
Journal of

Personalized 

Medicine

Article

Lower Hippocampal Volume in Patients with Schizophrenia
and Bipolar Disorder: A Quantitative MRI Study

Jinya Sato 1, Yoji Hirano 1,2,* , Noriaki Hirakawa 1, Junichi Takahashi 1, Naoya Oribe 1,3, Hironori Kuga 1,3,
Itta Nakamura 1, Shogo Hirano 1, Takefumi Ueno 3, Osamu Togao 4, Akio Hiwatashi 5, Tomohiro Nakao 1 and
Toshiaki Onitsuka 1,*

����������
�������

Citation: Sato, J.; Hirano, Y.;

Hirakawa, N.; Takahashi, J.; Oribe, N.;

Kuga, H.; Nakamura, I.; Hirano, S.;

Ueno, T.; Togao, O.; et al. Lower

Hippocampal Volume in Patients

with Schizophrenia and Bipolar

Disorder: A Quantitative MRI Study.

J. Pers. Med. 2021, 11, 121.

https://doi.org/10.3390/jpm11020121

Academic Editor: Yoshihiro Noda

Received: 30 December 2020

Accepted: 9 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University,
Fukuoka 812-8582, Japan; jinya.sato56@gmail.com (J.S.); hirakawa34@gmail.com (N.H.);
yoonil1977@gmail.com (J.T.); n.oribe@mac.com (N.O.); hirokuga.370@gmail.com (H.K.);
nakamura.itta.352@m.kyushu-u.ac.jp (I.N.); hiranoshogo@gmail.com (S.H.);
nakao.tomohiro.275@m.kyushu-u.ac.jp (T.N.)

2 Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
3 Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization,

Saga 842-0192, Japan; uenotk@gmail.com
4 Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University,

Fukuoka 812-8582, Japan; togao@radiol.med.kyushu-u.ac.jp
5 Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University,

Fukuoka 812-8582, Japan; hiwatasi@radiol.med.kyushu-u.ac.jp
* Correspondence: yhouji@mac.com (Y.H.); onitsuka.toshiaki.939@m.kyushu-u.ac.jp (T.O.);

Tel.: +81-92-642-5627 (Y.H. & T.O.)

Abstract: Since patients with schizophrenia (SZ) and bipolar disorder (BD) share many biological
features, detecting biomarkers that differentiate SZ and BD patients is crucial for optimized treat-
ments. High-resolution magnetic resonance imaging (MRI) is suitable for detecting subtle brain
structural differences in patients with psychiatric disorders. In the present study, we adopted a
neuroanatomically defined and manually delineated region of interest (ROI) method to evaluate the
amygdalae, hippocampi, Heschl’s gyrus (HG), and planum temporale (PT), because these regions
are crucial in the development of SZ and BD. ROI volumes were measured using high resolution
MRI in 31 healthy subjects (HS), 23 SZ patients, and 21 BD patients. Right hippocampal volumes
differed significantly among groups (HS > BD > SZ), whereas left hippocampal volumes were lower
in SZ patients than in HS and BD patients (HS = BD > SZ). Volumes of the amygdalae, HG, and PT
did not differ among the three groups. For clinical correlations, there were no significant associations
between ROI volumes and demographics/clinical symptoms. Our study revealed significant lower
hippocampal volume in patients with SZ and BD, and we suggest that the right hippocampal volume
is a potential biomarker for differentiation between SZ and BD.

Keywords: schizophrenia; bipolar disorder; MRI; hippocampus; volume reduction

1. Introduction

Patients with schizophrenia (SZ) and bipolar disorder (BD) share many biological
features, including genetic architecture (e.g., [1,2]) and structural (e.g., [3]) and functional
brain abnormalities (e.g., [4–10]). Clinically, it is an urgent issue to accurately diagnose and
distinguish between the two diseases for providing appropriate treatment and improving
patient outcome, as they sometimes present similar pathologies. Thus, the identification of
anatomical and functional biomarkers is crucial for differentiating SZ and BD patients to
optimize pharmacological and psychosocial treatments for each condition [11]. Subcortical
and cortical abnormalities in psychoses have been reported extensively, and high-resolution
magnetic resonance imaging (MRI) is well-suited for detecting subtle brain structural dif-
ferences in these populations [12–15]. A gold standard approach in MRI research is the
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use of neuroanatomically defined and manually delineated regions of interest (ROIs). A
voxel-based morphometric (VBM) method is useful to investigate the whole brain, but the
anatomical warping and density-based methodology can lead to failure in detecting abnor-
malities that are identified using ROI analyses [16]. Furthermore, it has been suggested that
the analytical flexibility and the complex and variable workflows have substantial effects
on results [17]; therefore, simpler MRI analysis methods still carry value. In the present
study, we adopted a neuroanatomically defined and manually delineated ROI method to
evaluate the amygdalae, hippocampi, Heschl’s gyrus (HG), and planum temporale (PT) as
regions that have been shown to be crucial in the development of SZ and BD [18–21].

Medial temporal lobe changes are one of the most consistent findings in MRI studies of
SZ and BD. The hippocampus is involved in memory and spatial learning [22]. Hippocam-
pal volume reductions have been reported repeatedly in patients with SZ and BD [23]. The
amygdala is an almond-shaped nucleus located deep within the medial temporal lobes and
plays a primary role in the processing and memory of emotional reactions [24,25]. Both
increases and decreases in amygdala volumes have been reported in patients with BD,
although a recent meta-analysis found no significant amygdala volume changes in BD [26].
Conversely, an international collaboration for the study of BD, the Enhancing Neuroimag-
ing Genetics through Meta-Analysis (ENIGMA) Consortium, reported significantly smaller
amygdaloid volumes in BD compared with healthy subjects (HS) [27].

The HG includes the primary auditory cortex [28], and the left PT plays an important
role in language processing [29]. Structural abnormalities of HG and PT [18,30], alongside
auditory and language-related deficits [31,32], are observed frequently in patients with
SZ. For example, patients with first-episode SZ showed lower left PT and bilateral HG
gray matter volumes compared with HS and patients with BD [30]. In addition, Kasai et al.
reported progressive volume reductions in the left HG and PT gray matter in first-episode
SZ patients, which were not observed in first-episode affective psychosis patients or HS [18].
More recently, Hirano et al. investigated the association between neurophysiological and
structural deficits in SZ patients and found spontaneous gamma oscillation deficits [33]
and cortical volume deficits in HG [34]. In BD patients, Reite et al. reported alterations in
structural/functional asymmetry in HG [18]. Moreover, Takahashi et al. reported that BD
patients showed significantly lower left PT volumes compared with HS [35].

In the present study, we adopted a neuroanatomically defined and manually delineated
ROI method to evaluate the amygdalae, hippocampi, HG, and PT. As noted before, functional
or structural abnormalities have been reported in both SZ and BD in these four ROIs. We hy-
pothesized that medial temporal lobe abnormalities (mainly hippocampus) may be common
to both SZ and BD, and lateral temporal lobe abnormalities may be specific to SZ.

2. Materials and Methods
2.1. Participants

We analyzed magnetic resonance (MR) images of 23 patients with SZ, 21 patients
with BD, and 31 HS. All subjects had normal hearing, were aged 20–63 years, and were
right-handed [36]. After a detailed description of the study, all participants provided
informed consent, according to the regulations of the Ethics Committee of the Graduate
School of Medical Sciences, Kyushu University. Experimental procedures were approved
by the Kyushu University Institutional Review Board for Clinical Trials (approval number:
26018, date: June 12, 2014), and conformed to the Declaration of Helsinki. The exclusion
criteria were (1) neurological illness or major head trauma, (2) having received electro-
convulsive therapy, (3) alcohol or drug dependence, (4) alcohol or drug abuse within the
past 5 years, or (5) a verbal intelligence quotient below 75. HS were screened using the
Structured Clinical Interview nonpatient edition. None of the HS or their first-degree
relatives had an Axis-I psychiatric disorder. The socioeconomic status (SES) of the subjects
and their parental SES were measured using the Hollingshead two-factor index [37]. For
SZ, the Positive and Negative Syndrome Scale (PANSS) [38] was administered to assess
the severity of psychiatric symptoms. The Young Mania Rating Scale (YMRS) [39] and the
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Hamilton Depression Rating Scale (HAM-D) [40] were administered to assess the severity
of mood symptoms in BD. Table 1 shows the demographic and clinical characteristics of
the participants.

Table 1. Demographic and clinical characteristics of the participants.

Healthy
Subjects (HS)

Patients with Bipolar
Disorder (BD)

Patients with
Schizophrenia (SZ) χ2 or F or t df p

Male/Female 11/20 11/10 8/15 1.66 2 0.44
Age (years) 49.2 ± 9.8 48.9 ± 9.1 44.3 ± 6.2 2.50 2, 73 0.09
Handedness a 92.0 ± 32.7 82.4 ± 51.0 96.7 ± 8.7 0.99 2, 73 0.38
SES b 2.4 ± 0.8 2.9 ± 1.0 3.6 ± 1.0 10.66 2, 45 <0.001
Parental SES 3.1 ± 0.9 2.9 ± 0.9 2.8 ± 0.9 1.10 2, 45 0.34
Education (years) 14.4 ± 2.6 14.2 ± 2.3 14.4 ± 2.0 0.95 2, 45 0.39
Symptom onset # (years) 37.8 ± 11.2 26.7 ± 6.7 31.95 42 <0.001
Medication dose (CPZ
equiv., mg) 144.2 ± 183.9 599.8 ± 328.4 5.60 42 <0.001

PANSS positive 18.1 ± 7.9
PANSS negative 22.5 ± 7.7
PANSS general 42.9 ± 15.2
YMRS 5.2 ± 5.7
SIGH-D score 10.3 ± 5.9

Values are means ± SD unless otherwise noted. a Edinburgh Handedness Inventory, b Hollingshead two factor Index of Social Position.
SES = socioeconomic status, YMRS = Young Mania Rating Scale, SIGH-D = Structured Interview Guide for the Hamilton Depression Rating
Scale. # Symptom onset is the age at which the symptoms appeared.

2.2. MRI Data Acquisition

T1-weighted MR images were acquired using a three-dimensional (3D) turbo field
echo sequence on a 3 Tesla scanner (Achieva TX, Philips Healthcare, Best, The Netherlands)
at the Department of Radiology, Kyushu University Hospital. The imaging variables
were as follows: repetition time = 8.2 ms, echo time = 3.8 ms, flip angle = 8◦, field of
view = 24 × 24 cm, number of echoes = 1, matrix = 240 × 240, inversion time = 1025.9 ms,
number of slices = 190, and slice thickness = 1 mm. Images were aligned using the anterior
and posterior commissure line and the sagittal sulcus to correct head tilt.

Total gray matter, white matter, and cerebrospinal fluid (CSF) volumes were calcu-
lated using Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm
(accessed on 7 October 2020)), and VBM was performed using SPM12, running in MATLAB
R2014a (The Math Works Inc., Natick, MA, USA). T1-weighted images were first segmented
into gray matter, white matter, and CSF sections using tissue probability maps based on the
International Consortium of Brain Mapping template for East Asian brains. Subsequently,
we performed diffeomorphic anatomical registration through exponentiated lie algebra in
SPM12 for intersubject registration of gray matter images [41]. The registered images were
then smoothed with a Gaussian kernel of 8 mm full-width half-maximum and transformed
into Montreal Neurological Institute stereotactic space using affine and nonlinear spatial
normalization, implemented in SPM12. Total gray matter, white matter, and CSF volumes
were generated from the VBM analysis. Total intracranial volume (ICV) was calculated as
the sum of the gray matter, white matter, and CSF volumes.

2.3. Regions of Interest and Volume Measurement

The gray matter of the HG and PT, hippocampi, and amygdalae were outlined man-
ually on a PC without knowledge of diagnosis (Figure 1). We used 3D information to
provide reliable measures of the ROIs using a software package for medical image analysis
[3D slicer, http://www.slicer.org (accessed on 7 October 2020)].

http://www.fil.ion.ucl.ac.uk/spm
http://www.slicer.org
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hippocampus (yellow), and amygdala (brown) regions of interest are outlined. (A,B): Coronal 
view of the HG, PT, hippocampi, and amygdalae. (C): Three-dimensional (3D) reconstruction of 
the hippocampi and amygdalae superimposed onto an axial slice. (D): 3D reconstruction of HG 
and PT gray matter superimposed onto an axial slice. The lines on C and D correspond to the cor-
onal slices of A and B, respectively. 

We used similar criteria to the previous works of Kwon et al. and Barta et al. for 
delineating HG and PT [42,43]. Briefly, HG was first identified in the most posterior cor-
onal slice. Investigators manually drew the gray matter of HG from the most posterior to 
the most anterior slice. The most anterior slice of HG was defined as the last slice that HG 
could be identified anteriorly. In most cases, HG represented a single transverse convolu-
tion. In cases of more than one transverse convolution, we followed the literature’s defi-
nition [44–47]: when multiple convolutions originated medially from a common stem, 
these were all were defined as HG; however, when they originated separately from the 
retroinsular region, only the most anterior gyrus was labeled as HG, and the more poste-
rior gyri were identified as PT. The anterior border of PT was defined by the posterior 
border of HG. Posteriorly, investigators traced the gray matter of the PT on the coronal 
images to the end of the Sylvian fissure. The amygdalae and hippocampi were also out-
lined manually. For the amygdala and hippocampus, the most anterior slice used for the 
amygdala was the slice in which the white matter tract linking the temporal lobe with the 
rest of the brain (temporal stem) could be seen. The most posterior slice of the hippocam-
pus was the last appearance of fibers of the crux of the fornix. Once drawn, ROIs could be 
viewed in any plane as 3D objects for further editing. All editing was performed blind to 
diagnosis. Interrater reliability of the ROIs was evaluated by three independent raters (J.S., 
N.H., and J.T.), who were also blind to diagnosis. Five cases were selected at random, and 

Figure 1. Delineation of Heschl’s gyrus (HG), planum temporale (PT), hippocampi, and amygdalae
on 3 Tesla magnetic resonance imaging slices in a healthy subject. The HG (green), PT (blue),
hippocampus (yellow), and amygdala (brown) regions of interest are outlined. (A,B): Coronal view
of the HG, PT, hippocampi, and amygdalae. (C): Three-dimensional (3D) reconstruction of the
hippocampi and amygdalae superimposed onto an axial slice. (D): 3D reconstruction of HG and PT
gray matter superimposed onto an axial slice. The lines on C and D correspond to the coronal slices
of A and B, respectively.

We used similar criteria to the previous works of Kwon et al. and Barta et al. for
delineating HG and PT [42,43]. Briefly, HG was first identified in the most posterior coronal
slice. Investigators manually drew the gray matter of HG from the most posterior to
the most anterior slice. The most anterior slice of HG was defined as the last slice that
HG could be identified anteriorly. In most cases, HG represented a single transverse
convolution. In cases of more than one transverse convolution, we followed the literature’s
definition [44–47]: when multiple convolutions originated medially from a common stem,
these were all were defined as HG; however, when they originated separately from the
retroinsular region, only the most anterior gyrus was labeled as HG, and the more posterior
gyri were identified as PT. The anterior border of PT was defined by the posterior border of
HG. Posteriorly, investigators traced the gray matter of the PT on the coronal images to the
end of the Sylvian fissure. The amygdalae and hippocampi were also outlined manually.
For the amygdala and hippocampus, the most anterior slice used for the amygdala was
the slice in which the white matter tract linking the temporal lobe with the rest of the
brain (temporal stem) could be seen. The most posterior slice of the hippocampus was the
last appearance of fibers of the crux of the fornix. Once drawn, ROIs could be viewed in
any plane as 3D objects for further editing. All editing was performed blind to diagnosis.
Interrater reliability of the ROIs was evaluated by three independent raters (J.S., N.H., and
J.T.), who were also blind to diagnosis. Five cases were selected at random, and every slice
was edited by the raters. The intraclass correlations for interrater reliability were calculated.
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2.4. Statistical Analysis

To correct for brain size differences, we used relative volumes, which were calculated
using the following formula: relative volume (%) = (absolute ROI volume/ICV) × 100. For
the ROI analysis of the subcortical structures, we used a mixed model repeated measures
analysis of variance (ANCOVA) with group (SZ, BD, and HS) as the between-subjects
factor, hemisphere (left or right) and region (amygdala or hippocampus) as the within-
subjects factors, and age as a covariate. When significant interactions related to group were
observed, we evaluated group differences separately for each region to identify the source
of the interactions. We used follow-up ANCOVAs with group as the between-subjects
factor, hemisphere as the within-subjects factor, and age as a covariate for each region.
We performed one-way analyses of variance (ANOVAs) of the average volume across
both hemispheres for each ROI. For the ROI analysis of the cortical structures, we used
a mixed model ANCOVA with group (SZ, BD, and HS) as the between-subjects factor,
hemisphere (left or right) and region (HG or PT) as the within-subjects factors, and age as a
covariate. Post hoc tests were the same as the subcortical structure analyses. All statistical
tests in ANCOVA and ANOVA were 2-tailed with alpha = 0.05. Exploratory analyses of
the relationship between relative volumes of the ROIs and psychopathology scales were
evaluated using Spearman’s rho. Due to our analyses involving multiple correlations, we set
alpha levels at a conservative p < 0.001.

When significant group differences were observed in a particular region, optimal
sensitivity and specificity of the ROI for the diagnosis of HS, SZ, or BD were determined
via receiver operating characteristic (ROC) curve analysis using a nonparametric approach.
We calculated the Youden index for each cutoff value as corresponding ((sensitivity +
specificity) − 1) to find the cutoff values that maximized discriminating power. We used
IBM SPSS Statistics 26 for the analyses.

3. Results
3.1. Reliability

The intraclass correlations for interrater reliability were 0.95 for the left hippocampus,
0.92 for the right hippocampus, 0.91 for the left amygdala, 0.90 for the right amygdala, 0.91
for left HG, 0.93 for right HG, 0.91 for the left PT, and 0.95 for the right PT.

3.2. Relative Volumes of Each ROI

Table 2 shows the relative volumes of each ROI. For the amygdalae and hippocampi,
the repeated measures ANCOVA showed significant hemisphere-by-region-by-group
(F[2,71] = 3.56, p = 0.03) and region-by-group interactions (F[2,71] = 8.72, p < 0.0001)
and significant main effects of group (F[2,71] = 6.25, p = 0.003) and region (F[1,71] = 102.23,
p < 0.0001) but not hemisphere (F[1,71] = 1.17, p = 0.28). There was no significant hemisphere-
by-group (F[2,71] = 1.38, p = 0.26) or hemisphere-by-region (F[1,71] = 0.04, p = 0.84) interac-
tions. To delineate the significant hemisphere-by-region-by-group interactions, post hoc
tests were performed for each ROI.
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Table 2. Volume of each region of interest (ROI).

Healthy
Subjects (HS)

Patients with Bipolar
Disorder (BD)

Patients with
Schizophrenia (SZ) df F p

Intracranial Volume (mL) 1380 ± 128 1422 ± 136 1418 ± 157 2, 72 0.79 0.46
Left Hippocampus

Absolute (mL) 2.91 ± 0.22 2.92 ± 0.24 2.72 ± 0.24
Relative (%) 0.211 ± 0.015 0.206 ± 0.022 0.193 ± 0.018 2, 72 7.47 0.001 *

Right Hippocampus
Absolute (mL) 2.95 ± 0.29 2.86 ± 0.20 2.67 ± 0.28

Relative (%) 0.214 ± 0.014 0.202 ± 0.020 0.189 ± 0.017 2, 72 15.06 <0.0001 †

Left Amygdala
Absolute (mL) 1.26 ± 0.17 1.28 ± 0.14 1.24 ± 0.16

Relative (%) 0.091 ± 0.009 0.091 ± 0.012 0.087 ± 0.009 2, 72 1.01 0.37
Right Amygdala

Absolute (mL) 1.25 ± 0.20 1.31 ± 0.14 1.26 ± 0.17
Relative (%) 0.091 ± 0.010 0.093 ± 0.012 0.089 ± 0.008 2, 72 0.78 0.46

Left Heschl’s gyrus
Absolute (mL) 2.03 ± 0.50 2.02 ± 0.53 1.95 ± 0.59

Relative (%) 0.147 ± 0.032 0.148 ± 0.039 0.137 ± 0.035 2, 72 0.71 0.50
Right Heschl’s gyrus

Absolute (mL) 1.71 ± 0.48 1.77 ± 0.46 1.75 ± 0.55
Relative (%) 0.123 ± 0.029 0.125 ± 0.034 0.123 ± 0.034 2, 72 0.03 0.97

Left Planum temporale
Absolute (mL) 2.94 ± 0.60 2.88 ± 0.68 2.79 ± 0.56

Relative (%) 0.213 ± 0.036 0.203 ± 0.046 0.197 ± 0.032 2, 72 1.20 0.31
Right Planum temporale

Absolute (mL) 2.53 ± 0.76 2.56 ± 0.36 2.63 ± 0.65
Relative (%) 0.183 ± 0.050 0.182 ± 0.032 0.186 ± 0.044 2, 72 0.06 0.94

* Post hoc tests indicated that schizophrenia (SZ) was significantly different from bipolar disorder (BD) and healthy subjects (HS) (Tukey’s
honestly significant difference test, p < 0.05). † Post hoc tests indicated that volumes were significantly different as follows; HS > BD > SZ
(Tukey Honestly Significant Difference, p < 0.05).

For the amygdalae, the repeated-measures ANCOVA showed no significant main
effects of group (F[2,71] = 0.53, p = 0.59) or hemisphere (F[2,71] = 1.15, p = 0.29), or
a significant hemisphere-by-group interaction (F[2,71] = 0.39, p = 0.68). These results
indicated that there were no significant group differences among the three groups in
either hemisphere.

For the hippocampus, the repeated measures ANCOVA revealed a significant hemisphere-
by-group interaction (F[2,71] = 3.56, p = 0.03) and a main effect of group (F[2,71] = 9.21,
p < 0.0001) but not hemisphere (F[1,71] = 0.32, p = 0.57). In the right hemisphere, the one-way
ANOVA showed a significant group difference (F[2,72] = 15.06, p < 0.0001), and post hoc
Tukey’s honestly significant difference (HSD) tests revealed BD < HS (p = 0.04), SZ < HS
(p < 0.0001) and SZ < BD (p = 0.03) right hippocampal volumes. These results indicated that
right hippocampal volumes were highest in HS, lower in the BD patients, and lowest in
the SZ patients. In the left hemisphere, the one-way ANOVA showed a significant group
difference (F[2,72] = 7.47, p = 0.001), and post hoc HSD tests revealed SZ < HS (p = 0.001) and
SZ < BD (p = 0.04) hippocampal volumes. No significant difference was found for the left
hippocampus between HS and BD patients (p = 0.58). These results revealed that SZ patients
had a lower left hippocampal volume compared with HS and BD patients (see Figure 2).

For HG and PT, the repeated-measures ANCOVA showed a significant main effect of
region (F[1,71] = 20.85, p < 0.001). There were no other significant main effects or interactions,
which indicated no significant group differences in the HG or PT (see Figure 3).

We also performed repeated-measures ANCOVAs using age and sex as covariates for
ROI analysis; statistical results were the same using both methods.
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3.3. Correlations

Regarding the associations between ROI volume and demographic/clinical variables,
we found no significant correlations in HS (−0.34 ≤ rho ≤ 0.38, 0.04 ≤ p ≤ 0.89), SZ patients
(−0.34 ≤ rho ≤ 0.43, 0.04 ≤ p ≤ 0.98), or BD patients (−0.40 ≤ rho ≤ 0.48; 0.03 ≤ p ≤ 0.94).

3.4. ROC Analysis

Since significant differences among three groups were observed in the right hip-
pocampus, we used ROC curve analysis to explore the discriminatory value of the relative
volumes. Figure 4 shows the ROC curve of relative volumes of the right hippocampus
between HS and BD, HS and SZ, and BD and SZ. The area under the curve (AUC) of
the ROC analysis in BD vs. SZ was maximal for the right hippocampal relative volume
(AUC = 0.70, Standard error = 0.08, p = 0.03, 95% CI = 0.54–0.85), indicating that the right
hippocampal volume could be used to differentiate between BD and SZ subjects with
moderate accuracy. The Youden index indicated a favorable cutoff point of 0.20%, which
resulted in 62% sensitivity and 74% specificity.
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4. Discussion

We investigated the volumes of the hippocampi, amygdalae, HG, and PT in SZ
patients, BD patients, and HS. We found that right hippocampal volumes were lower
in BD patients compared with controls, and further lower in SZ patients, whereas left
hippocampal volumes were lower exclusively in SZ patients. There were no significant
differences in either amygdala, HG, or PT among the three groups.

Our results are consistent with many previous studies (e.g., [27,48]) although the
recent study [14] of the direct comparison found no significant volume differences between
the two groups. Our findings suggest that the lateralized hippocampal volume abnormality
is related to the development of SZ and BD. We also found that the lower left hippocampal
volume was not observed in BD patients and was specific to SZ, which is in line with
numerous studies that have reported left hemisphere dominant abnormalities in SZ [49].

Although the degree of lowered volume in BD patients was not to that observed in
SZ patients, the volume of the right hippocampus was found to be significantly lower in
BD compared with HS. The ENIGMA Consortium reported significant lower volumes in
the hippocampus, thalamus, and amygdala in patients with BD [27]; however, they did not
evaluate laterality. We revealed that lower right hippocampal volume may be associated with
pathology of BD. We highlight that in addition to large sample automated analysis methods,
alternative approaches, such as the manual ROI drawing method, are important and valuable.

In the present study, there were no significant differences in either amygdala among
the three groups. Moreover, contrary to our hypotheses and findings of previous studies
(e.g., [18]), we did not find significant group differences in HG or PT. Bryant et al. reported
no differences in the volumes of temporal lobe structures between female SZ patients and
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HS [50]. In addition, Bora et al. performed voxelwise meta-analysis and reported that gray
matter reductions of SZ and BD were less severe in sex-balanced samples [15]. Therefore,
sex effects should be considered in future studies in larger sample sizes. We did not find
any significant associations between the volumes of the ROIs and demographics/clinical
symptoms. Although hippocampal volume reductions may increase the risk of psychosis,
they may not be directly related to the severity of symptoms. Given the function of
the hippocampus, it will be important to investigate relationships between hippocampal
volumes and cognitive functional domains in future studies.

Because SZ and BD share the biological basis of psychoses [1–11,51–57] and they
sometimes present similar pathologies, detection of anatomical and functional biomarkers
that differentiate SZ and BD patients is crucial for the optimization of pharmacological and
psychosocial treatments for each condition. The results of our ROC analyses suggest that
the right hippocampal volume is a potential marker for differentiation between SZ and BD.
To this end, multimodal functional neuroimaging studies [26,51–61] that combine struc-
tural MRI [3,16,18–21,23,26–28,42–44,51,61–63], functional MRI [26,53–61,64,65], magnetic
resonance spectroscopy [66–69], positron emission tomography [69–72], electroencephalog-
raphy, and magnetoencephalography [4–9,59,73–85] may lead to a better understanding of
the biological bases of SZ and BD and enable the development of optimized treatments
(e.g., [53,54,58,61,86,87]).

We must note that this study has some limitations. First, we had a relatively small
sample size owing to our type of dataset and manual drawing approach, which requires
considerable time and labor. Therefore, weaker correlations that were hypothesized may
have gone undetected. Second, as mentioned earlier, sex differences were not explored in
our study but warrant investigation in a larger sample, as suggested by Bryant et al. [50],
Egloff et al. [88], and Bora et al. [15]. Third, the effect of the duration of illness should
be considered. The current sample of BD had higher age and lower duration of illness
compared to SZ. Thus, in the present study, we could not exclude the effect of earlier
disease-specific differences and late unspecific processes, including disease progress or
effects of medications. Importantly, metaregression analysis by Fuar-Poli et al. [89] reported
that the higher the cumulative exposure to antipsychotic treatment, the greater the gray
matter decreases in the SZ group over follow-up time, while no significant effects were
observed for duration of illness. Although there were no significant correlations between
any ROI volumes and duration of illness in our study, associations between the effect of
disease duration and the hippocampal volumes should be examined in a future study.
Finally, we could not exclude the medication effects on hippocampal volumes in clinical
groups, as pointed out by a previous study [90].

In summary, we showed that patients with SZ and BD have significantly lower hip-
pocampal volumes compared with HS. Furthermore, we suggest that the right hippocampal
volume is a potential biomarker for differentiation between SZ and BD.
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