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Abstract: Background: Heart rate variability (HRV) is affected by many factors. This paper aims
to explore the impact of water temperature (WT) on HRV during bathing. Methods: The bathtub
WT was preset at three conditions: i.e., low WT (36–38 °C), medium WT (38–40 °C), and high WT
(40–42 °C), respectively. Ten subjects participated in the data collection. Each subject collected five
electrocardiogram (ECG) recordings at each preset bathtub WT condition. Each recording was 18 min
long with a sampling rate of 200 Hz. In total, 150 ECG recordings and 150 WT recordings were
collected. Twenty HRV features were calculated using 1-min ECG segments each time. The k-means
clustering analysis method was used to analyze the rough trends based on the preset WT. Analyses
of the significant differences were performed using the multivariate analysis of variance of t-tests,
and the mean and standard deviation (SD) of each HRV feature based on the WT were calculated.
Results: The statistics show that with increasing WT, 11 HRV features are significantly (p < 0.05) and
monotonously reduced, four HRV features are significantly (p < 0.05) and monotonously rising, two
HRV features are rising first and then reduced, two HRV features (fuzzy and approximate entropy)
are almost unchanged, and vLF power is rising. Conclusion: The WT has an important impact on
HRV during bathing. The findings in the present work reveal an important physiological factor that
affects the dynamic changes of HRV and contribute to better quantitative analyses of HRV in future
research works.

Keywords: water temperature; bathing; ECG; heart rate variability; quantitative analysis; t-test

1. Introduction

Heart rate variability (HRV) is an important indicator of physical and mental health.
The instantaneous HRV rhythm represents a dynamic balance between the sympathetic
nervous system (SNS) and parasympathetic nervous system (PNS) branches of the auto-
nomic nervous system (ANS) [1]. Therefore, the quantitative analysis of HRV is considered
an effective method for the diagnosis of many cardiac diseases in clinical applications.
However, many internal and external factors affect HRV. The internal factors include men-
tal stress, gender, age, and disease, while the external factors include sleep, drugs, alcohol,
smoking, and diet.

1.1. HRV and Stress

The SNS branch of the ANS was more activated during states of mental stress [2];
therefore, some literature evaluated mental stress using HRV analyses based on differ-
ent stressors [3–12]. Some papers confirmed that the HR was significantly increasing
during stress states [5,7,13–20], while some papers found that the mean R-R intervals
(RRIs) [5,7–10,12,14–16,21] and the square root of the mean of the squares of the successive
differences (RMSSD) between adjacent normal to normal intervals (NNs) [8,10,22–29] were
significantly reduced during stress states. Kofman et al. discovered that the percentage of
low frequency power in total power, pLF, was significantly higher while the percentage of
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high frequency power in total power, pHF, was significantly reduced during an examina-
tion stress state [4]. Melillo et al. found that the LF/HF ratio was significantly higher in
the normal estimated glomerular filtration rate [30], while Hjortskov et al. proved that the
LF/HF ratio was significantly higher during computer work stress states [3].

1.2. HRV and Gender and Age

The HRV dynamically changes with aging and gender. Ramaekers et al. and
Schwartz et al. discovered that some HRV parameters decreased with aging, while Ra-
maekers et al. confirmed that the gender differences in the HRV parameters only exist
in subjects younger than 40 years old [31,32]. Lochner et al. found that women’s HRV
was significantly lower than men’s HRV [33]. Davy et al. observed that physically active
women had higher levels of cardiac baroreflex sensitivity and HRV compared with seden-
tary women regardless of age [34]. Nagy et al. proved that gender differences determined
HRV differences from birth, while boys’ HR baseline was significantly lower than that
for girls [35]. Bonnemeier et al. noted that gender differences in HRV were significantly
reduced with aging [36]. Yamasaki et al. discovered that LF was highly determined by
aging and the pLF of men was significantly higher than that of women [37].

1.3. HRV and Disease

The HRV differs between healthy people and patients. Wilkowska et al. found
that the HRV of depressed patients was significantly lower than that of nondepressed
patients [38]. Lutfi and Sukkar showed that lower HRV was associated with higher BP
values, putting subjects with such trends at a higher risk of developing hypertension [39].
T. Tombul et al. confirmed that lower HRV in multiple sclerosis patients than that in
healthy [40]. D. Gurses et al. observed that some time domain parameters (mean RRIs,
SDNN, RMSSD, and PNN50) were significantly lower in the thalassaemic patients then that
of the healthy subjects [41]. M. Lan et al. found that the mean RRIs significantly increased,
while LF% and LF/HF significantly decreased in the patients with allergic rhinitis in the
sitting position [42]. DelRosso et al. investigated obstructive sleep apnea and found that it
resulted in increased sympathetic activation during sleep in children [43].

1.4. HRV and Sleep

The sleep has an important impact on the HRV. Herzig et al. discovered that the HR
was higher during REM sleep than during slow wave sleep (deep sleep) [44]. Padole and
Ingale found that the HRV was distinguishable among the normal, sleeping, and medi-
tation states [45]. Arslan et al. confirmed that the sleep deprivation resulted in a signifi-
cant decreased in HF, TP, standard deviation (SD) of NN intervals (SDNN), and pNN50,
with concomitant increased in the LF/HF ratio [46]. ÁR. Sűdy et al. confirmed that the
HRV during sleep on workdays and free days was significantly different in young healthy
men with social jetlag [47].

1.5. HRV and Other Factors

Many other factors also affect HRV. Hynynen et al. proved that the HRV of healthy
men was significantly decreased, and the HR was significantly increased at night after
marathon or moderate exercise sessions [48]. James et al. learned that the level of HRV
significantly changed after severe intensity exercise [49]. Zuanetti et al. discovered that
HRV significantly varied after patients took antiarrhythmic drugs [50]. Murgia et al.
confirmed that HRV significantly increased after smoking cessation [51]. Young et al.
learned that diet played an important role in the link between mood and HRV [52].
Latha et al. learned that classical music had a beneficial effect on HRV and reduced medical
students’ stress levels [53]. Sollers et al. investigated the varying ambient temperature and
found it had an important impact on the HRV [54]. Shin proved that ambient temperature
induced a significant difference in pulse rate variability compared to HRV, and that the
difference became greater at a higher ambient temperature [55].
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Some previous studies explored the impact of water temperature (WT) on HRV.
Mourot et al. and HC. Choo et al. found that immersion in different WT had an important
impact on the HRV [56,57]. Y. Kataoka et al. studied the impact of WT on HRV during
bathing, but only 38 °C and 41 °C were included, and a few HRV measures were evalu-
ated [58]. F Edelhäuser et al. investigated the effects of whole-body immersion on HRV at
three different WTs (33 °C, 36 °C, and 39 °C) [59].

The main purpose of this paper aims to explore the impact of different WTs on HRV
during bathing. The experiment was carried out based on the most commonly used WTs
in the daily family life, twenty HRV features (included time domain, frequency domain,
and non-linear domain) were calculate.

2. Method
2.1. ECG Collection System

The electrocardiogram (ECG) collection system in this study includes four rectangular
stainless steel noncontact electrodes, all of them placed on the bathtub wall. When the
subject is in the bathtub during bathing, the four noncontact electrodes are near the right
foot, right arm, left foot, and left arm, respectively.

The electricity on the skin surface, which is produced by the electrical activity of the
heart, arrives in the four noncontact electrodes through the water and three-lead ECG are
recorded. The lead I ECG is the potential difference between the left arm (positive) and right
arm (negative), the lead II ECG is the potential difference between the left foot (positive)
and right arm (negative), and the lead III ECG is the potential difference between the left
foot (positive) and left arm (negative). Four shielded wires are, respectively, welded onto
the four noncontact electrodes. The three-lead ECG arrives in the ECG collection monitor
(Open Brain Computer Interface Biosensing Ganglion Board-OpenBCI Ganglion; OpenBCI,
USA) through the shielded wires, and the ECG monitor and the laptop (a MacBook Pro) are
connected using a standard Bluetooth 4.n, and all the collected ECG recordings are stored
on the laptop. The designed ECG collection system in this study is shown in Figure 1 [60].

Figure 1. ECG collection system.

2.2. Subjects and ECG Recordings

The ECG recording procedures were approved by the Public University Corporation,
the University of Aizu Research Ethics Committee. Written informed consent was obtained
from each participant before the experiment.

Ten subjects (seven men and three women) aged 23 to 40 years old (mean ± SD:
28.5 ± 4.78 years) who were students from the University of Aizu participated in the data
collection. The BP, body temperature, and body weight were recorded before and after
the ECG collection, and the temperature profile for WT change and room temperature
were recorded every second during the ECG collection using a temperature monitor (TR-
71wb/nw; T&D Corporation, 817-1, Shimadachi, Matsumoto, Nagano, Japan, 390-0852).
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The preset bathtub WT includes three conditions: low WT (36–38 °C), medium WT
(38–40 °C), and high WT (40–42 °C), respectively. Each subject collected 5 ECG recordings
at each preset bathtub WT condition and each recording was 18 min long with a sampling
rate of 200 Hz. In total, 150 ECG recordings and 150 temperature recordings were collected
during bathing.

2.3. ECG processing

The flowchart for the ECG processing, HRV feature calculation, and statistical analysis
is shown in Figure 2.

Figure 2. Flowchart for the ECG processing, HRV feature calculation, and statistical analysis.

All data processing and analyses were performed using MATLAB (R2019a). Baseline
wandering is obvious in the raw ECG signal due to motion artifacts and respiration from
the subjects; therefore, the wandering baseline was removed using the one-dimensional
(1-D) wavelet decomposition and reconstruction methods. The Daubechies wavelet at level
10 was used to decompose the raw ECG signal and the baseline wandering approximation
coefficient was subtracted from the raw ECG signal after reconstructing at level 8.

Obvious hum noise was also observed in the raw ECG signal; therefore, we performed
a spectrum analysis on the raw ECG signal. The spectrum analysis results show that the
main frequency component of the hum noise was 50 Hz, which is mainly produced by
the electromagnetic interference between the power supply network and equipment [61].
A second-order infinite impulse response digital notch filter was used to remove the 50 Hz
hum noise. The numerator and denominator coefficients of the digital notch filter with the
notch located at ω and the bandwidth at 0.0071 at the −3 dB level were calculated and the
ω must meet the condition of 0.0 < ω < 1.0. The difference equation of the digital notch
filter is shown in Equation (1).

y[n] =
N

∑
i=0

bix[n− i]−
M

∑
i=1

aiy[n− i], n ≥ 0 (1)

where x[n] is the filter input, y[n] is the filter output, and ai and bi are the numerator and
denominator coefficients, respectively, of the digital notch filter.



Life 2021, 11, 378 5 of 13

Next, the 5-point moving average method was used to smoothen the ECG signal.
The mathematical formula for the moving average is shown in Equation (2):

y[n] =
1
M

M−1

∑
j=0

x[n− j] (2)

where x[n] is the input signal, y[n] is the output signal, and M is 5.
Then the ECG was normalized into the range of 0 to 1 using the “mapminmax” func-

tion, the R peaks were detected using the “findpeaks” function, the RRI were calculated,
and the RRI outliers removed using the 1D 11th order median filter because of its outstand-
ing capability in suppressing the isolated outlier noise without blurring sharp changes in
the original signal.

The mathematical formula of the 1D 11th order median filter is shown in Equation (3):

y[i] = median{x[i], i ∈ w} (3)

where x[i] is the input signal, y[i] is the output signal, and w is the moving window length.
The results for each ECG processing step are shown in Figure 3.
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Figure 3. Output of the ECG processing steps.

2.4. HRV Analysis

HRV analysis methods include linear and nonlinear domain analysis methods, where
the linear domain includes time and frequency domain methods. The HRV features in the
time domain include HR, mean RRI, SDNN, RMSSD between adjacent NNs, SD of the
successive differences between adjacent NNs (SDSD), and area under RRI (AURRI). The
HRV features in the frequency domain include very LF (VLF) power (0.003–0.04 Hz), LF
power (0.04–0.15 Hz), HF power (0.15–0.4 Hz), total power (0–0.4 Hz), pLF, pHF, and the
LF/HF ratio. The HRV features in the nonlinear domain include the correlation dimension
(D2), the SD of the Poincare plot perpendicular to the line of identity (SD1), the SD of the
Poincare plot along to the line of identity (SD2), the SD1/SD2 ratio, and the sample (SE),
fuzzy (FE), and approximate entropies (AE).

Before the frequency features are calculated, a RRI resample is necessary. According
to Nyquist’s sampling theorem, the sample rate must be more than two times the highest
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frequency in the original signal. The highest frequency of the HRV is 0.4 Hz; therefore,
the new resampling rate for RRI was set at 2 Hz. Then, a discrete Fourier transform (DFT)
was used to calculate the power spectral density (PSD) of the resampled RRI for a N points
sequence. Its DFT is shown in Equation (4):

X[k] =
N−1

∑
n=0

x[n]e−i 2π
N nk. (4)

where k = 0, 1, 2, ... , N−1, and i2 = −1.

2.5. Statistical Analysis of the HRV Features

Each ECG recording was 18 min in length and segmented into 18 equal parts. A
1-min ECG was used to calculate the HRV features each time. Based on the bathtub WT,
the mean and the SD of each HRV feature were calculated, and the t-test was used to test
for significance. The summary statistic results of each HRV feature are visualized in the
clustering results and box plot.

3. Results

The variations of the HRV features based on different WTs are shown in Figure 4. The
smaller dots with blue, yellow, and green colors represent the HRV features calculated
based on each preset WT, while the bigger black dots are the average values of the HRV
features based on each preset WT calculated by the K-means clustering analysis method.
For the areas of the dots of HR, the blue area is smallest, the yellow area is biggest, and the
green area is medium sized. The low WT condition is very close to the average temperature
(about 36.5 °C) of the normal human body, therefore, the WT stimulation was not strong
to the subjects, with a small variation in HR and the SD of HR was 3.38. The higher WT
has a stronger stimulation to the subjects during bathing. Although the instantaneous HR
was very fast at this WT condition, the HRV was not the biggest with a SD of HR 4.17.
The stimulation for the medium WT condition was bigger than the stimulation for the low
WT condition, but was smaller than the high WT condition. The HRV is obvious with a SD
of HR 4.65; therefore, the area of the yellow dots was the biggest.

Figure 4 shows that the controlled condition of WT was not serious or uniform. In
fact, the low WT was not strictly and evenly distributed in the range of (36–38 °C) and
was far below the ambient temperature during bathing. The WT of 42 °C was far beyond
the ambient temperature during bathing; thus, the WT decreased quickly during the data
collection and the WT data at about 42 °C were not as concentrated. It is obvious that the
D2, HF power, total power, pHF, mean RRI, SDNN, RMSSD, SDSD, AURRI, SD1, and SD2
were monotonously reduced with increasing WT, and the pLF, LF/HF, HR, and SD1/SD2
were monotonously rising with increasing WT. A significant difference (p < 0.05) was found
among the above HRV features.

The results of significant difference analyses for the 20 HRV features in three analysis
domains under three WT conditions are visualized in Figure 5. There are some outliers for
each HRV feature. For the HR, the higher of the WT, the more outliers because the subjects
experienced stronger stimulation from the higher WT and it is more difficult to adapt the
WT environment during bathing. The changes in the mean of VLF, LF, SE, FE, and AE were
not obvious, and significant differences were not found in these five HRV features.

The details of the statistic results of the 20 HRV features in the time, frequency, and non-
linear domains are shown in Table 1, where the mean values and SD are listed, and the
pairwise statistically significant differences between each WT condition are calculated.
The significant difference analysis was performed via the multivariate analysis using the
t-test variance method, where p1 represents the significant difference between low and
medium WT conditions, p2 represents the significant difference between medium and high
WT conditions, and p3 represents the significant difference between low and high WT
conditions. With the increasing WT, the SD of the HR, mean RRI, AURRI, pLF, pHF, LF/HF
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ratio, and SD1/SD2 are first rising and then reduced, and the SD of LF, HF, TP are first
reduced and then rising.

0.4

0.5

0.6

0.7

 D
2
 (

m
s)

1.4

1.6

1.8

 V
L

F
 (

m
s2

)×
1

0
3

1

1.5

2

 L
F

 (
m

s2
)×

1
0

3

0.6

0.8

1

1.2

 H
F

 (
m

s2
)×

1
0

3

3.5

4

4.5

 T
P

 (
m

s2
)×

1
0

3

55

60

65

70

75

 p
L

F
 (

%
)

30

35

40

45

 p
H

F
 (

%
)

1.5

2

2.5

 L
F

/H
F

 (
-)

80

100

120

 H
R

 (
b

p
m

)

600

700

800

 M
ea

n
 R

R
I 

(m
s)

10

15

20

25

 S
D

N
N

 (
m

s)

2

4

6

 R
M

S
S

D
 (

m
s)

2

3

4

5

 S
D

S
D

 (
m

s)

35

40

45

 A
U

R
R

I 
(s

2
)

15

20

25

30

35

 S
D

1
 (

m
s)

36 38 40 42

 WT (°C)

2

3

4

 S
D

2
 (

m
s)

36 38 40 42

 WT (°C)

6

8

10

 S
D

1
/S

D
2

 (
-)

36 38 40 42

 WT (°C)

0.2

0.3

0.4

 S
E

 (
-)

36 38 40 42

 WT (°C)

0.08

0.1

0.12

0.14
 F

E
 (

-)

36 38 40 42

 WT (°C)

0.3

0.35

0.4

0.45

 A
E

 (
-)

Figure 4. Feature trends for 20 HRV features in three analysis domains under three WT conditions.
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Table 1. The statistic results of the HRV features based on different bathtub WT.

HRV Features Features (36 38] °C (38 40] °C (40 42] °C p Value

Trend Mean SD Mean SD Mean SD p1 p2 p3

Time HR (bpm) ↑↑ 85.55 3.38 94.07 4.65 101.30 4.17 0 0 0
Domain Mean RRI (ms) ↓↓ 699.93 27.53 637.04 30.67 591.15 22.42 0 0 0

SDNN (ms) ↓↓ 17.99 2.94 15.48 2.48 13.70 1.87 0 0 0
RMSSD (ms) ↓↓ 4.54 0.74 3.69 0.57 3.03 0.42 0 0 0
SDSD (ms) ↓↓ 4.11 0.65 3.32 0.50 2.72 0.35 0 0 0
AURRI (s2) ↓↓ 41.51 1.62 37.82 1.80 35.12 1.32 0 0 0

Frequency VLF Power (ms2) ↑ 1561.77 78.82 1567.90 87.13 1573.03 80.22 0.07 0.14 0
Domain LF Power (ms2) ∧ 1631.05 182.50 1646.35 159.13 1633.92 175.79 0.04 0.11 0.74

HF Power (ms2) ↓↓ 922.03 97.45 859.79 68.12 826.23 86.79 0 0 0
Total Power (ms2) ↓↓ 4157.74 199.76 4114.04 158.49 4065.92 159.75 0 0 0
pLF (%) ↑↑ 63.53 2.37 64.75 2.58 65.91 2.29 0 0 0
pHF (%) ↓↓ 36.36 2.37 35.13 2.45 33.97 2.20 0 0 0
LF/HF (-) ↑↑ 1.75 0.18 1.85 0.20 1.95 0.19 0 0 0

Non-linear D2 (ms) ↓↓ 0.52 0.04 0.51 0.04 0.47 0.04 0 0 0
Domain SD1 (ms) ↓↓ 24.94 4.10 21.51 3.48 19.11 2.62 0 0 0

SD2 (ms) ↓↓ 3.21 0.53 2.61 0.40 2.14 0.30 0 0 0
SD1/SD2 (-) ↑↑ 7.63 0.82 8.03 0.86 8.65 0.85 0 0 0
SE (-) ∧ 0.29 0.04 0.30 0.03 0.27 0.03 0.15 0 0
FE (-) ∼ 0.11 0.01 0.11 0.01 0.11 0.01 0.21 0.04 0.43
AE (-) ∼ 0.36 0.02 0.37 0.02 0.37 0.02 0 0.14 0

� (�): Significantly reduced (increase) with increasing WT p < 0.05; ↓ (↑): Reduced (increase) with increasing WT
p > 0.05; ∧: Increased first and then reduced with increasing WT; ∼: Unobvious change; p1= between (36–38) °C and
(38–40) °C; p2= between (38–40) °C and (40–42)°C; p3= between (36–38) °C and (40–42) °C. (36–38)°C: 36 < WT ≤ 38 °C;
(38–40) °C: 38 < WT ≤ 40 °C; (40–42) °C: 40 < WT ≤ 42 °C;

4. Discussion

As a noninvasive, rapid, and accurate tool in the evaluation of the cardiac autonomic
balance modulation activity, heart rate variety (HRV) has been a hot research topic in
recent years. This study explored the impact of different water temperature (WT) on
HRV during bathing. With the rises of WT, the HR in medium and high WT increased by
6.53% and 15.78%, respectively, compared with the low WT, which reflects a decreased
vagal modulation. The significantly and monotonously reduced SDNN with increasing
WT shows a significantly reduced whole HRV fluctuation, which is highly consistent
with the significantly and monotonously reduced total spectral power (0–0.4 Hz). The
LF power (0.04–0.15 Hz) in the PSD reflects both SNS and PNS activities, while the HF
power (0.15–0.4 Hz) in the PSD reflects the PNS activity, and the LF/HF ratio represents
the balance between the SNS and PNS activities. With the increasing WT, the LF and HF
are significantly and monotonously reduced, which reflects that SNS and PNS activities
are enhanced significantly. The increased LF/HF ratio shows that the ratio of the cardiac
sympathetic to parasympathetic tones (i.e., the sympathovagal balance) was enhanced
significantly, which shows that the stimulation of high WT on the subject was also en-
hanced significantly. The stimulation on the subject under high WT increased by 6.43%
and 5.20% over the low and medium WT, as shown in Table 1. Furthermore, the HRV
feature of AURRI was newly defined in this paper and its unit is s2. The AURRI reflects the
fluctuation of HRV signal over time: i.e., with the increasing WT, the mean RRI and AURRI
are reduced. In lower WT condition, the parasympathetic activity is dominant. With the
WT increasing, our findings show decreased HRV complexity, which induce obvious shift
of ANS balance towards the sympathetic activation associated with vagal withdrawal.
Therefore, the higher WT can induce a stronger response of physiological allostatic regula-
tory, which is often accompanied by an enhanced cardiac sympathoexcitation associated
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with a vagal withdrawal. From the healthcare perspective, to reduce the sudden onset
possibility of cardiac and cardiovascular complications or diseases during bathing, it is
more dangerous to choose a higher WT condition for the patients.

The same WTs which belonging to different WT change processes induce different
impacts on HRV. For example, if the WT drops from 40 °C to 38 °C during the data collection
process, the subject will feel very uncomfortable in the first minute and need a longer time
to adapt to the WT environment. However, if the WT increases from 38 °C to 40 °C during
the data collection process, the subject will adapt to the WT environment easily. Even if the
WT reaches 40 °C, the subjects will not feel very uncomfortable because they have adapted
to this WT environment. The WT of 40 °C appeared during two different processes, but had
very different instantaneous effects on the HRV and their physiological meanings were
also different in these processes. Therefore, some outliers appear in the box plot as shown
in Figure 5.

According to experiment records, the difference from other subjects was that Subjects 4,
7, and 8 did not feel very uncomfortable even in the higher WT (40–42 °C).The slopes of
the variety of HR are smaller than that of the other seven subjects, as shown in Table 2.
Specifically, Subject 7 preferred the higher WT and the change in their HR was not as
obvious as in the other subjects, as shown in Figure 6. The questionnaire showed that
Subject 7 often participated regular physical activities. Regular exercise could make the
sympathetic-adrenal system more easily excited, thus enhancing cardiovascular, hormonal
and metabolic responses, further affecting body temperature regulation, water-electrolyte
interface, muscle contraction performance, etc., thus ensuring blood perfusion, oxygen, and
nutrient supply and elimination of metabolites in organs and tissues throughout the body.
There was evidence that exercise could reduce the sympatho-excitation and sympathetic
outflow, and the baroreflex-mediated was also suppressed. Therefore, compared with other
subjects, Subject 7 demonstrated higher HRV, and their reaction to higher WT indicated a
great adaptability of the ANS.

Table 2. The slope of the variety of HR with increasing WT.

Subject 1 2 3 4 5 6 7 8 9 10
Slope 10.71 4.59 6.72 4.34 6.36 7.48 -0.41 3.46 8.91 6.83

Subjects 1, 6, and 9 were very sensitive to changes in WT and especially could not
tolerate the high bathtub WT (40–42 °C). They felt more comfortable during 4th–11th min
on the data collection process. The first 3 min are the adaptation phase. During this stage,
their foreheads quickly began to sweat a lot. For the other seven subjects, their adaptation
phases were the first 1 min and they began to sweat more after the first 10 min in the same
high WT environment. The body weights of these three subjects were reduced more after
data collection than in the other seven subjects. From this finding, we speculate that people
who are more sensitive to temperature changes are less able to withstand water and WT
pressures, and they are more likely to suffer from higher mental and physical stress during
the higher WT condition.

Subjects 2, 3, 5, and 10 felt a little uncomfortable, but could tolerate the high WT
(40–42 °C). All ten subjects could quickly adapt to the low WT (36–38 °C) and they felt
more relaxed and comfortable in the medium WT (38–40 °C). Except for three subjects who
were very sensitive to the WT changes, the other seven subjects did not feel uncomfortable.

Although some discoveries were revealed in this paper, there are also some limitations.
First, the set-up of the experiment is stressful itself, and therefore may create an additional
bias. Although informed consent was obtained and the data collection process was told
in detail to each subject, as well as let each subject had a five-minute rest before the data
collection, some subjects were still a little nervous at the beginning of data collection.
Furthermore, the sensitivity to external stimuli of each subject was different, the water
pressure on the chest and thermal stimulus on hemodynamics also induced different stress
to each subject, which would induce some additional biases to the results. Therefore,
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the mental stress factor should be also taken into consideration at the same time to evaluate
the impact of WT on HRV. Second, the number of subjects is too small and the subjects
should include older people and children, in addition to healthy and unhealthy individuals
and different ethnicities. Third, the change ranges for WT during the data collection were
too big. Due to poor insulation measures, the WT was relatively divergent during the
data collection process. Thus, the HRV analysis should be performed based on several
smaller ranges of WT. Fourth, the data collection environment was inconsistent for all
the subjects. For example, when the WT is between 40 °C to 42 °C, some subjects could
endure the high WT environment, while other subjects felt too uncomfortable to endure
the high WT environment. Therefore, to be safe, we must give these subjects a fan to blow
a refreshing cool breeze on themselves in this situation. Fifth, during the data-processing
stage, the median filter was used three times to remove the outliers of the RRI signal.
The skin surface electricity is very weak, in the millivolts. The gentle movement of the four
limbs will induce relatively large fluctuations in the ECG amplitude. Therefore, the raw
ECG signal includes some noise and there are some outliers in the R peaks detection and
RRI signal results. If the median filter is only used once to remove the RRI outliers, then
either only the outliers with big amplitude can be removed or there is a gross distortion
in the RRI signal after the outliers are removed. Therefore, the median filter was used to
remove the outliers with big, median, and small amplitudes, respectively.
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Figure 6. The variety of HR and its fitted curve at one degree for each subject under three WT conditions.

5. Conclusions and Future Work

This paper explores the impact of different WTs on HRV during bathing. With the
WTs increasing, some HRV features are significantly and monotonously reduced or rising,
which induces the change of dynamic balance between the SNS and PNS branches of the
ANS. The findings in the present study provide important reference significance in many
practical aspects which need to evaluate the amount of disturbance of homeostasis induced
by WTs. For example, we can affect the HRV by changing the WTs to set an optimal
environment during bathing. Only when the SNS and PNS activities are controlled at a
certain range can the people feel relaxed and comfortable.
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In future research works, we will further explore the HRV levels of healthy subjects
and patients, especially the patients with cardiac diseases (such as arrhythmia, myocardial
ischemia, and coronary heart disease), and then design an automated and accurate WTs
control system to affect the HRV by changing the WTs so that the HRV level is indirectly con-
trolled in a safe and comfortable range based on individual health condition, which would
appropriately reduce the possibility of sudden onset of cardiac disease during bathing.
Moreover, in order to achieve the purpose of lifelong healthcare, we will also explore how
to apply the cutting-edge blockchain technology in the long-term tracking of ECG data
during bathing for the big data collection and analysis [62,63]. Another particularly crucial
research topic is the physiological signal encryption and secure transmission related to the
privacy protection, some emerging technologies provide a valuable reference [64,65].
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