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ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile.
Studies over the last decade have established members of this genus to be important components of the marine ecosystem, con-
tributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic mem-
ber of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyano-
bacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene
cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-
fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive pro-
cesses to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring
sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plas-
tic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combina-
tion which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitroge-
nase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar
mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability.

IMPORTANCE The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial
environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model
photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this
cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habi-
tats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N2 fixation and H2 pro-
duction under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like gran-
ules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains
are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights
into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria.
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Cyanobacteria constitute a fascinating group of photosynthetic
prokaryotes that have inhabited almost every sunlit ecosystem

of the earth for ~3 billion years. The remarkable success of this
group of microbes in adapting to a wide range of environmental
and ecological conditions has largely been attributed to the pres-
ence of an extraordinarily flexible repertoire of metabolic path-
ways (1, 2). Cyanobacteria possessed an efficient cellular machin-
ery to function in anaerobic environments that prevailed during
the mid-/late Archaean era, and their metabolic activities are cred-
ited for the transitioning of the earth into the present-day oxygen-
rich environment (3). In fact, many of the archaic metabolic traits
have been retained in extant cyanobacterial species, enabling them
to thrive in many diverse ecological niches.

The metabolic feats of cyanobacteria are exemplified by the

ability of some strains to fix molecular nitrogen, a process sensitive
to oxygen (4) and not found in any other known oxygenic organ-
ism (5, 6). Cyanobacteria have adapted various strategies to meet
the cellular demands of nitrogen fixation, the most critical being
the protection of the oxygen-sensitive nitrogenase enzyme (7).
While some filamentous strains have developed specialized cells,
called heterocysts, to accommodate this process, unicellular
strains make use of the diurnal cycle to separate oxygen-evolving
photosynthesis from oxygen-sensitive nitrogen fixation (8, 9). Re-
cent studies have demonstrated the importance of unicellular
nitrogen-fixing cyanobacteria in the marine nitrogen and carbon
cycle (10, 11). The efficiency of nitrogen fixation exhibited by
these microbes during the dark period of a day/night cycle sug-
gests that they must have the ability to harvest and store sufficient
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solar energy during the day, which in turn fuels the energy-
intensive nitrogen-fixing process at night. The suboxic intracellu-
lar conditions that are maintained during the nitrogen fixation
period also facilitate various fermentative processes that are com-
monly observed in many facultative and obligate anaerobes (12,
13).

Cyanothece is a genus of morphologically diverse, unicellular
cyanobacteria that are known to inhabit a variety of ecological
niches. This genus was created by Komárek (14) to include uni-
cellular cyanobacteria with distinct morphological, ultrastruc-
tural, and genomic features (15–17). Cyanothece strains from var-
ious ecotypes have been studied in the past for their robust
circadian rhythm, fermentative capabilities, and other biotechno-
logical applications (12, 18, 19). Cyanothece sp. ATCC 51142
[hereinafter referred to as Cyanothece 51142], a prototypic mem-
ber of this genus, was isolated from the Texas Gulf Coast and is one
of the most potent diazotrophic strains yet characterized (20).
System-level studies with Cyanothece 51142 revealed many novel
metabolic traits of this unicellular cyanobacterium which led to
the determination of its genome sequence at the Washington Uni-
versity sequencing center (21). The studies revealed robust diurnal
and circadian cycling of central metabolic processes in this strain,
as well as a strong coordination of correlated processes at the tran-
scriptional level (22). Interestingly, genome analysis of Cyanothece
51142 uncovered the presence of a 430-kb functional linear chro-
mosomal element, the first such element to be identified in any
photosynthetic bacterium. The arrangement of genes on this
chromosome suggested a specific role for it in energy metabolism,
and it was hypothesized that such linear elements with regulatory
functions might be a distinctive trait of the genus Cyanothece (21).
Also interesting from the genomic perspective is the finding that
some atypical nitrogen-fixing strains, such as the endosymbiont
spheroid body of the eukaryotic diatom Rhopalodia gibba and the
unicellular marine cyanobacterium UCYN-A, which lacks photo-
system II, have genomes closely related to those of Cyanothece spp.
(23, 24). In particular, the nitrogenase gene clusters in both of
these organisms is highly similar to that in Cyanothece 51142. It
has been hypothesized that these organisms may have evolved as a
result of targeted gene loss (loss of genes involved in photosynthe-
sis while maintaining an elaborate gene cluster involved in nitro-
gen fixation) from a Cyanothece-like ancestor (23), thus suggest-
ing a highly plastic nature of Cyanothece genomes as well as the
robustness of their nitrogen-fixing machinery.

The most striking of the unique metabolic capabilities of Cya-
nothece 51142 is that cells can exhibit high rates of nitrogenase-
mediated H2 production under aerobic conditions, an unusual
metabolic trait in oxygenic phototrophs (25). Furthermore, the
metabolic versatility of this strain was demonstrated by its ability
to switch between photoautotrophic and photoheterotrophic
modes of metabolism depending on the availability of external
carbon sources and the presence of an atypical alternative citra-
malate pathway for isoleucine biosynthesis (26).

In an effort to unravel the genomic basis of the observed met-
abolic traits of unicellular diazotrophic cyanobacteria, the ge-
nomes of five additional members of the genus Cyanothece (Cya-
nothece sp. strains PCC 7424, PCC 7425, PCC 7822, PCC 8801,
and PCC 8802 [hereinafter referred to as Cyanothece 7424, 7425,
7822, 8801, and 8802]) were sequenced at the Joint Genome In-
stitute, U.S. Department of Energy. The strains were collected
from different geographical locations and exhibit considerable di-
versity with respect to cell size and pigment composition. A com-
parison of the genomes of the different Cyanothece strains re-
vealed that members of this genus are metabolically versatile, each
member having acquired unique metabolic capabilities. The ca-
pability of aerobic nitrogen fixation and the presence of a large,
contiguous nif gene cluster distinguish this group of unicellular
photosynthetic microbes. Analysis of the genes common and
unique to five of the six Cyanothece strains revealed that the core
Cyanothece genomes is an amalgamation of genes from strains
associated with fermentative capabilities, such as Microcystis and
Microcoleus strains, and from aerobic nitrogen-fixing filamentous
strains. The key to the success of this group of organisms appears
to lie in their ability to retain such useful metabolic traits as nitro-
gen fixation and anaerobic fermentation while simultaneously
adapting and accommodating advanced cellular features of con-
temporary photosynthetic organisms.

RESULTS
General features of the Cyanothece genomes. Table 1 summa-
rizes the general characteristics of the six sequenced Cyanothece
genomes. Cyanothece 51142 is a marine (benthic) strain, whereas
Cyanothece 7424, 7425, 7822, 8801, and 8802 were collected from
different tropical and subtropical rice fields in Asia and Africa. The
genome sizes of the six strains show considerable variation, rang-
ing between ~4.8 and 7.8 Mbp. Cyanothece 7822 has the largest cell
size (8 to 10 �m), as well as the largest genome, with ~6,600

TABLE 1 General characteristics of Cyanothece genomesa

Characteristic of Cyanothece strains

ATCC 51142 PCC 7424 PCC 7425 PCC 7822 PCC 8801 PCC 8802

Cell size (�m) 4–5 7–8 3–4 8–10 4–5 4–5
Site of isolation Port Aransas, TX Rice field, Senegal Rice field, Senegal Rice field, India Rice field, Taiwan Rice field, Taiwan
Size (Mbp) 5.46 6.55 5.79 7.84 4.79 4.80
No. of coding sequences 5,304 5,710 5,327 6,642 4,367 4,444
% G�C 37.1 38.0 49.9 39.6 39 39
No. of plasmids 4 6 3 3 3 4
No. of linear chromosomal elements 1 0 0 3 0 0
No. of pseudogenes 6 177 131 341 200 206
a Size bar, 2 �m.
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protein-coding genes, whereas Cyanothece 8801 and 8802 have the
smallest genomes, with ~4,400 open reading frames. The genome
of each strain consists of a circular chromosome and several (3 to
6) smaller plasmids. The plasmids range in size from ~10 kb
(smallest plasmid in Cyanothece 51142) to ~330 kb (largest plas-
mid in Cyanothece 7424).

Like Cyanothece 51142, Cyanothece 7822 also carries linear
chromosomal elements in its genomes. The single linear chromo-
some in Cyanothece 51142 did not exhibit significant synteny with
any sequenced cyanobacterial genome except the partially se-
quenced genome of Cyanothece sp. strain CCY 0110. Based on this
observation, it was suggested that the linear chromosome might
be specific to the genus Cyanothece (21). Interestingly, our analy-
ses showed that Cyanothece 7822 has 3 linear chromosomal ele-
ments in its genome. The largest of these is an 880-kb element with
595 coding sequences, followed by a 474-kb fragment with 422
coding sequences. The third linear element is 14 kb long with 13
coding sequences. About 50% of the coding genes in the largest
linear chromosome are unique to Cyanothece 7822, and 229 of
these are without any paralogs elsewhere in the genome. A large
fraction of these genes encode ABC transporters, with two oper-
ons containing genes involved in phosphate and molybdenum
transport (see Table S1 in the supplemental material). In addition,
this linear element has a significant number of genes involved in
carbohydrate metabolism, including a cluster of genes encoding
carbohydrate degradation and glycosylation proteins. Several
genes encoding proteins with regulatory functions, transposons,
and CRISP-R-associated proteins, as well as proteins involved in
aromatic compound degradation, are also present in this chromo-
some. A cluster of cytochrome oxidase (cox) genes involved in
respiration is common to the linear chromosomes of both Cyan-
othece 51142 and 7822. About 65% of the genes on the second-
largest linear element are unique to Cyanothece 7822, with 52% of
the genes unique to this chromosomal element.

The GC content of five of the sequenced Cyanothece genomes is
close to 40 percent. Cyanothece 7425 is an exception, with a GC
content of 50%. The terrestrial Cyanothece strains have a high
percentage of pseudogenes in their genome (Table 1). Although
Cyanothece 51142 has only 6 pseudogenes, Cyanothece 7822 con-
tains 341, whereas in Cyanothece 8801 and 8802, the strains with
the smallest genomes, the ~200 pseudogenes account for ~4% of
the genome.

Phylogenetic analysis. Phylogenetic analysis of 61 cyanobac-
terial genomes using 226 homolog protein groups (see Materials
and Methods) revealed various novel aspects of the evolutionary
history of the Cyanothece strains. Based on this analysis, five of the
six Cyanothece strains (Cyanothece 51142, Cyanothece 8801, Cya-
nothece 8802, Cyanothece 7822, and Cyanothece 7424) branch into

a single clade together with three other nitrogen-fixing unicellular
cyanobacteria, Cyanothece CCY 0110, Crocosphaera watsonii WH
8501, and UCYN-A (Fig. 1). These eight strains are likely to have
evolved from a common ancestor, from which the two nondi-
azotrophic Microcystis strains also seem to have branched. Two
other nondiazotrophic strains, Synechococcus sp. strain 7002 and
Synechocystis sp. strain 6803, form a distant branch within this
unicellular nitrogen-fixing group (Cyanothece 51142 to Synechoc-
occus sp. strain JA-2-3Ba). Striking in this analysis is the position
of Cyanothece 7425, which appears to have evolved separately and
is phylogenetically close to Acaryochloris marina MBIC 11017 (a
chlorophyll-d-containing strain), compared to any other Cyan-
othece strain. Cyanothece 7425 branched off earlier than most
other nitrogen fixers except for three anaerobic nitrogen-fixing
Synechococcus strains (Synechococcus sp. strain 7335, Synechococ-
cus sp. strain JA-3-3AB [2–13], and Synechococcus JA-2-3Ba).

One of the two main branches in the phylogenetic tree contains
only non-nitrogen-fixing cyanobacteria (consisting of Synechoc-
occus sp. strain 6301, Synechococcus sp. strain 7942, and all alpha-
cyanobacteria). The other branch (from Nodularia spumigena
CCY 9414 to Synechococcus sp. JA-2-3Ba), although consisting
predominantly of nitrogen fixers, is interspersed with non-
nitrogen-fixing strains. As suggested by earlier phylogenetic stud-
ies of diazotrophic cyanobacteria (21, 27), it is likely that some of
the cyanobacteria in the second branch lost their nitrogen-fixing
capability in the course of evolution. The position of the newly
sequenced Cyanothece 7425 (with a functional nitrogenase clus-
ter), which branched off from a common ancestor with A. marina
(a non-nitrogen-fixing strain), strengthens this premise.

Shared and unique genes in Cyanothece genomes. Based on
NCBI protein BLAST analysis (see Materials and Methods for de-
tails), we identified 1,705 homologous gene groups that are shared
by all of the six Cyanothece strains (see Table S2 in the supplemen-
tal material). Using the classification scheme in the CyanoBase
database (28), 1,003 (59%) of these genes are associated with
known functional categories. Genes related to nitrogen fixation,
central carbon metabolism, photosynthesis, respiration, and most
common amino acid biosynthetic pathways are included in this
shared group of genes. When the protein sequences of these ho-
mologous genes were BLAST-aligned against all sequenced ge-
nomes (excluding those of three closely related strains; see Mate-
rials and Methods), �99.5% of the 1,705 groups had homologs in
other cyanobacterial strains. These genes were distributed among
several cyanobacterial strains (Table S2 in the supplemental ma-
terial), with the highest number (more than 85%) of homologues
in Microcystis sp. and filamentous nitrogen-fixing strains. In con-
trast, few of these genes (less than 50%) had a homolog in mem-
bers of the alpha-cyanobacterial group.

TABLE 2 Ortholog comparison between pairs of Cyanothece genomes

Cyanothece strain

No. (%) of orthologsa

ATCC 51142 PCC 7424 PCC 7425 PCC 7822 PCC 8801 PCC 8802

ATCC 51142 4,864 2,791 (57) 2,059 (42) 2,739 (56) 2,823 (58) 2,838 (58)
PCC 7424 2,791 (54) 5,163 2,273 (44) 3,707 (60) 2,711 (52) 2,700 (52)
PCC 7425 2,059 (44) 2,273 (48) 4,729 2,275 (48) 2,055 (43) 2,064 (44)
PCC 7822 2,739 (47) 3,707 (64) 2,275 (39) 5,787 2,743 (47) 2,740 (47)
PCC 8801 2,823 (68) 2,711 (66) 2,055 (50) 2,743 (66) 4,132 3,844 (93)
PCC 8802 2,838 (68) 2,700 (65) 2,064 (49) 2,740 (66) 3,844 (92) 4,181
a Paralogs excluded.
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Cyanothece 7425 is the most disparate among the six strains,
with more than 2,300 unique genes (Fig. 2) representing 43% of its
protein coding genes. Cyanothece 8801 and 8802 have the same
geographical origin and are more than 90% identical to each other
at the genome level, with a single large region of inversion (Ta-
ble 2; Fig. 3). Since most of the genes are shared between these two

strains, they have very few unique genes
(183 in Cyanothece 8801 and 263 in Cya-
nothece 8802). Sixty-eight percent of the
genes in Cyanothece 8801 and 8802 have
homologs in Cyanothece 51142, and their
close phylogenetic association is also re-
flected in their proximity in the tree
(Fig. 1). Also in accordance with their po-
sition in the tree, Cyanothece 7424 is clos-
est to Cyanothece 7822, sharing more than
60% of the genes in their individual ge-
nomes. Although Cyanothece 7822 has the
largest genome, only 27% of the genes are
unique to this strain. Interestingly, even
though Cyanothece 7424 and 7425 have a
common ecological origin (Table 1), un-
like Cyanothece 8801 and 8802, their ge-
nomes are very diverse.

A BLAST analysis of the individual
protein sequences from each homologous
group showed that the top hits for these
sequences are spread among a number of
cyanobacterial strains, indicating differ-
ences in the evolutionary pathways of the
six Cyanothece strains. Interestingly, for
all strains except Cyanothece 7425, the top
hits for more than 70% of the group of
1,705 homologous genes were mostly
from Microcystis aeruginosa, Microcoleus
chthonoplastes, and Synechocystis 6803. In
contrast, top BLAST hits for protein se-
quences of Cyanothece 7425 (67% of the
homologous groups) were mostly from
Acaryochloris marina, Thermosynechococ-
cus elongatus, Microcoleus chthonoplastes,
Oscillatoria sp. strain PCC 6506, and Nos-
toc punctiforme.

In contrast, BLAST results for the pro-
tein sequences unique to Cyanothece
51142, 7424, 7822, 8801, and 8802,
against the entire sequence database,
showed that more than 50% of them did
not have any significant hits in any other
organism. Furthermore, the top BLAST
hits for the remaining unique proteins in
these Cyanothece strains were spread
among several organisms and could not
be associated with any specific organism,
as was seen with the shared genes. About
40% of the unique genes in Cyanothece
7425 did not show any significant hits
with any other organism. More than 10%
of the unique genes showed top hits in
A. marina and N. punctiforme, with the

remainder spread among several organisms. About 10% of the
unique genes in the Cyanothece strains have homologs in several
nonoxygenic bacteria, many of which are diazotrophic strains.

Due to the genomic diversity observed in Cyanothece 7425, its
distant location in the phylogenetic tree compared to the other
Cyanothece strains, and its proximity to the three anaerobic

FIG 1 Phylogenetic tree of cyanobacteria. The tree was generated from 226 homologous protein
groups, coorthologous in all 61 of the analyzed strains. The diazotrophic strains are colored as follows:
green, Cyanothece strains; red, other diazotrophic cyanobacterial strains. S. elongatus, Synechococcus
elongatus; M. vaginatus, Microcoleus vaginatus; T. erythraeum, Trichodesmium erythraeum; A. maxima,
Arthrospira maxima; L. majuscula, Lyngbya majuscula; G. violaceus, Gloeobacter violaceus.
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nitrogen-fixing Synechococcus strains, we assessed its relationship
to all sequenced cyanobacterial strains. BLAST analysis of all pro-
tein sequences of Cyanothece 7425 against those of all other se-
quenced cyanobacteria revealed that 1,885 of its 5,327 genes had
homologs in the other five Cyanothece strains. In contrast, only
1,335 genes are shared with the three Synechococcus strains. Con-
sidering all sequenced cyanobacterial strains, Cyanothece 7425
shares the highest number of genes with Nostoc sp. strain PCC
7120 (49%), N. punctiforme PCC 73102 (49%), Cyanothece 7822
(49%), Anabaena variabilis ATCC 29413 (48%), Cyanothece 7424,
and A. marina MBIC 11017 (46%).

Metabolic traits of Cyanothece. (i) Nitrogen fixation and hy-
drogen production. Our analysis revealed the presence of a large
nitrogenase (nif) gene cluster in each of the sequenced Cyanothece
genomes, thereby establishing this genus as a group of unicellular
diazotrophic cyanobacteria. Comparison of the nif gene clusters in
all sequenced diazotrophic cyanobacterial strains showed that the
largest contiguous cluster is present in Cyanothece 51142, consist-
ing of 35 genes arranged in two adjacent regulons (Fig. 4). The nif
clusters in Cyanothece 8801 and 8802 are identical to each other

and closely resemble the cluster in Cyanothece 51142, with only
three missing genes: the molybdate ABC transporter permease
protein gene modB, the hypothetical gene between nifK and nifE,
and the hypothetical gene between the ferrous iron transport pro-
tein gene feoA2 and modB. The synteny of this nif cluster is also
largely maintained in Cyanothece 7424 and 7822, although it is
somewhat shortened by gene losses in these two strains. In con-
trast, the nitrogenase cluster in Cyanothece 7425 is interrupted by
a 2.5-Mbp insertion in the middle of the cluster, separating nif-
HDK from nifE. Also, in contrast to the other five Cyanothece
strains, which possess the hup genes, encoding an uptake hydro-
genase, an enzyme associated with nitrogenase activity and
nitrogenase-mediated hydrogen production, the Cyanothece 7425
genome does not have genes for this enzyme.

We assessed the abilities of the six Cyanothece strains to fix
nitrogen and produce hydrogen. Cyanothece 51142 showed the
highest nitrogenase activity, as well as the highest rates of hydro-
gen production, followed by Cyanothece 8802 and 8801 (Table 3).
All Cyanothece strains except Cyanothece 7425 exhibited nitroge-
nase activity and hydrogen production capacity under aerobic in-

FIG 2 Number of shared and unique genes in the genomes of the six Cyanothece strains. Each bar represents the total number of genes in a genome. Protein
sequences of the individual Cyanothece strains were compared with each other in order to identify the distribution of orthologs among different strains (see
Materials and Methods). The number of genes in each genome having orthologs in one or more of the remaining five strains was determined and grouped
accordingly. These gene groups are colored as follows: light blue, genes shared by all six genomes; grey, shared by 5 of the 6 genomes; dark blue, shared by 4
genomes; yellow, shared by 3 genomes; green, shared by two genomes;: red, genes unique to each Cyanothece strain. Orthologous sequences for about 1,700 genes
are found in all genomes. Cyanothece 7425 has the highest number of unique genes, whereas Cyanothece 8801 and 8802 have the least, with most genes being
shared between the two.

TABLE 3 Nitrogenase activity and hydrogen production in the six Cyanothece strainsa

Strain

Nitrogenase activity (C2H4 production [�mol/mg Chl · h]) Hydrogen production (�mol/mg Chl · h)

Aerobic Anaerobic Aerobic Anaerobic

Cyanothece ATCC 51142 148.03 � 19.06 202.33 � 23.41 132.04 � 33.03 308.62 � 42.01
Cyanothece PCC 7424 40.63 � 9.53 160.53 � 28.6 59.64 � 17.32 201.77 � 35.6
Cyanothece PCC 7425 0 40.35 � 10.76 0 54.20 � 12.04
Cyanothece PCC 7822 52.49 � 11.07 112.32 � 18.28 47.83 � 9.8 133.6 � 30.13
Cyanothece PCC 8801 101.22 � 11.65 187.65 � 43.12 51.64 � 9.34 186.2 � 40.23
Cyanothece PCC 8802 98.5 � 18.12 192.12 � 36.78 43.87 � 6.24 176.17 � 38.78
a Chl, chlorophyll.
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cubation conditions (incubation with air in the headspace). In
contrast, Cyanothece 7425 exhibited nitrogenase activity and hy-
drogen production ability only when an anaerobic environment
was provided (incubation with argon in the headspace).

A comparison of the nitrogenase cluster of all the sequenced
nitrogen-fixing cyanobacterial strains revealed an unusual ar-
rangement of the nifVZT regulon in Cyanothece 7425, closely re-
sembling the cluster in two other anaerobic nitrogen-fixing
strains, Synechococcus JA-2-3Ba and Synechococcus JA-3-3Ab,
which exhibit an inversion between nifV and nifE. While the or-
ganization of this cluster is known to be largely conserved among
all nonheterocystous nitrogen-fixing strains (21), an alteration in
the arrangement of the regulons or an inversion/ insertion in the
region was also observed in other anaerobic nitrogen-fixing cya-
nobacterial strains investigated in this study (Synechococcus 7335,
Oscillatoria PCC 6506, and M. chthonoplastes) (Fig. 4). Interest-
ingly, as with Cyanothece 7425, the genomes of these other anaer-
obic nitrogen-fixing strains also do not possess any gene for an
uptake hydrogenase.

(ii) Other metabolic characteristics of the genus Cyanothece.
(a) Photosynthesis. As expected from their ability for oxygenic
photosynthesis, the genomes of all the sequenced Cyanothece
strains contain most of the genes encoding the core cyanobacterial
proteins related to photosynthesis (29). However, a BLAST anal-
ysis of the Cyanothece genomes with all the annotated genes in the
KEGG database showed that certain low-molecular-mass proteins
associated with PSI and PSII are missing in some of the Cyanothece
strains. While all six genomes encode genes for biosynthesis of the
light-harvesting pigment phycocyanin, Cyanothece 7424, 7822,
and 8801 also have genes encoding phycoerythrin, a pigment
which imparts a brownish-green color to these strains. The core
cyanobacterial genes encoding chlorophyll biosynthesis enzymes,
Calvin cycle enzymes, and regulatory proteins (29) are present in
all six Cyanothece genomes. Interestingly, Cyanothece 7424, Cya-
nothece 7425, and Cyanothece 7822 have two very similar copies of
the psaB gene, a trait shared by Synechococcus 7335 and Nostoc
azollae 0708 among the 61 sequenced cyanobacteria. Cyanothece
7822 was the only strain to have the second psaB gene contiguous
to the psaAB operon.

(b) Carbon metabolism. Members of the genus Cyanothece
have been documented to synthesize and store large amounts of
carbohydrates in the form of glycogen granules (30) when grown
under light/dark cycles. BLAST analysis of the Cyanothece proteins
against the KEGG database showed that several genes involved in
glycogen synthesis, degradation, and metabolism are present in
the core group of Cyanothece genes (see Table S2 in the supple-

FIG 3 Alignment of the genomes of Cyanothece 8801 and Cyanothece 8802. The two genomes were aligned using the Mauve software program (54), using its
default parameters. A high level of sequence similarity is observed between the two strains, as shown by the colored portions of the aligned regions. However, the
two genomes differ from each other due to a 1.3-Mbp-long inverted region spanning from 2.5 � 106 to 3.8 � 106 locations of the genomes.

FIG 4 Alignment of clusters of nitrogen fixation-related genes in the six
Cyanothece strains and in five other sequenced anaerobic nitrogen-fixing
strains. The cluster in Cyanothece 7425 is significantly different from the clus-
ters in the other Cyanothece strains, with a 2.5-Mbp insertion between nifK and
nifN. The nifVZT regulon also shows an inversion similar to sequences in two
other Synechococcus strains (Synechococcus JA-3-3Ab and Synechococcus JA-2-
3B). In Oscillatoria sp. 6506, the nifE and nifN genes are pseudogenes, shown in
white. Microcoleus has a shorter cluster with nifB translocated next to nifN.
Synechococcus 7335 has a 50-kbp insertion between nifV and nifB and has nifZ
translocated between nifK and nifE.
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mental material). A cluster of four genes involved in the metabo-
lism of polyhydroxyalkanoic acid is present in Cyanothece 7424,
7822, and 7425 (Cyan7424_0494-0497, Cyan7822_1326-1330,
and Cyan7425_4054-4057) and in M. aeruginosa. In addition, the
Cyanothece genomes encode several genes involved in the synthe-
sis and utilization of diverse sugar molecules. All the Cyanothece
strains have genes for cellulose synthesis and metabolism. Cyan-
othece 7424 and 7425 encode genes for sucrose synthase, whereas
Cyanothece 51142, 7424, 7822, 8801, and 8802 have genes for tre-
halose metabolism.

All of the sequenced Cyanothece strains have genes encoding
enzymes for complete glycolytic and pentose phosphate pathways
and an incomplete tricarboxylic acid (TCA) cycle. Noteworthy is
the presence of a gene encoding phosphoenolpyruvate carboxyki-
nase in five of the six sequenced Cyanothece strains. This enzyme,
involved in the gluconeogenic conversion of oxaloacetate to phos-
phoenolpyruvate, is not very common among other cyanobacte-
ria, occurring only in Arthrospira, Microcystis, and Microcoleus.
Our analysis revealed two unusual genes in Cyanothece 7424 and
7822, encoding isocitrate lyase (PCC7424_4054 and
Cyan7822_2461) and malate synthase (PCC7424_4055 and
Cyan7822_2460), enzymes that are involved in the glyoxylate
shunt of the TCA cycle. No other sequenced cyanobacterial ge-
nome has genes for these two enzymes.

(c) Nitrogen metabolism. The six Cyanothece strains exhibit
diversity in various nitrogen metabolism pathways. Cyanophycin,
a nitrogen reserve molecule in cyanobacteria, is a polymer of ar-
ginine and asparagine. Catabolism of L-arginine can serve as a
source of nitrogen, carbon, and energy for the cells (31). Differ-
ences are observed in this catabolic pathway, suggesting that the
pathway fulfills diverse roles in these Cyanothece strains. Although
all six strains have an arginine decarboxylase that catalyzes the
conversion of arginine to agmatine, the fate of agmatine appears
to differ. Like most cyanobacterial strains, Cyanothece 7822 and
7424 possess an agmatinase enzyme that converts agmatine into
putrescine and urea. The genomes of these two strains have an
operon of seven genes (the largest among all sequenced cyanobac-
teria) encoding urease and its accessory proteins
(Cyan7424_4411-4417 and Cyan7822_2693-2699), as well as
genes involved in the conversion of putrescine into spermine and
spermidine. Cyanothece 7425, 8801, and 8802, in contrast, convert
agmatine to putrescine via an agmatine deaminase and
N-carbamoylputrescine amidase. Cyanothece 8801 and 8802 can
further process putrescine into spermidine and spermine. The
Cyanothece 51142 genome does not have genes that can convert
agmatine to putrescine, suggesting that agmatine is the preferred
polyamine for this strain. It also does not contain any gene for urea
metabolism. Carbamate kinase, an unusual cyanobacterial en-
zyme involved in the production of ATP from ADP and carbam-
oyl phosphate in the final step of the fermentative degradation of
arginine (32), is present in Cyanothece 7822, 8801, and 8802 and in
Synechocystis 6803.

Other interesting differences in amino acid metabolism path-
ways include the presence of the kynurenine pathway of trypto-
phan degradation in Cyanothece 7822, 7425, 8801, and 8802 and
the methionine salvage pathway in Cyanothece 7424, 7822, 8801,
and 8802.

(d) Anaerobic metabolic capabilities. Our earlier studies have
shown that Cyanothece 51142 exhibits high levels of anaerobic
metabolism capacity (22, 25). In fact, all of the Cyanothece strains

show several biochemical pathways associated with anaerobic me-
tabolism. Cyanothece 51142, 7424, and 7822 have genes for fer-
mentative lactate production, and both Cyanothece 7424 and 7822
perform mixed acid fermentation with formate as the end product
(13). Cyanothece 7822 has been shown to have a capacity for mixed
acid fermentation (12), a pathway also observed in the genus Mi-
crocystis. Pathways for ethanol, acetate, and hydrogen production
are found in most of the Cyanothece strains. Also, an anaerobic
chlorophyll biosynthesis pathway involving protoporphyrin IX
cyclase (BchE) is present in Cyanothece 7425 and 7822. This gene
has a homolog in the filamentous cyanobacterial strain Cylindro-
spermopsis raciborskii and in noncyanobacterial strains like Helio-
bacillus mobilis and Rhodopseudomonas palustris. While a gene for
BchE has been identified in Synechocystis 6803 (29), this gene has
little sequence similarity with the Cyanothece gene. Many of the
genes in the five Cyanothece strains (except Cyanothece 7425) had
top hits to M. aeruginosa (�700 genes) and M. chthonoplastes
(�260 genes), both of which are associated with anaerobic envi-
ronments and have been extensively studied for fermentative pro-
cesses. Furthermore, a significant number of unique genes found
in each of the Cyanothece strains have homologs in either faculta-
tive or obligate anaerobic bacteria.

(e) Other novel aspects of Cyanothece metabolism. Cyanoth-
ece strains have acquired or retained diverse metabolic traits that
make them interesting model organisms for studying various bi-
ological processes. For example, Cyanothece 8801 and 8802 differ
from the other Cyanothece strains and most other cyanobacterial
strains in possessing genes that encode a V-type ATPase (a six-
gene operon, Cyan8801_3221-3226 and Cyan8802_2894-2899).
This operon is also present in Cyanobium species and Synechococ-
cus sp. strain WH 5701. It is also important to note that Cyanothece
8801 and 8802 have a number of genes encoding proteins involved
in phosphonate metabolism. These include a three-gene operon
encoding phosphonate transporters. Part of this operon is an ami-
dohydrolase gene that is involved in phosphonate metabolism. In
addition, the C–P lyase system involved in phosphonate metabo-
lism is also present in these Cyanothece strains. In some ecosys-
tems, phosphonates comprise a significant proportion of the
available phosphorous (33), and consequently some strains might
have evolved the capability to metabolize them.

Cytochrome P450s in cyanobacteria have been implicated in
several metabolic processes involved in natural product synthesis,
and members of the Cyanothece genus have been shown to be
particularly enriched for some of these heme oxygenases (34). Our
analysis revealed several unique cytochrome P450s in the Cyan-
othece strains, some with homologs in A. marina. In particular, the
Cyanothece 8801 and 8802 genomes have several genes
(Cyan8801_2436, Cyan8801_1896, Cyan8802_3674, and
Cyan8802_1920) encoding these proteins, and interestingly, these
strains also have large operons encoding nonribosomal peptide
synthetase modules and related proteins (Cyan8801_3021-3032
and Cyan8802_3090-3101).

Most of the Cyanothece strains (except Cyanothece 7424 and
7822) also possess an alkane biosynthetic pathway involving alde-
hyde decarbonylase and an acyl-ACP reductase (cce_0778 and
cce_1430, Cyan7425_0398 and Cyan7425_0399, PCC8801_0455,
and PCC8801_0872, and Cyan8802_0468 and Cyan8802_0898)
(35). Pathways involved in the nonfermentative synthesis of
higher alcohols have also been identified in all the Cyanothece
strains.
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(iii) Characteristics of unicellular nitrogen-fixing strains. In
order to identify the genes that might influence the metabolism of
unicellular nitrogen-fixing cyanobacteria, we BLAST-aligned the
group of 1,705 homologous genes common to all Cyanothece
strains against the entire sequenced cyanobacterial genome data-
base. Among these, 59 genes were identified that are common to
all unicellular and filamentous N2-fixing strains but are lacking in
most (�6 out of 39 strains) non-N2-fixing strains. These included
most of the core N2 fixation-related genes from the nif cluster,
several genes encoding regulatory proteins, and genes involved in
energy metabolism. In addition, several hypothetical and con-
served hypothetical proteins (see Table S2 in the supplemental
material) are found to be restricted to the N2-fixing group. Among
this group of 1,705 homologous genes, 51 genes were found to be
present exclusively in the unicellular N2-fixing strains. Most of
these gene products are hypothetical or conserved hypothetical
proteins with domains implicated in regulatory functions. Some
transporters and regulatory proteins are also found to be present
only in the unicellular strains.

Earlier studies have shown that many of the genes are differen-
tially regulated under diazotrophic growth conditions in Cyanoth-
ece 51142. We BLAST-aligned the genes known to be diurnally
regulated in Cyanothece 51142 (22, 36, 37) against all sequenced
cyanobacterial genomes. Our results show that the core nitrogen
fixation genes (~15 genes) are present in both unicellular and
filamentous nitrogen-fixing strains (see Table S3). Another ~50 of
these diurnally regulated genes are mostly restricted to the unicel-
lular N2-fixing strains. These include genes encoding proteins
with regulatory functions (transcriptional and translational regu-
lators and two component system proteins), transporters, signal-
ing proteins, peroxiredoxins, and peroxidases and several hypo-
thetical and conserved hypothetical proteins.

DISCUSSION

Our analyses of the six completely sequenced Cyanothece genomes
revealed that many key metabolic features were conserved during
evolution, while considerable diversity was also gained (Fig. 2).
The metabolic traits common to the six Cyanothece strains are
shared by many other cyanobacteria, suggesting that they must
have been acquired from an ancient ancestor and retained in the
extant strains. The plasticity of the Cyanothece genomes is evident
from the fact that the strains have acquired many novel metabolic
capabilities, which is reflected in their diverse genotypes and phe-
notypes (such as cell size, shape, and pigment composition). Two
of the Cyanothece strains possess linear chromosomal elements, a
feature not observed in any other photosynthetic bacteria studied
to date. These chromosomal elements seem to accommodate spe-
cific adaptive features that might impart niche-specific advantages
to the strains, as is suggested by the presence of a large number of
genes encoding transposons and CRISP-R-associated proteins.

The significant difference observed in the numbers of pre-
dicted coding sequences between the Cyanothece strains suggests a
substantial amount of loss or gain of genetic material over evolu-
tionary time. Cyanothece 8801 and 8802 possess the smallest ge-
nomes and have a high percentage of pseudogenes, indicating that
they might be undergoing a reductive genome evolution. A high
percentage of pseudogenes is also observed in the genome of N.
azollae, a strain that has undergone significant gene loss to adapt to
a symbiotic lifestyle (38). Despite their small genomes, Cyanothece
8801 and 8802 possess many novel genes that are missing in the

other Cyanothece strains and in most sequenced cyanobacteria,
suggesting that they must have been acquired in response to some
selective pressure. An outstanding example is the presence of the
V-type ATPases, involved in numerous energy transduction path-
ways and known to be indispensable for plant growth, especially
under different stress conditions (39, 40). Another plant-like fea-
ture in Cyanothece is the presence of a two-gene operon in Cyan-
othece 7424 and 7822 encoding enzymes involved in the glyoxylate
cycle. In plants this cycle is implicated in the conversion of storage
lipids into carbohydrates (41). This cycle is also known to impart
metabolic versatility to some bacterial strains. However, no other
cyanobacterial strain sequenced to date is known to possess the
glyoxylate cycle.

Our phylogenetic analysis showed that Cyanothece 7425 sepa-
rated from the other Cyanothece strains at an early stage of evolu-
tion. Cyanothece 7425 cells are smaller than those of the other
Cyanothece strains and are more cylindrical. A GC content of
~40% is characteristic of the genus Cyanothece, and Cyanothece
7425 is an anomaly in this regard as well, with a GC content of
~50%. In contrast to the other five Cyanothece strains, Cyanothece
7425 fixes nitrogen only under anaerobic conditions and appears
to share a common ancestor with three other anaerobic nitrogen-
fixing Synechococcus strains. In contrast to the nif gene cluster in
the five Cyanothece strains, the cluster in Cyanothece 7425 is dis-
rupted by the insertion of a large fragment and exhibits inversions
similar to those of the clusters in the Synechococcus strains. How-
ever, our protein BLAST analysis did not show significant homol-
ogy of the Cyanothece 7425 genes with those of any Synechococcus
strain. Also, unlike the other Cyanothece strains, very few of the
Cyanothece 7425 genes had homologs in Microcystis and Microco-
leus. These results indicate that Cyanothece sp. PCC 7425 repre-
sents a cyanobacterial strain that is losing its nitrogen-fixing abil-
ity and evolving independently of the other Cyanothece strains.

Another interesting observation in this study is the absence of
an uptake hydrogenase in all the sequenced anaerobic nitrogen-
fixing cyanobacteria, which suggests that this enzyme must be
associated with aerobic nitrogen fixation in nonheterocystous
cyanobacterial strains. Raphidiopsis brookii, a strain that has lost
the ability to fix nitrogen and has eliminated most of the nitrogen
fixation related genes (42), also does not have genes encoding the
uptake hydrogenase. Cyanothece 7425 is phylogenetically closest
to A. marina and shares a common ancestor with this strain, indi-
cating that the latter lost its nitrogen-fixing ability in the course of
evolution. Similarly, T. elongatus, a unicellular nitrogen-fixing
strain, located between two anaerobic nitrogen fixers, appears to
have lost its nitrogen-fixing ability. These evolutionary trends sug-
gest that strains that have not adapted for functioning under aer-
obic conditions may not succeed in a predominantly oxygen-rich
environment and therefore lose this ability with the simultaneous
elimination of the nitrogenase cluster. Therefore, the nitrogenase
cluster of Cyanothece, which appears to have evolved to function
efficiently under ambient conditions, is evolutionarily selected
for, as is seen in strains like UCYNA and the endosymbiont of R.
gibba.

Cyanothece cells are unique in their ability to provide a plat-
form for both aerobic and anaerobic metabolic processes at alter-
nate phases of the diurnal cycle. While the unicellular Microcystis
cells also have the capability to create an anoxic intracellular en-
vironment, they do not have genes required for nitrogen fixation.
Five Cyanothece strains exhibit high rates of nitrogenase-mediated
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hydrogen production under aerobic conditions, indicating that an
anaerobic intracellular environment is created to protect the
oxygen-sensitive nitrogenase enzyme. The Cyanothece genomes
also contain many genes for catalases and peroxidases, enzymes
which protect oxygen-sensitive cellular constituents required for
anaerobic metabolism. A large, contiguous nif gene cluster and the
ability to perform aerobic nitrogen fixation distinguish the unicel-
lular Cyanothece cells from all other cyanobacteria. The presence
of versatile metabolic pathways, such as nitrogen fixation and ox-
ygenic photosynthesis, and the ability to generate anoxic cellular
environments under diazotrophic growth conditions make mem-
bers of the genus Cyanothece attractive model systems for studying
various sunlight-driven biofuel-yielding pathways which entail
microaerobic conditions.

MATERIALS AND METHODS
Genome annotation. The Cyanothece 51142 genome was annotated at
Washington University in St. Louis, MO (21), whereas the genomes of the
other five Cyanothece strains were annotated at the Joint Genome Insti-
tute, U.S. Department of Energy. In these five strains, genes were identi-
fied using the Prodigal software program (43) as part of the Oak Ridge
National Laboratory genome annotation pipeline, followed by a round of
manual curation using the JGI GenePRIMP pipeline (44). The predicted
CDSs were translated and used to search the National Center for Biotech-
nology Information (NCBI) nonredundant database and the UniProt,
TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These
data sources were combined to assert a product description for each pre-
dicted protein. Noncoding genes and miscellaneous features were pre-
dicted using tRNAscan-SE (45), RNAMMer (46), Rfam (47), TMHMM
(48), and signalP (49).

Intergenome BLAST analysis. Sequences of protein-coding genes of
six completed Cyanothece genomes (Cyanothece 51142, 7424, 7425, 7822,
8801, and 8802) were downloaded from NCBI (http://www.ncbi.nlm.nih
.gov/) (as of 14 October 2010). Homolog genes between different strains
were identified using NCBI protein-protein BLAST analysis (BLASTP
2.2.22 [50]). Two genes are defined to be homologs to each other if their
reciprocal BLAST hits resulted in the following: (i) an E value of �1E�4,
(ii) a ratio between length of the BLAST hit region and length of the
complete protein �2/3, and (iii) a ratio between the raw score for two-
protein BLAST and the raw score for “self-self” BLAST �1/3.5. All BLAST
runs were conducted with the additional parameters “-num_descriptions
99999 -num_alignments 999999 -comp_based_stats F -seg No” in order
to ensure all relevant alignments are analyzed.

Based on these analyses, all genes in the six Cyanothece strains could be
associated with 11,607 homolog groups. Among them, 1,705 homolog
gene groups are shared by all six strains and are defined as the core genome
(see Table S2 in the supplemental material). In addition, unique genes in
individual strains were also identified.

In order to identify the evolutionary history of the Cyanothece family,
these common and unique genes were BLAST-aligned against the NCBI
nonredundant protein database. These BLAST runs excluded three addi-
tional cyanobacterial strains, namely, Crocosphaera 8501, Cyanothece
CCY 0110, and the uncultured cyanobacterium UCYN-A. Among these,
the Crocosphaera 8501 and Cyanothece CCY 0110 genomes are incom-
plete. Further, the draft versions of genomes of the two strains reveal that
64% (3,799/5,958) and 69% (2,009/6,475), respectively, of the probable
protein-coding genes in these strains share homologs with one or more of
the other Cyanothece strains.

Phylogenetic tree construction. Orthologous sets of proteins were
identified across 61 cyanobacterial strains through an all-versus-all
BLASTP v2.2.23 (50, 51) analysis of their respective proteomes. Orthology
was defined as reciprocal best-match hits between proteomes, matching
66% of the length of the longer of the two proteins, with scores 1/10 of the
higher of the self-self scores. Any highest-scoring protein with multiple

identically scoring hits was discarded. Sets of orthologs were considered to
be conserved if � 75% of proteins within the set were orthologous to one
another, resulting in 226 sets of genes with orthologs in all 61 proteomes.
Each of the 226 sets of 61 proteins was individually aligned using the
MAFFT v6.811b software program (52) and then concatenated into a
single alignment, removing all columns containing gaps. The PHYLIP
v3.64 (5) software package was used to generate the final consensus tree
using the Fitch-Margoliash method with 100 bootstraps, global rear-
rangement, and 1 jumble per bootstrap. Distances were then back fit to the
resulting consensus tree using maximum-likelihood estimates from the
original concatenated alignment. The resultant tree was rendered using
the Archaeopteryx v0.957b software program (53).

Hydrogen production and nitrogenase activity measurement. Hy-
drogen production and nitrogenase activity were measured following the
protocol published in the work of Bandyopadhyay et al. (25).

KEGG pathway mapping. In order to identify genes that may be in-
volved in different metabolic reactions, individual protein-coding genes
were BLAST-aligned against the KEGG pathway database (http://www
.genome.jp/kegg/pathway.html). For each reaction, protein sequences of
all currently annotated genes from different organisms were BLAST-
aligned against the Cyanothece genomes. Following the same criteria uti-
lized to identify the homolog genes in intergenome BLAST analysis, genes
were assigned to relevant KEGG reactions if they were homolog to any of
the currently annotated genes in the KEGG.

Genome alignments. Whole-genome alignments were performed us-
ing “ProgressiveMauve” (54) with default parameter values.
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