

using the following consistent parameters: 75 kV and
140 mA. Three-dimensional images of bone were ana-
lyzed using the TRI/3D-BON software (RATOC System
Engineering, Tokyo, Japan). Bone volume (BV) and bone
mineral density (BMD) at the area of osteochondral de-
fect trimmed into a cylinder (diameter, 0.5 mm; depth,
0.4 mm) were calculated as described previously [29].

Histology and histochemistry
The samples were fixed in 10% neutral buffered formalin
and embedded in paraffin wax, which was followed by
serial dehydration using ethanol and clearance using xy-
lene. For bone tissues, samples were decalcified with
10% EDTA (pH 7.4) after formalin fixation and delipida-
tion using ethanol. Sections cut into 4-μm thickness
were used for Safranin-O/fast green/hematoxylin stain-
ing (Saf-O), Alcian blue (pH 1.0) staining (AB), tartrate-
resistant acid phosphatase (TRAP) staining, and immu-
nohistochemistry. The information regarding the anti-
bodies and reaction conditions is listed in Additional file
2. After reaction with HPR or AP conjugated antibodies,
positive signal color was developed with Histofine Sim-
ple stain DAB (NICHIREI BIOSCIENCES, Tokyo,
Japan), Vina Green Chromogen Kit (BIOCARE MEDI
CAL, CA, USA), or ImmPACT Vector Red AP Substrate
Kit (VECTOR LABORATORIES, CA, USA). Positively
stained areas were measured using ImageJ (National
Institutes of Health, MD, USA), ImageScope (Leica
Microsystems, Wetzlar, Germany), and BZX-700 (Keyence,
Osaka, Japan).

mRNA expression analysis
Cell pellets were initially homogenized with zirconia
beads in TRI Reagent (Cosmo Bio, Tokyo, Japan). Total
RNA was then extracted using Direct-zol RNA Kit
(Zymo Research, CA, USA) according to the manufac-
turer’s protocol. Total RNA was reverse transcribed to
cDNA using ReverTra Ace qPCR RT Master Mix
(TOYOBO, Osaka, Japan). Quantitative reverse tran-
scription polymerase chain reaction was performed using
THUNDERBIRD SYBR qPCR Mix (TOYOBO) and
Thermal Cycler Dice Real Time System III (TaKaRa Bio,
Shiga, Japan). The information about primers is listed in
Additional file 3. The expression levels normalized to
the levels of glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) were measured using absolute standard curve
method [30] or delta CT method [31].

Transcriptome analysis
Total RNA extracted from human cells was used for
transcriptome sequencing. The sequence libraries were
prepared using a NEBNext Ultra II RNA Library Prep
Kit for Illumina (New England Biolabs, MA, USA) ac-
cording to the manufacturer’s protocol. Sequencing was
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performed using an Illumina HiSeq 4000 System with 2
× 150 bp paired-end reads (Veritas Genetics, MA, USA).
The raw sequence data were filtered to remove adaptor
sequences, low-quality reads, sequences with a high con-
tent of N, and reads < 50 bp length by using Trimmo-
matic (ver.0.39). The filtered data were aligned against
the human reference genome (GRCh38.p13) using STAR
(ver.2.7.3a). The gene expression counts and transcripts
per million value (TPM) were calculated by RSEM
(ver.1.3.3). Principal component analysis and hierarchical
c lus te r ing was conducted by iDEP .91 (h t tp : / /
bioinformatics.sdstate.edu/idep/). For enrichment ana-
lysis in specific pathways, genes are collected from sev-
eral gene sets related to TGFβ receptor signaling
(M2642), proteoglycan (M15611, M12097, M13795, and
M13500), and chondrogenesis/cartilage development
(M10512, M14448, M11632, M34061, M15986, M10632,
and M13025) from MSigDB v6.0. Heatmaps were cre-
ated in R packages based on Log2(TPM + 1) or Z score
of TPM values.

Western blotting
Cells were lysed with T-PER (Thermo Fisher Scientific
(Thermo), MA, USA) containing protease and phosphat-
ase inhibitors (Nacalai). Following mixing with 4× LDS
sample buffer (Thermo) and DTT (Nacalai), the samples
were boiled at 70 °C for 10 min; 10 μg protein was ap-
plied to each lane of 4–12% Bolt Bis-Tris Plus precast
polyacrylamide gel (Thermo) and separated by electro-
phoresis. For cell pellets, three replicates were pooled,
and one-fifth volume of lysate was used for electrophor-
esis. Subsequently, the gels were transferred onto a
PVDF membrane (Wako) using a Mini Blot Module
(Thermo). After blocking with Blocking One (Nacalai)
for 30 min, the membranes were probed with the follow-
ing antibodies overnight at 4 °C or 1 h at room
temperature: anti-phospho-Smad1/5 (#9516, CST, MA,
USA), anti-Smad1 (#9743, CST), anti-phospho-Smad2
(#3108, CST), and anti-Smad2/3 (#8685, CST), anti-
SOX9 (#82630, CST), HRP-conjugated-anti-GAPDH
(#HRP-60004, Proteintech, IL, USA), HRP-conjugated-
anti-rabbit IgG (#7074, CST). Then, immunoreaction
was visualized with ChemiLumi One Super (Nacalai)
and iBright 1000 (Thermo). The band signals were mea-
sured using iBright Analysis Software (Thermo).

Statistical analysis
All data are presented as boxplot or bar plot with each
value plotted as dot. Student’s unpaired t test was used
to compare two groups, and one-way or two-way ana-
lysis of variance (ANOVA) with post hoc Tukey honestly
significant difference test or Dunnet test was used for
multiple groups. All statistical analysis was performed
using SPSS software (IBM, Armonk, NY, USA, version

22.0). A p value less than 0.05 was considered statisti-
cally significant.

Results
TGFβ1 induced chondrogenesis from mSSCs but not
mASCs in vitro
Previous reports indicate that optimal chondrogenic condi-
tions differ among cell types [17, 32, 33]. To evaluate the ac-
tual chondrogenic capacity, in vitro pellet culture under
stimulation with BMP2, TGFβ1, or their combination (B +
T) was performed. As a reference, neither mASCs nor
mSSCs differentiated into chondrocyte in the basal chondro-
genic medium (see Additional file 4).
When mASC pellets were cultured under those three

conditions, chondrogenic differentiation ascertained by
semi-translucent tissue formation composed of proteo-
glycan and COL2 was recognized with supplementation
of BMP2 (Fig. 1A, B). However, fibrotic matrices com-
posed of type 1 and 3 collagen were observed in the
chondrogenic tissues, indicating fibrocartilage develop-
ment. Although there was no evidence for chondrogene-
sis in TGFβ1-treated mASCs even at the mRNA levels
(see Additional file 5), TGFβ1 facilitated BMP2-induced
chondrogenesis with reduction of COL1/3 component.
In contrast, mSSCs underwent chondrogenesis under all
conditions with the formation of a semi-translucent tis-
sue with SOX9-positive chondrocytes embedded in the
homogenous extracellular matrices enriched in proteo-
glycan, type 2 collagen, and low amount of COL1/3 (Fig.
1C, D). These observations show that mSSCs could form
hyaline-like cartilaginous tissue. COL10, a hypertrophic
marker, was observed in the area surrounding the hyper-
trophic cell lacuna only with BMP2 supplementation.
The same trends were observed and validated at gene
levels (see Additional file 5). Taken together, mASCs
and mSSCs showed the potential for chondrogenesis but
the suitable conditions were intrinsically different.

mSSCs, but not mASCs, formed cartilaginous tissue in the
osteochondral defect in vivo
The reparative capacities of mASCs and mSSCs in the
osteochondral defect were evaluated by transplantation
of the cell pellet into osteochondral defects. The osteo-
chondral defect with no transplantation showed spon-
taneous repair of the subchondral bone, but the articular
cartilage region did not regenerate and was covered with
fibrous tissue (N = 11/14) or exposed bone (N = 3/14)
(Fig. 2A). When mASCs were transplanted, the defects
were filled with fibrous tissue with no regeneration of
articular cartilage (Fig. 2B). Although, COL1 is a major
fibrous tissue component, its detection was complicated
for the assessment of fibrous tissue because the sur-
rounding bone was also positive for COL1. Therefore,
COL3, which is another fibrous component, was adapted
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in this study and strikingly signified the fibrotic area.
GFP detection demonstrated that transplanted cells
remained within the transplanted site without differenti-
ation toward chondrocytes or osteoblasts, resulting in
the impeded spontaneous repair of subchondral bone. In
some cases, Saf-O+/COL2+ area was partially observed

(N = 4/25); however, they were fibrous (N = 3/25) or ec-
topic site that protruded from the articular cartilage re-
gion (N = 1/25) (see Additional file 6).
On the other hand, when mSSCs were transplanted

into the chondral defect, cartilaginous tissue rich in pro-
teoglycans and COL2 but low in COL1/3 (N = 15/20)

Fig. 1 Chondrogenic potential of mASCs and mSSCs in the supplementation with BMP2 and/or TGFβ1. A, C Macroscopic view and histological
images for chondrogenic pellet of cultured with BMP2 and/or TGFβ1 for 14 days. Representative data are shown (N = from over three lots). Scale
bars = 1 mm (macro view and low-magnification histology) and 100 μm (high-magnification histology). B, D Quantification of IHC positive stained
area expressed as a box plot with a dot plot. Significance was assessed using one-way ANOVA with post hoc Tukey honestly significant (HSD)
difference test (*, p < 0.05; **, p < 0.01)
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Fig. 2 (See legend on next page.)
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was newly generated (Fig. 2C). Interestingly, in all unre-
paired cases (N = 5/20), defect sites were located in the
distal femur groove and the host synovium tissue was in-
filtrated from enthesis of crucial ligaments to the defect
site (see Additional file 7). GFP mice-derived mSSCs
were detected at neo-cartilage tissue, indicating that
mSSCs differentiated to chondrocytes and formed cartil-
age tissue in vivo (Fig. 2D). Notably, GFP-negative cells
were also detected within the neo-cartilage tissue, par-
ticularly in the articular surface area and the boundary
of bone marrow. To investigate the contribution of host
cells, wild-type (WT)-derived mSSCs were transplanted
into GFP mice. As a result, approximately 20% host cells
were also incorporated for cartilage regeneration with
differentiation toward chondrocytes (GFP-positive cell
rate: 83.1 ± 6.6% (N = 5) in GFP cell transplantation to
WT mice and 20.8 ± 11.4% (N = 4) in WT cell trans-
plantation to GFP mice). At 6 weeks, remodeling of the
neo-cartilaginous tissue was histologically observed in
the deep zone (Fig. 2E). COL10 was observed from the
middle to the deeper area of the neo-cartilage, which ex-
panded at 6 weeks. The μCT analysis revealed that ossi-
fied volume of neo-tissues increased at 6 weeks but the
mineral density did not mature like bone, suggesting the
proceeding cartilage ossification (Fig. 2F). These findings
indicate that mSSCs repaired the osteochondral defect
via endochondral development and that accompanied
with the stimulation of host cells to differentiate toward
chondrocytes.

TGFβ receptor derived-signaling is necessary for
chondrogenesis
mASCs and mSSCs demonstrated chondrogenic poten-
tial in vitro but only mSSCs could differentiate to chon-
drocytes in vivo. Based on these results, it should be
specified that the chondrogenic response to TGFβ1 was
observed only in mSSCs in vitro. Phosphorylated
Smad2/3 and Smad1/5/8 are the major downstream of
TGFβ1 and BMP2 signaling, respectively [34]. In vivo
specimens transplanted with mSSCs showed strong
pSmad1 and weak pSmad2 activation during chondro-
genesis. On the other hand, the fibrous area formed by
mASCs contained cells weakly positive for pSmad1 and

negative for pSmad2 (see Additional file 8). Therefore,
the TGFβ-Smad2/3 pathway is important during in vivo
chondrogenesis.
To elucidate the distinct outcome in response to

TGFβ1 among cell types, the expression of their specific
receptors was confirmed. Among TGF receptor super-
families, Alk1 and Alk7 were remarkably higher in
mSSCs and mASCs, respectively. However, Alk5 which
is a major TGFβ type 1 receptor, and Tgfbr2 were com-
parable in mSSCs and mASCs. There was no difference
in Alk2, Alk3, Alk4, Alk6, and Bmpr2 (Fig. 3A). Further-
more, the levels of most receptors did not dynamically
alter in 2 weeks of chondrogenic culture (see Additional
file 9A). Western blotting analysis showed that during
short-term stimulation, Smad1/5 and Smad2 were acti-
vated in response to BMP2 and TGFβ1, respectively, in
both cell types according to conventional theory (see
Additional file 10). Thus, mASCs and mSSCs were com-
parable in terms of the expression of TGFβ receptors as
well as of receptors mediating Smads phosphorylation.
Conversely, in chondrogenic pellet culture, TGFβ1 did

not affect either Smad1/5 and Smad2 pathway in
mASCs, while it temporally activated Smad2 and
Smad1/5 in some batches of mSSCs with obscure trends
(Fig. 3B, see Additional file 11). Notably, the activation
of Smad2 was marked with the presence of BMP2 as
well as Smad1/5 in both cell types. This was supported
by the fact that SB-431542, an Alk5 inhibitor, strikingly
abrogated chondrogenesis induced not only by TGFβ1
but also by BMP2 (Fig. 3C). Although TGFβ signal is as-
sociated with cell growth and survival, its inhibition led
adipogenesis not cell death (see Additional file 12).
LDN-193189, a BMP receptor (Alk2 and Alk3) inhibi-

tor, also weakened TGFβ1-induced chondrogenesis of
mSSCs to a lesser extent than it weakened BMP2-
induced chondrogenesis (Fig. 3C) as 10-fold higher dose
of LDN-193189 was required to inhibit TGFβ1-induced
chondrogenesis (see Additional file 13). Considering the
activation of Smad2 during BMP2 stimulation, it is pos-
sible that autocrine ligand expression contributed to
chondrogenesis. Regarding endogenous chondrogenic
growth factors, Bmp2 was expressed higher in mSSCs
than mASCs whereas TGFβ1/3 were expressed at

(See figure on previous page.)
Fig. 2 In vivo chondrogenic differentiation of mASCs and mSSCs. A–C Mouse osteochondral model of non-transplanted, mASCs-transplanted, and mSSCs-
transplanted group at day 21. Micro CT and histological images with the qualification for their positive stained area in the region of approximately 0.5mm
width and 0.4mm depth are shown. Scale bars = 1mm (μCT), 500μm (Saf-O), and 100μm (IHC images). Significance was assessed using one-way ANOVA
with post hoc Tukey HSD test (a, p < 0.05 compared with defect; b, p < 0.05 compared with mASCs; c, p < 0.05 compared with mSSCs). D IHC for GFP
counterstained with Alcian blue. Arrow heads indicate host derived cells. Representative data are shown (N = 5 for the GFP-mSSC transplantation group and N
= 4 for the WT-mSSC transplantation). Scale bars = 50μm. E Representative images for Saf-O and IHC for COL10 of the specimens of mSSC-transplanted group
at 6weeks. Break line indicates the area for neo-cartilaginous tissue. Scale bars = 50μm. Significance of COL10-positive area between 3 and 6weeks was
assessed using Student’s unpaired t test (**, p < 0.01). FMicro CT images and their analysis for bone volume of total volume (approximately 0.5mm width and
0.4mm depth) and bone maturity calculated according to bone mineral component in bone volume. Scale bars = 1mm. Significance was assessed using one-
way ANOVA with post hoc Tukey honestly significant (HSD) difference test (*, p < 0.05; **, p < 0.01)
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Fig. 3 TGFβ superfamily receptors and ligands in mASCs and mSSCs during chondrogenic culture. A, D Gene expression levels for TGFβ superfamily receptors
and ligands in day 0 pellet of mSSCs and mASCs. Data are collected from over three independent lots and presented as a box plot with dot plot. Significance
was assessed using Student’s unpaired t test (**, p < 0.01). BWestern blot analysis of Smads in mSSCs and mASCs in chondrogenic culture. Representative images
from two or three lots are shown. Signal intensity of pSmad1/5 and pSmad2 relative to GAPDH are shown as line graph which shape of points represent
individual cell lots. C Saf-O images with the box plot for their positive stained area of histology from mSSCs and mASCs cultured with BMP2, TGFβ1, SB-431542
(SB), and/or LDN-193189 (LDN) for 14 days. Scale bars = 500μm. Significance was assessed using one-way ANOVA with Dunnet test (*, p < 0.05; **, p < 0.01)
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comparable levels (Fig. 3D). Bmp4 and Bmp7 were
barely expressed in two cell types (data not shown).
Tgfb1/3 were constant or marginally upregulated in
chondrogenesis, and Bmp2 and Bmp6 were upregulated
in BMP2 stimulation toward the end of induction, simi-
lar to Col10a1 (see Additional file 9B).
Based on the above in vitro findings, it can be inferred

that TGFβ receptor-mediated signal was indispensable
for chondrogenesis. However, the output in response to
TGFβ could not be determined in their profiles for re-
ceptors and ligands.

Distinct chondrogenic conditions and outcomes between
hASCs and hSSCs with variations among donors
To expand the scope of application of murine experi-
ments in human somatic stem cells, the responses of
hASCs and hSSCs to chondrogenic growth factors were
evaluated in vitro.
When hASCs were cultured with BMP2 or TGFβ1 alone,

weak staining for Saf-O and aggrecan was recognized in the
formed tissues in some cases but COL2 was completely ab-
sent (Fig. 4A). Instead, COL1/3 were abundant in their tis-
sues. Their chondrogenic potential could be demonstrated
with use of the combination of BMP2 and TGFβ1, as evident
from the development of proteoglycan- and type 2 collagen-
enriched translucent tissue. With increased cartilaginous
matrices, COL3 was restricted to the peripheral zone; how-
ever, COL1 was observed, similar to that in other single
treatments. These results were consistently observed in all
six donors (Fig. 4B).
In hSSCs, BMP2 + TGFβ1 stably induced chondrogenesis

in all donors similar to hASCs, whereas a distinct pattern for
chondrogenic response to single stimulation was uniquely ex-
hibited among the donors (Fig. 4C, D). When hSSCs were
cultured with BMP2 alone, different grades of chondrogenesis
were observed among donors: partially intense staining for
chondrogenic markers was observed in 3/6 donors (D1, D3,
and D4) and entire intense staining in 2/6 donors (D2 and
D5) within developed tissues. Conversely, TGFβ1 alone in-
duced proteoglycan synthesis, as observed in Saf-O and im-
munohistochemistry for aggrecan. Nevertheless, COL2 was
recognized only in 2/6 donors (D1 and D3). Correlation ana-
lysis supported the inconsistency of the relationship between
proteoglycans and COL2 (see Additional file 14A). Of note,
all tissues developed from hASCs and hSSCs clearly con-
tained COL1/3 under all given chondrogenic conditions.
COL3 tended to be weakened in the specimen with intense
staining for COL2; however, there was no negative correlation
between COL1 and COL2 (see Additional file 14B and C).
Interestingly, the chondrogenic potential based on the

response to BMP2 was not representative of the chon-
drogenic response to TGFβ1 (see Additional file 15).
Thus, unique chondrogenic responses were observed be-
tween cell types and donors, although principal

component analysis plot and hierarchical correlation
analysis of mRNA-seq data showed low consistency in
gene profiles between hASCs and hSSCs (Fig. 5A, B, see
Additional file 16 and 17). The expression of receptors
and ligands of the TGFβ superfamily was comparable
among cell types and donors (Fig. 5C). Moreover, no
specific enrichment was observed in multiple gene sets
related to TGFβ signaling, proteoglycan, and chondro-
genesis/cartilage development (see Additional file 18).
Thus, hASCs and hSSCs required distinct chondro-

genic conditions beyond those required by mouse som-
atic stem cells. Moreover, the fibrous components were
more abundant in developed tissues in human stem cell
cultures, which characteristically resembled fibrocarti-
lage. However, similar to that in mouse stem cells, the
chondrogenic potential could not be predicted based on
receptor/ligand expression.

The cell response to TGFβ1 but not BMP2 reflected
in vivo reaction of human somatic stem cells
To investigate the in vivo chondrogenic potential of human
stem cells, hASCs and hSSCs were transplanted into the
osteochondral defect model using SCID mice without pre-
chondrogenic induction and evaluated at 4weeks.
In case of hASC transplantation, the subchondral bone

was partially regenerated, but the surface zone was filled
with fibrous tissues composed of COL1/3, and no cartil-
aginous matrices were detected in all donors (Fig. 6A,
see Additional file 19). hSSC transplantation revealed
that defects did not contain bony tissues; instead, newly
formed tissue filled out the defect space in all specimens.
Among them, the formation of cartilaginous tissue con-
taining proteoglycan, partial COL2, and SOX9 express-
ing cells was occasionally recognized in D1 (N = 1/4)
and D3 (N = 4/4), which exhibited a chondrogenic re-
sponse to TGFβ1 in vitro (Fig. 6B, see Additional file
20). Notably, as indicated in vitro, the fibrous compo-
nent, COL1/3, was present in the entire defect site. Im-
munohistochemistry for human vimentin showed that
hASCs, without any specific differentiation, diffusely
remained in tissues with granulation rich in hypercellu-
larity and small vessels (Fig. 6A, see Additional file 21A).
On the contrary, hSSCs were better engrafted within the
osteochondral region even in cells with the lowest
in vitro chondrogenic potential (Fig. 6B, see Additional
file 21B). In some cases, the defect area in subchondral
bone widened and/or spilled out into host area. More-
over, the erosion sometimes reached to the articular car-
tilage (see Additional file 21, arrow heads). TRAP
activity indicated erosion at the border between the neo-
tissue and surrounding bone and cartilage, whereas there
was lesser erosion in the periphery of the neo-tissue
enriched in aggrecan-positive matrices (see Additional
file 21).
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Fig. 4 Chondrogenic potential of hASCs and hSSCs in the supplementation with BMP2 and/or TGFβ1. A, C Macroscopic view and histological images for
chondrogenic pellet of cultured with BMP2, TGFβ1, or BMP2+ TGFβ1 (B + T) for 28 days. Representative data from six donors are shown. Scale bars = 1mm
(low magnified histology shown as inbox) and 500μm (macro view and histological images). B, D Quantification of histological images. Data are expressed as a
bar plot with a dot plot. Significance among chondrogenic factors was assessed using two-way ANOVA with post hoc Turkey HSD test (*p < 0.05, **p < 0.01)
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Collectively, the cell response to TGFβ1 but not BMP2
possibly presents the in vivo chondrogenic reaction in hu-
man somatic stem cells like mouse study. However, the en-
graftment rate was intrinsically different among cell types
regardless of the chondrogenic potential (Fig. 6A, B). Fur-
thermore, the local transplantation of cells with lower poten-
tial for in vivo chondrogenesis may lead to other side effects
such as erosion of the bone and cartilage.

Discussion
Our findings showed that the chondrogenic potential of
somatic stem cells in vitro, which has been defined in
BMP2-supplemented conditions, did not correlate with the
reparative capacity for local transplantation therapy of the

osteochondral defect in vivo. Moreover, this study is the first
to demonstrate that the response to TGFβ1 in vitro repre-
sents the outcome after local transplantation, which may be
a potential indicator to predict in vivo chondrogenesis. Al-
though chondrogenic response of hSSCs had variety among
donors, the test for chondrogenic response to TGFβ1
in vitro may provide a new indicator to select cell source
from allogenic cell banks.
As the major limitation of rodents study, the subchondral

bone defect must be employed for the purpose of studying
only the cartilage region. However, our data showed lower
reparability of the cartilage even in an osteochondral injury,
whereas bone defect region was spontaneously regenerated
with membranous ossification. For articular cartilage repair,

Fig. 5 Gene profiling of hASCs and hSSCs before chondrogenic culture. A, B Principal component analysis (PCA) and cluster dendrogram based
on gene profile. C Heatmap plotted with log2(TPM + 1) value of TGFβ superfamily receptors and ligands
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cartilaginous callus formation is required to remodel the
osteochondral region for endochondral development. As
SSCs are known to induce host synovial tissues [35], location
of the defect site is critical for mSSC transplantation because

infiltration of the host synovial tissue was observed when the
defect was close to the enthesis of crucial ligaments. Further-
more, transplanted mSSCs detected below the marrow area
did not exhibit signs of chondrogenesis, and in case of

Fig. 6 In vivo chondrogenic potential of hASCs and hSSCs in SCID mice osteochondral model. A, B Micro CT images and histological images
with the qualification for their positive stained area in new formed tissues at day 28 after cell transplantation. Representative images are shown
(N = 4 knees for each cells). Values are expressed as a bar plot with a dot plot. Scale bars = 1 mm (μCT) and 100 μm (histological images)

Chijimatsu et al. Stem Cell Research & Therapy          (2021) 12:405 Page 12 of 17



synovial infiltration, vessel-like shapes were found (see Add-
itional file 7). Thus, location and site-specific signals, includ-
ing mechanical stress, may be necessary for in vivo
chondrogenesis as chondrogenesis was not observed in the
knee with patellar dislocation (data not shown) [36, 37].
Although we implied the importance of chondrogenic

response to TGFβ1, the distinct chondrogenic result of
each cell type could not be elucidated in the analysis of
TGFβ superfamily receptors, endogenous ligands, and
downstream pSmads. In fact, all cell types used here
were considered to have a certain reaction to TGFβ with
unique tissue formation, unlike that found in basal or
BMP2-supplemented medium. Other studies have
shown the inconsistencies in cellular receptor expression
in in vitro chondrogenic activity [38, 39]. In general,
TGFβs and BMPs bind their specific receptors; ALK5 is
a type I receptor for TGFβs; ALK2, ALK3, and ALK6 are
type I receptors for BMPs, which activate downstream
Smads, Smad2/3, and Smad1/5/8, respectively. However,
TGFβs are known to activate Smad1/5/8 pathway via
binding to ALK1, a predominant BMP type I receptor
[34], and BMPs can activate Smad2 pathway via binding
to ALK5 [40]. The pathway that will be activated is de-
termined by the abundance of receptors on the cell
membrane and their affinity to ligands [41]. For ex-
ample, TGFβ signaling in OA chondrocytes switch from
the anabolic ALK5-Smad2/3 pathway to catabolic ALK1-
Smad1/5/8 pathway due to disproportionate ALK1/
ALK5 ratio, which accelerates cartilage destruction [42–
45]. Using western blotting, we demonstrated that Smad
activation in the order of hours and days were distinctly
regulated. It is known that transcriptional targets of
Smad2/3 dynamically change in the order of minutes
and hours [46]. These results suggest that there are inad-
equate downstream gene markers to assess the activation
of TGFβ signaling. Moreover, the non-Smad pathways
also regulate cellular function and differentiation, in-
cluding chondrogenesis [34, 47]. Thus, the entirety of
TGFβ signaling from cue to output in each cell type
is difficult to interpret; therefore, the chondrogenic
response to TGFβs may not be predicted prior to
chondrogenic culture.
BMP signaling is crucial for skeletogenesis, particularly

for endochondral development. On the contrary, TGFβ
signaling is crucial for joint development [48, 49] and
homeostasis of articular cartilage [42, 50, 51]. In fact,
TGFβ1 is constantly supplied to the synovial fluid from
cartilage and synovium [52, 53]. Therefore, tests for re-
sponse to TGFβ1 may reasonably predict cell fate after
transplantation into joints. BMSCs undergo chondrogen-
esis with TGFβ treatment alone [17, 54] and are respon-
sible for cartilage regeneration in focal cartilage defect
using the bone marrow stimulation method [55]. We
previously showed the in vivo chondrogenic potential of

hBMSCs in a rat osteochondral model [22]. To further
verify our proposal, we should have included hBMSCs in
our analysis; however, as one of the limitations, it was
difficult to prepare a sufficient number of hBMSCs from
bone marrow effusion after osteotomy in TKA oper-
ation. Besides, we used subcutaneous fat from the knee
area, which may have different characteristics from ab-
dominal fat [56, 57]. Recently, medical waste-derived
stem cells such as adipose tissue, synovium, umbilical
cord, and dental pulp have been highlighted for stem cell
therapy because of low additional invasion for tissue col-
lection and their superior proliferative capacity com-
pared with BMSCs [11, 58, 59]. Our data are limited and
may not be applicable to other cell types; therefore, fur-
ther study is required using other sources.
Unlike hASCs, there are various types of hSSCs among

donors. This is because synovial tissue contains various
components such as synovial lining, connective tissue,
blood vessels, and adipose tissue, which are altered
under pathologic conditions [60, 61]. Mochizuki et al.
showed that adipogenic changes in human synovium
caused low chondrogenic potential of their derivates
[62], and Mizuno et al. demonstrated that each derivate
of the synovial surface, stroma, and perivascular behaves
as synovial fibroblasts in vitro with different chondro-
genic potential under the combination of TGFβ3 and
BMP2; among them, the perivascular-derived hSSCs ex-
hibit the highest chondrogenic potential [63]. Further-
more, Sicasubramaniyan et al. showed that primary
CD73+/CD90− synovial cells showed a chondrogenic re-
sponse to TGFβ1, but CD73+/CD90+ synovial cells re-
quired additional stimulation with BMP2 to undergo
chondrogenesis [38]. The study also pointed a discrep-
ancy in the expression of aggrecan and COL2 in chon-
drogenic culture of hSSCs, as shown herein as well as in
our previous study [18]. Thus, conventional cell isolation
from synovium without any selection yields low repro-
ducibility, whereas our results may provide a new indica-
tor for selecting a useful cell source.
It is known that synovial fibroblasts (SFs) contribute to

cartilage and bone erosion in rheumatoid arthritis (RA)
[64]. Given that cultured SFs have traditionally been
studied in arthritis using the same isolation procedure
used in therapeutic study, their erosive potential of
hSSCs should be considered. Recent single-cell tran-
scriptome analysis showed that inflammatory fibroblasts
expressing TNFα, IL6, and IL1B as well as immune cells
were found in OA synovium. Moreover, they also
expressed several proteinases such as ADAMTSs and
MMPs [65]. Tsuchiya et al. showed that the responses of
OA-SFs to the stimulation of inflammatory cytokines
were shared in RA-SFs, indicating the common potential
for proinflammation in expanded cells derived from OA,
RA [66], and probably healthy synovium. Furthermore,

Chijimatsu et al. Stem Cell Research & Therapy          (2021) 12:405 Page 13 of 17



other groups demonstrated that hSSCs either from
healthy subjects or OA patients could induce osteoclas-
togenesis from PBMCs in vitro [67]. These results sup-
port our data regarding the TRAP activity at the border
of fibrous neo-tissues. Altogether, cultured synovial cells
have two aspects as stem cells and disease-modifying fi-
broblasts. Regarding the purpose of regenerative therapy,
further study will be needed to avoid the negative effects
of hSSCs. These findings have not been reported in
hASCs; however, the erosion of host tissue was also ob-
served in cell transplantation. Our data indicate that
local transplantation for chondral injuries using cells
with low chondrogenic potential in vivo should be care-
fully considered.
There are several limitations in this study. Firstly, we

did not verify the surface antigens and potential of cells
for osteogenesis and adipogenesis, which are often used
in MSC studies; however these have been confirmed in
our previous studies [27, 68] or elsewhere with compar-
able culture methods [17, 59]. In fact, the criteria and
terminology for MSCs have recently been reconsidered
[69]. Therefore, we referred to somatic stem cells using
the name of the source tissue in this study. With respect
to repair in bone diseases, evaluation of the osteogenic
capacity in vitro may be helpful; however, in vivo osteo-
genesis was not recognized in the cells studied herein.
Secondly, we suggested that endogenous expression of
TGFβ superfamilies may contribute during chondrogen-
esis, but it was only at the gene level. Further study will
be needed to clarify at the protein levels, including dom-
inant ligands for chondrogenesis. Thirdly, our human
study was planned as donor matched comparison of two
stem cells from OA patients; however, hSSCs had large
variety among donors, resulting in an insufficient num-
ber to provide enough evidence using TGFβ responsible
and non-responsible groups. To establish criteria, large
number study focusing on human SSCs should be con-
ducted including non-arthritis synovium. Finally, the
endpoint of in vivo study was 3–6 weeks, which is insuf-
ficient to evaluate the actual fate of neo-tissue. There-
fore, we could not declare that mSSC formed
cartilaginous tissue can stably function as articular cartil-
age. Moreover, constituent changes in hSSCs forming fi-
brous or fibrocartilaginous tissues to form hyaline-like
cartilage should be pursued further.

Conclusion
Adequate chondrogenic factors driving chondrogenesis
from somatic stem cells are intrinsically distinct among
cell types and species. The response to TGFβ1 but not
BMP2 may potentially represent the in vivo chondro-
genic potential after transplantation into osteochondral
defects. Our findings may help to establish an indicator

to predict cell reparability for cartilage diseases prior to
clinical use.
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