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Abstract

Among various approaches to the repeated measures analysis in crossover clinical trials,

the general linear models (GLMs) with correlated errors attract substantial attention due to

their simplicity in model specification, implementation, and interpretation. The goal of this

research note is to conduct simulation studies to numerically investigate the impact of model

misspecification in the GLMs with correlated errors in the analysis of crossover trials. A

series of synthetic two-treatment and three-treatment crossover trials were designed, and

simulation studies were conducted to assess how treatment effect estimation, type I error

rates, and power can be affected by misspecified period effects, carryover effects, and vari-

ance-covariance structures in the GLMs. Numerical studies confirm that (i) the GLMs with

terms for both carryover and period effects and with an unstructured variance-covariance

matrix can provide unbiased treatment effect estimates and control of Type I error rates and

that (ii) misspecification in either period effects, carryover effects, or covariance structures

in the GLMs can induce inflated type I error, declined power, or biased treatment effect esti-

mates. Although methodologic contribution of this research note is minimal, we provide

practical recommendations and advice to pharmaceutical sponsors and other investiga-

tional drugs and device applicants in designing and analyzing crossover trials using the

GLMs with correlated errors.

Introduction

In clinical trials with a crossover design, study subjects are assigned to receive a sequence of

different treatments in multiple study periods, during which study endpoints are repeatedly

measured in each period on the subjects. The crossover trials are not uncommon in investiga-

tions of new medical devices [1] and are standard in drug studies of bioequivalence [2]. Senn
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[3] and Jones and Kenward [4] provide systematic reviews on design and analysis of crossover

trials. Crossover trials have two major advantages over the conventional parallel-group clinical

trials. First, the influence of confounding covariates on treatment evaluation can be largely

reduced because the crossover subjects essentially serve as their own control. Second, optimal

crossover designs are statistically efficient, and therefore fewer subjects are required than the

conventional parallel-group designs. However, crossover trials still have substantial issues in

data analysis [5]. One of the issues is presence of period effects caused by the order that treat-

ments are given to study subjects. Period effect represents a systematic difference between dif-

ferent periods in the outcome for evaluating a treatment. The presence of a period effect may

suggest that a patient’s underlying condition and potential to respond to the treatment would

have changed from one treatment period to another. To avoid confounding period effects,

groups of subjects are randomized to multiple sequences of treatments [4]. Another issue is

potential existence of carryover effects that may affect study endpoints together with the

“direct effect” of treatments administered to the subjects. Carryover effect is defined as the lin-

gering effect of the treatment of the previous study period on the current study period. It pres-

ents when the treatment effect given in the previous period persists into the second period and

distorts the current treatment effect. Carryover effects in crossover trials may bias analysis of

the direct treatment effect [6].

Statistical methodologies for analyzing crossover trials were developed for various types of

study endpoints, including dichotomous endpoints [7– 8] and ordinal endpoints [9–10], but a

large body of literature discusses the methodologies for continuous endpoints [11–12]. For

continuous and normally distributed endpoints, Bellavance et al. [13] proposed a modified F-

test approximation that accounts for the correlations within subjects induced by repeated mea-

sures to conduct relevant hypothesis tests. Simulation studies conducted by Bellavance et al.

showed that the modified F-test approximation gives adequate control of the type I error rate

over a variety of the covariance structure for three-period crossover trials [13]. Yet, Jones and

Kenward [4] promoted the use of linear fixed-effects and random-effects models to analyze

crossover trials. Bellavance and Tardif [14] described a nonparametric approach to analyze the

three-treatment, three-period crossover trials by providing unbiased treatment effect estimates

and transforming the original crossover design into a randomized block design in which the

well-known rank tests can be applied. Öhrvik [15] proposed another nonparametric method

that can be applied to a class of crossover trials with three or more treatments.

Among a variety of analysis approaches, general linear models (GLMs) with correlated

errors have attracted substantial attention as tools to analyze the data from crossover trials, pri-

marily because of their simplicity in model specification, implementation, and interpretation

[4]. However, in practice, model specification of GLMs with correlated errors has caused mas-

sive troubles, as data analysts and clinical investigators have had difficulty deciding whether or

when they should include period effects and carryover effects in the GLMs and which vari-

ance-covariance structure they should assume for the GLMs. For the GLMs, the likelihood-

ratio test and information criteria, such as the Akaike information criterion (AIC) and the

Bayesian information Criterion (BIC), can be applied to compare the performance of two or

more GLMs. Littell at al. [16] showed that specification of covariance structure substantially

influences the inference of fixed effects in the analysis of repeated measures data. Lu and Meh-

rotra [17] recommend using unstructured covariance as the default strategy for analyzing lon-

gitudinal data from randomized clinical trials with a moderate-to-large number of subjects

and a small-to-moderate number of time points. The goal of this research note is to conduct

simulation studies to numerically investigate the impact of model misspecification in the

GLMs with correlated errors in the analysis of data collected from crossover clinical trials. This

investigation was motivated by two real-world randomized crossover clinical trials for
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investigational medical devices: a two-treatment, two-period crossover trial comparing a new

test contact lens with a control lens and a three-treatment, three-period crossover trial com-

paring two new contact lenses with a control lens. Consequently, we designed a series of syn-

thetic two-treatment and three-treatment crossover trials and simulated datasets from these

trials to assess how treatment effect estimation, type I error, and power for testing treatment

effects are affected by misspecified period effects, carryover effects, and variance-covariance

structures.

The messages delivered by this research note are concise. The numerical studies confirm

that the GLMs including carryover and period effects can provide unbiased treatment effect

estimates and control of Type I error rates if carryover effects are identifiable. Additionally,

assuming an unstructured covariance structure for the GLMs has proven to be a safe choice if

there is not sufficient confidence in covariance structure specification. The numerical studies

show that misspecification in either period effects, carryover effects, or covariance structures

likely induces inflated type I error, declined power, or biased treatment effect estimates. We

recommend adopting the GLMs with carryover and period effects and an unstructured covari-

ance structure to analyze crossover trials. Also, we verified that the balanced crossover design

should be preferred over the unbalanced crossover design. Although methodologic contribu-

tion of this research note is minimal, its practical contribution is solid and substantial. This

note provides recommendations and advice to pharmaceutical sponsors and other investiga-

tional drug and device applicants who would use the GLMs with correlated errors as their pri-

mary analysis approach to analyze crossover trial data but are confused on model-specification

issues. These issues have never been thoroughly addressed in the context of analyzing cross-

over trials.

Modeling framework and misspecification

General linear models with correlated errors for the analysis of crossover

clinical trials

We consider an s-sequence, p-period crossover clinical trial that compares t treatments, and it

is assumed that in the crossover trial there are ni subjects in sequence group i, i = 1,2,� � �,s, with
Ps

i¼1
ni ¼ n. Let yijk denote the response observed on the kth subject in period j of sequence

group i, where j = 1,2,� � �,p and k = 1,2,� � �,ni. In this research note, we assume that the response

variable yijk is continuous and normally distributed and investigate misspecification in the

GLM with correlated errors

yijk ¼ mþ pj þ td½i;j� þ ld½i;j� 1� þ �ijk ð1Þ

for analyzing the data collected from such a crossover trial. In (1), μ is an intercept, πj is the

effect associated with period j, τd[i,j] represents the direct treatment effect associated with the

treatment applied in period j of sequence i with d[i,j] = 1,2,� � �,t, λd[i,j−1] denotes the first-order

carryover effect from the treatment applied in the preceding period j−1 of sequence i with

d[i,j−1] = 1,2,� � �,t, and λd[i,0] = 0, and �ijk is the random error with zero mean and variance var

(�ijk). In the crossover trial, each subject is repeatedly measured during the p periods. There-

fore, it is necessary to specify a shared variance-covariance structure S ¼ Sikðcovð�ij1k; �ij2kÞ is

its (j1,j2) entry) for the GLM (1) to account for the correlated response measurements from

each subject. In the analysis of two-period crossover trials, we specify a compound symmetry

(CS) covariance structure for S. With this specification, (1) is equivalent to a random-intercept

model if the covariance components in S are non-negative. In the analysis of three-period

crossover trials, two covariance structures are considered: compound symmetry and
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unstructured (UN) covariance structure. Additional terms such as the second-order carryover

effect, direct treatment-by-carryover interaction effect, and direct treatment-by-period inter-

action effect, can be added to (1). However, such terms are rarely of much interest in practice

[4] and are not included in our investigation.

The estimation strategy for (1) is to achieve unbiased estimation of both fixed effects and

covariance parameters simultaneously by using a likelihood function. For a specified covari-

ance structure S, the maximum likelihood (ML) estimator for the fixed effects is the general-

ized least squares (GLS) estimator. If we assume the response variable yijk in (1) normally

distributed, let Y ¼ ðy111; . . . ; y1p1; . . . ; yspnsÞ
0
and let X represent the design matrix, the GLS

estimator of fixed effects vector β is

b̂ ¼ ðX0ðS� 1
N

InÞXÞ
� 1X0ðS� 1

N
InÞY ð2Þ

where
N

represents the Kronecker product. Asymptotically,

b̂ � Nðb; ðX0ðS� 1
N

InÞXÞ
� 1
Þ

If S is known, the GLS estimator (2) would be a best linear unbiased estimator (BLUE). How-

ever, S is usually unknown in practice. We then estimate the parameter by substituting the

unknown S with its estimate Ŝ,

b̂E ¼ ðX
0ðŜ � 1

N
InÞXÞ

� 1X0ðŜ � 1
N

InÞY ð3Þ

For a specified structure pattern for S, b̂E in (3) can be estimated using the maximum likeli-

hood (ML) method with a reduced log-likelihood [18]. However, Diggle et al. [18] noted that

the ML estimation presents with conflict because a large design matrix is needed for consistent

estimates, whereas a design matrix with a small number of columns is required to yield

approximately unbiased estimation. The method of restricted maximum likelihood (REML)

[19] is usually applied as the objection to the ML procedure that can produce biased estimators

for covariance parameters [20]. Swallow and Monahan [21] recommend the REML method

over other variance component estimation methods on the basis of the results from their simu-

lation studies. The REML method for covariance parameters estimation is used throughout

this article, combined with an adjustment procedure developed by Kenward and Roger [22].

This procedure had been proved with a notable effect in controlling type I errors in small sam-

ple size studies [22]. Inference based on this combined procedure is more reliable than others

for analyzing crossover trials [11].

Misspecification of carryover and period effects

Model misspecification remains a critical issue for the data analysis of crossover clinical trials

because misspecified models can create bias in treatment effect estimation and the correspond-

ing hypothesis testing. Here, we investigate the impact of misspecification in the GLMs with

correlated errors in the analysis of data collected from crossover clinical trials. The primary

objective of our investigation is to gauge the extent of inference bias on treatment effects when

carryover effect, period effect, or both are omitted in such models. Considered in this research

note are four analysis approaches, including three GLMs with distinct mean structures and a

naïve hypothesis testing procedure: the GLM (1) is the approach that is considered with both

period effect and carryover effect, and it is abbreviated as the “PE-CE model”. The GLM that

only includes period effect is specified as

yijk ¼ mþ pj þ td½i;j� þ εijk ð4Þ

Misspecification in general linear models with correlated errors for the analysis of crossover clinical trials
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and is abbreviated as the “PE-NCE model”; the GLM that does not include either period effect

or carryover effect is specified as

yijk ¼ mþ td½i;j� þ εijk ð5Þ

and is abbreviated as the “NPE-NCE model”. The naïve hypothesis testing procedure refers to

the approach of treating only the measurements from the first period as a randomized, parallel

study and ignoring other periods (i.e., periods 2 to p). For a two-period crossover trial assess-

ing two treatment groups, the two-sample t-test is used; for a three-period crossover design,

the one-way analysis of variance, or ANOVA, is used to determine the treatment effects.

Motivation: Two crossover clinical trials for investigational medical devices

Contact lenses are medical devices used to provide flexible and convenient vision correction.

Contact lenses can be used to correct various vision disorders, including myopia, hyperopia,

presbyopia, and astigmatism. The numerical investigation reported in this research note was

motivated by two real-world randomized crossover clinical trials for investigational contact

lenses: a two-treatment, two-period crossover trial comparing a new test contact lens with a

control lens and a three-treatment, three-period crossover trial comparing two new contact

lenses with a control lens. Both clinical trials are balanced design, enrolling 48 subjects for the

two-period, two-sequence trial (24 subjects in each of the 2 sequences: CT and TC; “C” repre-

sents the control lens and “T” represents the test lens) and 18 subjects for the three-period trial

(3 subjects in each of the 6 sequences: CT1T2, CT2T1, T1CT2, T1T2C, T2CT1 and T2T1C; “C”

represents the control lens, “T1” represents the first test lens, and “T2” represents the second

test lens). The primary endpoint of both trials was the subjective visual quality scores for the

test versus control lenses on a scale from 0 to 100, with 0 denoting unfavorable visual quality.

Boundary issues on the primary endpoint were ignored in the analysis.

For the two crossover trials, Table 1 displays and compares the estimated treatment effects,

period effects, and first-order carryover effects and their standard errors obtained from the

PE-CE model, the PE-NCE model, the NPE-NCE model, with CS and UN covariance struc-

tures, and from the naïve hypothesis testing procedure (two-sample t-test or one-way

ANOVA) that only tests the outcome measurements from the first study period. Throughout

this note, the treatment effect refers to the direct effect of a treatment minus the direct effect of

its control, and thus, is distinguished with the direct treatment effects defined in (1).

For the two-period crossover trial, four analysis approaches all suggested significantly

higher visual quality scores for the test lens than for the control lens. The estimates of the treat-

ment effect and corresponding standard errors obtained from the naïve two-sample t-test and

the PE-CE model were almost identical. Substantial carryover effect (approximately 40% of

treatment effect) and a modest period effect (approximately -15% of main treatment effect)

were detected from the PE-CE model, although neither effect was statistically significant. The

treatment effect estimates obtained from the PE-NCE model and the NPE-NCE model were

similar, and these treatment effect estimates were distinct from those obtained from the naïve

two-sample t-test and the PE-CE model.

For the three-period crossover trial, the visual quality scores of two new test lenses and

those of the control lens were similar in all four analysis approaches. The effect estimates dif-

fered when specifying a CS or UN covariance structure for the GLMs. The treatment effect

estimates given by the one-way ANOVA procedure and the PE-CE model were not compara-

ble. This dissimilarity may be due to the small sample size, large between-subject variation, or

the higher-order carryover effects that were not considered in the analysis. The treatment

Misspecification in general linear models with correlated errors for the analysis of crossover clinical trials
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effect estimates and corresponding standard errors given by the three GLMs were close to but

still distinct from each other.

Analysis results in Table 1 reveal that the GLMs with different model specification can

result in uncertainty in treatment effect estimation and hypothesis-testing conclusions. There-

fore, model misspecification remains an issue that will largely affect the use of the GLMs with

correlated errors in the analysis of crossover trials. This fact motivated us to investigate the

impact of model misspecification in the GLMs in such an analysis task. A series of simulation

studies were designed and conducted to assess whether treatment effect estimation, as well as

type I error and power in hypothesis testing, will be affected by misspecified period effects, car-

ryover effects, and variance-covariance structures in the GLMs with correlated errors.

Simulation studies

Two-period, two-treatment crossover trials

We designed and conducted two simulation studies to investigate the impact of misspecifica-

tion of period and carryover effects in the GLMs with correlated errors for analyzing the data

collected from two-period, two-treatment (two-by-two) crossover trials. It was assumed that,

in the two-by-two crossover trials, a treatment (denoted by “T”) and a control (denoted by

“C”) were compared through two sequences, TC and CT.

Type I error under true null hypotheses

To investigate the impact of misspecification of period and carryover effects on Type I error

obtained from testing treatment effects, 2000 datasets were generated from the GLM (1), with

sample sizes of n = 20 and n = 200 and with both a balanced design (CT:TC = 1:1) and an

unbalanced design (CT:TC = 1:3). When generating the datasets, standard deviation of the

response variable was fixed, and then three sets of period effects (period 2 relative effect) were

considered as −15%, 0%, or 25% of the response standard deviation. Under the true null

hypotheses that no treatment or carryover effects exist (when the treatment effect is zero, it

Table 1. Comparison of estimated treatment effects, period effects, and first-order carryover effects and their standard errors (in parentheses) given by the three

GLMs (with CS and UN covariance structures) and naïve hypothesis testing procedure for real-world two-period and three-period crossover trials.

Test Lens 1 Test Lens 2 Period Effects

Treatment Effect (SE) Carryover Effect (SE) Treatment Effect (SE) Carryover Effect (SE) Period 2 Effect (SE) Period 3 Effect (SE)

Two-Period Crossover Trial

Two-sample t-test 24.6 (7.4) - - - - -

PE-CE model 24.6 (7.7) 9.5 (12.9) - - -3.8 (7.7) -

PE-NCE model 19.9 (4.2) - - - 1.0 (4.2) -

NPE-NCE model 19.9 (4.2) - - - - -

Three-Period Crossover Trial

One-way ANOVA 6.2 (6.3) - 6.7 (6.3) - - -

Compound Symmetry S
PE-CE model 1.0 (3.1) -1.3 (4.0) 1.5 (3.1) -0.8 (4.0) 0.1 (3.6) 0.6 (3.6)

PE-NCE model 1.4 (2.7) - 1.7 (2.7) - -0.6 (2.7) -0.1 (2.7)

NPE-NCE model 1.4 (2.6) - 1.7 (2.6) - - -

Unstructured S
PE-CE model 0.7 (3.1) 0.3 (4.4) 2.6 (3.1) -0.9 (4.4) -0.3 (3.8) 0.1 (3.4)

PE-NCE model 0.7 (2.9) - 2.9 (2.9) - -0.6 (2.8) -0.1 (2.3)

NPE-NCE model 0.6 (2.8) - 2.8 (2.8) - - -

https://doi.org/10.1371/journal.pone.0213436.t001
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was reasonable to assume the corresponding carryover effect is zero as well), both the treat-

ment effects and carryover effect differences were set to be zero. Then, the response values

were generated according to the GLM (1) with a CS covariance matrix using the within-subject

correlation coefficient 0.2, 0.5, or 0.7, respectively.

For each dataset, the four analysis approaches (two-sample t-test that only analyzes the out-

come measurements from the first study period, the PE-CE model, the PE-NCE model, and the

NPE-NCE model) were used to estimate the treatment effect and test whether the treatment

effect was equal to zero. The Wald test was conducted in the hypothesis testing of treatment

effects with the GLMs. The empirical type I error rates of the four approaches obtained in differ-

ent scenarios are summarized in Fig 1. All four approaches yielded type I error rates near the

nominal level of 5% (Fig 1A and 1C) when analyzing the data simulated from the balanced

crossover trials, regardless of sample sizes (small or large) and period effects (zero or not). For

the data simulated from the unbalanced crossover trials, the type I error rates obtained from the

two-sample t-test, the PE-CE model, and the PE-NCE model were still within 5% of the nominal

level. However, the NPE-NCE model produced noticeably inflated type I error rates when the

period effect existed (Fig 1B and 1D), especially with a large sample size.

Power and estimation bias

To investigate the impact of misspecification of period effects, carryover effects, and covari-

ance structures on estimation of treatment effect and power obtained in testing treatment

Fig 1. Type I error rates for the analysis of two-period, two-treatment crossover trials based on 2000 simulated data sets for the balanced (A, n = 20; C, n = 200)

and unbalanced (B, n = 20; D, n = 200) designs.

https://doi.org/10.1371/journal.pone.0213436.g001
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effects, 2000 datasets were generated from the two-by-two crossover trials as described above

but with nonzero treatment and carryover effects. In this simulation study, the treatment effect

was fixed at the size of 50% of the response standard deviation, and the carryover effect differ-

ence was 0%, 15%, or 25% of the response standard deviation. This is equivalent to assuming

that 0%, 30%, or 50% of the treatment effect was carried over from the first to the second

period.

For each generated dataset, the four analysis approaches were used to estimate the treat-

ment effect and to construct a 95% confidence interval for the treatment effect. We calculated

the average percent error (PE = 100 × (Estimated Treatment Effect−True Treatment Effect)/

True Treatment Effect) that quantifies the estimation bias of the treatment effect, the power

(the percentage of simulated datasets for which the 95% confidence intervals of the treatment

effect estimates did not cover zero), and the coverage probability (CP, the percentage of simu-

lated datasets for which the 95% confidence intervals of the treatment effect estimate covered

the true value). Table 2 and Table 3 summarize the estimation bias quantified by the PE, the

power, and the CPs of the 95% confidence intervals obtained by analyzing the datasets for the

Table 2. Average percent error, power, and 95% coverage probabilities obtained from the analysis of two-period, two-treatment crossover trials based on 2000 sim-

ulated datasets, balanced design, sequence CT:TC = 1:1, sample size n = 20, and effect size 0.5.

ρ Period Effect (%)† Carryover Effect

(%)†
Two-sample t-test PE-CE model PE-NCE model NPE-NCE model

PE (%) Power (%) CP (%) PE (%) Power (%) CP (%) PE (%) Power (%) CP (%) PE (%) Power (%) CP (%)

0.2 -15 0 1.2 17.8 95.2 1.2 18.9 94.9 -1.6 37.4 94.8 -1.6 37.4 95.3

-15 15 0.8 18.9 94.8 0.8 19.9 94.7 -15.0 31.5 94.1 -15.0 31.5 94.1

-15 25 1.2 18.9 95.1 1.2 19.9 95.2 -24.8 25.8 91.2 -24.8 25.6 91.4

0 0 -2.1 18.7 95.6 -2.1 18.9 95.3 -1.3 40.4 95.2 -1.3 39.8 95.3

0 15 2.0 19.1 95.4 2.0 20.1 95.2 -13.7 31.2 94.7 -13.7 31.3 94.6

0 25 -2.4 17.2 95.4 -2.4 17.8 95.3 -24.2 25.4 93.7 -24.2 25.2 93.6

25 0 -0.3 18.2 95.7 -0.3 19.4 95.2 0.2 40.4 95.1 0.2 38.5 95.7

25 15 0.8 20.1 95.2 0.8 19.8 95.0 -15.5 30.2 93.6 -15.5 28.3 94.0

25 25 1.0 18.6 95.3 1.0 19.3 95.4 -24.3 25.2 93.2 -24.3 23.1 94.3

0.5 -15 0 -2.2 18.9 95.0 -2.2 19.6 94.7 -1.4 54.6 94.6 -1.4 53.4 94.7

-15 15 -3.9 18.1 95.1 -3.9 18.4 95.0 -17.5 40.9 92.9 -17.5 40.9 93.4

-15 25 1.5 19.9 95.1 1.5 20.1 95.5 -24.0 37.4 91.9 -24.0 37.8 91.7

0 0 2.4 18.6 94.9 2.4 19.8 95.3 0.5 55.9 94.7 0.5 56.4 94.9

0 15 -1.4 18.3 95.3 -1.4 18.8 94.9 -15.6 42.8 94.3 -15.6 43.0 94.6

0 25 1.6 19.0 94.9 1.6 19.6 94.6 -25.4 36.0 91.6 -25.4 35.3 91.7

25 0 2.4 20.0 95.3 2.4 19.9 95.5 -0.5 56.8 95.4 -0.5 54.9 95.9

25 15 -0.6 19.1 95.1 -0.6 20.2 94.9 -14.8 43.5 93.3 -14.8 39.9 94.8

25 25 -1.8 18.1 95.1 -1.8 18.6 94.9 -25.3 36.5 91.2 -25.3 31.7 93.4

0.7 -15 0 -1.5 17.6 96.1 -1.5 18.1 96.0 0.2 76.9 95.0 0.2 76.0 95.2

-15 15 1.0 17.5 95.5 1.0 19.0 95.3 -14.9 63.9 92.4 -14.9 64.1 92.7

-15 25 -1.9 18.3 95.3 -1.9 18.5 95.4 -24.7 54.5 89.6 -24.7 54.7 89.5

0 0 0.5 19.4 95.1 0.5 20.4 95.0 -0.0 78.9 95.1 -0.0 78.8 95.2

0 15 0.4 17.7 95.9 0.4 18.4 95.6 -13.7 65.7 93.8 -13.7 65.4 94.0

0 25 -3.6 17.3 94.5 -3.6 17.8 94.6 -24.1 54.6 89.7 -24.1 54.3 90.1

25 0 1.1 19.9 94.9 1.1 20.4 94.6 1.4 78.3 94.9 1.4 75.6 95.4

25 15 -0.4 18.6 95.2 -0.4 19.3 95.5 -16.5 62.8 93.3 -16.5 54.9 94.9

25 25 -2.6 17.8 95.1 -2.6 18.6 95.1 -26.1 52.7 89.0 -26.1 44.0 92.3

† Proportion of response standard deviation.

https://doi.org/10.1371/journal.pone.0213436.t002
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balanced and unbalanced two-by-two crossover trials with the small sample size n = 20. Simu-

lation results obtained from the large sample size n = 200 were similar, and thus are not

reported here.

For the two-by-two crossover trials with a balanced design (Table 2), the two-sample t-test

and the PE-CE model produced similar unbiased estimators. The PE-NCE model and the

NPE-NCE model gave treatment effect estimates that were close to each other but were biased

when carryover effects existed, and the bias was proportional to the magnitude of the carryover

effects. The two-sample t-test generated power similar to that of the PE-CE model, and the

power was stable as the period effect, carryover effect, and within-subject correlation coeffi-

cient changed. The PE-NCE model and the NPE-NCE model had larger power than did the

two-sample t-test or the PE-CE model. The power remained stable with different magnitudes

of the period effect, but decreased as carryover effect increased, and increased as the within-

subject correlation coefficient increased. For the two-by-two crossover trials with an unbal-

anced design (Table 3), the two-sample t-test and the PE-CE model still produced comparable

unbiased estimators and power. However, estimation bias of the treatment effect and the

Table 3. Average percent error, power, and 95% coverage probabilities obtained from the analysis of two-period, two-treatment crossover trials based on 2000 sim-

ulated datasets, unbalanced design, sequence CT:TC = 1:3, sample size n = 20, and effect size 0.5.

ρ Period Effect (%)† Carryover Effect

(%)†
Two-sample t-test PE-CE model PE-NCE model NPE-NCE model

PE (%) Power (%) CP (%) PE (%) Power (%) CP (%) PE (%) Power (%) CP (%) PE (%) Power (%) CP (%)

0.2 -15 0 0.7 14.0 94.6 0.7 15.2 95.3 0.1 31.9 94.6 15.0 50.1 93.3

-15 15 -4.2 14.9 94.5 -4.2 14.5 94.6 -17.3 24.0 93.6 -9.2 34.0 94.5

-15 25 -1.5 14.8 94.3 -1.5 14.7 95.3 -25.5 19.1 92.9 -22.8 24.3 93.0

0 0 2.1 15.7 95.1 2.1 15.6 94.8 1.1 33.4 94.5 0.0 41.4 94.9

0 15 4.5 16.5 95.5 4.5 17.1 96.0 -14.3 24.5 94.1 -23.2 26.0 93.5

0 25 0.8 14.6 94.9 0.8 14.9 95.1 -25.8 20.8 93.3 -38.3 18.1 90.3

25 0 -2.8 15.0 95.5 -2.8 14.9 95.7 -0.1 32.7 94.6 -24.7 24.8 92.2

25 15 -4.8 14.6 94.1 -4.8 14.7 94.4 -16.0 23.9 94.4 -47.7 13.5 88.2

25 25 -1.5 15.3 94.5 -1.5 15.6 94.9 -25.5 19.0 92.6 -62.5 9.4 82.6

0.5 -15 0 3.6 16.6 94.5 3.6 17.7 94.8 2.1 46.5 95.0 16.8 71.0 93.7

-15 15 0.5 15.5 95.6 0.5 15.5 96.3 -14.0 35.9 94.0 -7.3 50.5 95.1

-15 25 0.1 15.4 94.6 0.1 15.8 94.4 -22.6 29.1 92.9 -21.3 39.6 91.5

0 0 -1.6 14.8 94.8 -1.6 14.4 95.6 0.1 46.4 94.6 -0.4 56.2 95.7

0 15 -2.4 14.7 94.0 -2.4 14.4 94.2 -13.9 35.5 93.8 -21.2 38.0 92.9

0 25 -2.8 15.0 94.3 -2.8 15.2 94.0 -26.4 26.5 93.2 -39.3 25.1 86.8

25 0 2.1 16.2 93.9 2.1 15.8 94.3 1.1 46.0 95.3 -23.8 34.9 92.6

25 15 5.1 17.2 95.0 5.1 17.3 95.0 -15.5 35.2 94.5 -48.4 17.9 84.2

25 25 4.0 17.3 95.3 4.0 17.0 95.3 -24.0 28.8 93.1 -61.5 12.5 76.0

0.7 -15 0 0.3 14.8 95.4 0.3 15.2 95.6 -1.2 65.1 95.1 14.4 86.6 94.7

-15 15 -4.7 14.5 94.1 -4.7 14.5 94.4 -15.5 51.0 94.1 -7.7 71.5 95.4

-15 25 -3.3 13.8 95.4 -3.3 14.5 95.4 -25.8 41.6 91.1 -22.8 56.5 90.9

0 0 -6.9 14.4 95.6 -6.9 13.7 96.1 -0.9 66.4 95.4 -0.5 78.3 94.7

0 15 3.3 15.5 94.1 3.3 15.5 94.1 -14.3 52.4 94.0 -21.8 56.6 91.2

0 25 4.0 15.2 95.5 4.0 16.1 95.6 -23.8 43.8 91.3 -37.0 39.2 83.3

25 0 4.1 15.7 95.2 4.1 14.6 95.5 0.3 65.5 96.0 -25.2 49.7 91.6

25 15 -1.3 14.7 94.4 -1.3 14.6 94.6 -15.1 52.1 92.5 -47.8 26.0 76.7

25 25 -2.4 14.9 95.1 -2.4 14.9 95.2 -25.9 42.5 90.9 -63.1 13.0 64.9

† Proportion of response standard deviation.

https://doi.org/10.1371/journal.pone.0213436.t003
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power obtained from using the PE-NCE model and the NPE-NCE model were not close any-

more. Treatment effect estimates remained biased when carryover effects existed for the

PE-NCE model and the NPE-NCE model when analyzing the unbalanced two-by-two cross-

over trials. The NPE-NCE model produced larger relative bias than did the PE-NCE model

with up to 60% PE, when substantial period effect and carryover effect existed.

Three-period, three-treatment crossover trials

We designed and conducted two more simulation studies to investigate the impact of misspe-

cification of period and carryover effects, as well as covariance structures, in the GLMs with

correlated errors for analyzing the data collected from three-period, three-treatment crossover

trials. It was assumed that, in the three-period, three-treatment crossover trials, two treatments

(denoted by “T1” and “T2”, respectively) and a control (denoted by “C”) were compared

through six sequences: CT1T2, CT2T1, T1CT2, T1T2C, T2CT1, and T2T1C.

Type I error under the true null hypotheses

To investigate the impact of misspecification of period and carryover effects and covariance

structures on Type I error obtained from testing treatment effects, 2000 datasets were gener-

ated from the GLM (1) with sample sizes of n = 24 for balanced three-period, three treatment

crossover trials (n/6 subjects in each of the six sequences) and n = 240 for unbalanced three-

treatment crossover trials (CT1T2:CT2T1:T1CT2:T1T2C: T2CT1:T2T1C = 4:4:1:1:1:1). When

generating the datasets, standard deviation of the response variable was fixed, and then three

sets of (Period 2 effect, Period 3 effect) combinations were considered as (−6%,−15%),

(0%,0%), or (10%,25%) of Period 3 standard deviation. Given the assumed true null hypothe-

ses on treatment effects, it was assumed that both the treatment effects and carryover effect dif-

ferences were zero. Then, the response values were generated according to the GLM (1) with

two CS covariance matrices using the within-subject correlation coefficient of 0.2 or 0.7, a Toe-

plitz (TP) covariance matrix representing homogeneous variance and distinct pairwise correla-

tion coefficients at three periods, and an unstructured (UN) covariance matrix (specification

of the covariance matrices are illustrated in Table 4).

For each dataset, one-way ANOVA that only analyzes the outcome measurements from the

first study period and three GLMs (the PE-CE model, the PE-NCE model, and the NPE-NCE

model) with both CS and UN covariance structures were used to estimate the treatment effects

and to test whether the treatment effect of T1 was zero, given that the treatment effect of T2

was negligible. Additional simulation studies showed that the magnitude of treatment effect of

T2 had little impact on estimates, type I error rates, and power of the treatment effect of T1

(results are not shown). Fig 2 shows the empirical type I error rates of the four analysis

approaches for testing the treatment effect of T1 with the small sample size n = 24. When the

sample size increased to 240, the patterns of type I error rates were unchanged, and therefore,

are not shown here. For the balanced three-treatment crossover trials, both one-way ANOVA

and three GLMs with the UN within-subject covariance structure maintained an adequate

control of the type I error level (Fig 2A, 2C, 2E, and 2G). The three general models with the CS

Table 4. Variance-covariance matrices specified in generating simulation datasets for the three-period, three-treatment crossover trials.

Compound Symmetry (1) Compound Symmetry (2) Toeplitz Unstructured

625 125 125 625 437.5 437.5 625 500 208.1 125 125 69.9

125 625 125 437.5 625 437.5 500 625 339.4 125 500 279.5

125 125 625 437.5 437.5 625 208.1 625 625 69.9 279.5 625

https://doi.org/10.1371/journal.pone.0213436.t004
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covariance structure performed well in terms of type I error for the datasets that were simu-

lated from the true CS and UN covariance structures (Fig 2A, 2C and 2G). However, the

PE-CE model tended to have an inflated type I error rate for the datasets simulated from the

true TP covariance structure (Fig 2E). The inflation did not improve as the sample size

increased to 240 (results are not shown). For the unbalanced three-treatment crossover trials,

the ANOVA method and the PE-CE model with the UN covariance structure yielded type I

error rates near the nominal 5% of the datasets that were simulated from different true

Fig 2. Type I error rates for the analysis of three-period, three-treatment crossover trials based on 2000 simulated data sets for the balanced

(A, compound symmetry covariance with ρ = 0.2; C, compound symmetry covariance with ρ = 0.7; E, Toeplitz covariance; G, unstructured

covariance) and unbalanced (B, compound symmetry covariance with ρ = 0.2; D, compound symmetry covariance with ρ = 0.7; F, Toeplitz

covariance; H, unstructured covariance) designs with n = 24.

https://doi.org/10.1371/journal.pone.0213436.g002
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covariance structures (Fig 2B, 2D, 2F, and 2H). In contrast, three GLMs with the CS covari-

ance structure did not maintain control of type I error rates when the covariance structure was

misspecified (Fig 2F).

Power and estimation bias

To investigate the impact of misspecification of period effects, carryover effects, and covariance

structures on estimation of treatment effects and power obtained in testing treatment effects,

2000 datasets were generated from the three-treatment crossover trials as described above, but

with nonzero treatment and carryover effects of T1. The T1 treatment effect was fixed at the size

of 50% of the Period 3 standard deviation, and its carryover effect difference was set up as 0% or

25% of the Period 3 standard deviation, which is equivalent to assuming that 0% or 50% of the

T1 treatment effect was carried over from one period to another. The treatment effect of T2 and

its carryover effect difference were assumed to be zero. For each dataset, one-way ANOVA and

three GLMs (the PE-CE model, the PE-NCE model, and the NPE-NCE model) with both CS

and UN covariance structures were used to estimate the treatment effect of T1 and to construct

a 95% confidence interval for the treatment effect. Table 5 and Table 6 present the estimation

bias quantified by the PE, the power, and the CPs of the 95% confidence intervals from the bal-

anced and unbalanced three-treatment crossover trials with small sample size. Simulation

results obtained from the large sample size n = 240 were similar and are not reported here.

For the three-treatment crossover trials with a balanced design (Table 5), one-way ANOVA

and the PE-CE model with either a CS or an UN covariance structure produced unbiased

treatment effect estimates of T1 when analyzing the data that were simulated from three differ-

ent covariance structures including the TP structure. The PE-NCE model and NPE-NCE

model with an identical covariance structure generated similar treatment effect estimates, and

these estimates were biased when the carryover effects existed. The bias was proportional to

the magnitude of the carryover effects. The three GLMs with either a CS or an UN covariance

structure were more powerful than was the one-way ANOVA in detecting whether the treat-

ment effect of T1 was zero, regardless of the presence of period and carryout effects. The power

of these models increased as the within-subject correlation coefficient of the CS covariance

structure increased from 0.2 to 0.7.

The GLMs with a CS covariance structure provided slightly larger power than did the corre-

sponding models with an UN covariance structure when analyzing the datasets generated

from the CS variance-covariance matrices. However, when the datasets were simulated from

the UN covariance structure, misspecification of covariance structure in GLMs reduced the

power by more than 20%. For the three-treatment crossover trials with an unbalanced design

(Table 6), the same patterns in PE and power were observed for the one-way ANOVA proce-

dure and the three GLMs. A cross-table comparison between the numerical results in Table 5

for the three-treatment crossover trials with a balanced design and the results in Table 6 with

an unbalanced design revealed that the power presented in Table 6 was obviously lower than

the power in the corresponding position in Table 5.

Discussion and conclusion

In this research note, we report Monte-Carlo simulation studies on the impact of misspecifica-

tion of period and carryover effects, as well as covariance structures, in the GLMs with corre-

lated errors for analyzing the data collected from crossover clinical trials. For the two-by-two

crossover trials comparing two treatments, the four analysis approaches tested all provide rea-

sonable control of type I error, except for the NPE-NCE model as a misspecified model. The

PE-CE model cannot improve power from the naïve two-sample t-test that analyzes the data
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from the first period. Due to model misspecification, the treatment effect estimates given by

the PE-NCE and NPE-NCE models are biased when period and carryover effects exist. It

should have been plausible to consequently recommend prioritizing the use of the PE-CE

models over other approaches. However, in the two-by-two crossover trials, the carryover

effects are not identifiable unless further assumptions are made for these effects. In the simula-

tion studies reported in this note, we assume the carryover effect difference is proportional to

the treatment effect. Therefore, our simulation results indicate that the advantage of two-by-

two crossover design vanishes when carryover effects do. This type of crossover trial is only

recommended with prior knowledge that the carryover effects are trivial, in which the

PE-NCE models are recommended for data analysis. Using a washout period between two

periods is highly encouraged to eliminate carryover effects.

Table 5. Average percent error, power, and 95% coverage probabilities obtained from the analysis of three-period, three-treatment crossover trials based on 2000

simulated datasets, balanced design, sequence CT1T2:CT2T1:T1CT2:T1T2C: T2CT1:T2T1C = 1:1:1:1:1:1, sample size n = 24, and an effect size of 0.5 for T1 and 0 for

T2.

Period

Effect

(%)†

Carryover

Effect

(%)‡

One-Way

ANOVA

GLMs with CS GLMs with UN

PE-CE model PE-NCE model NPE-NCE model PE-CE model PE-NCE model NPE-NCE model

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

Compound Symmetry ρ = 0.2

-6/-15 0/0 0.2 16.2 0.9 41.8 1.3 49.3 1.3 49.3 1.1 37.8 1.6 44.7 1.6 44.9

-6/-15 25/0 0.9 16.3 0.6 41.7 -15.0 36.6 -15.0 36.7 0.5 38.4 -15.3 34.2 -15.3 33.8

0/0 0/0 -1.4 15.7 0.2 40.1 -0.2 46.9 -0.2 46.9 -0.6 36.8 -1.2 42.2 -1.4 42.0

0/0 25/0 -2.3 15.7 -0.8 40.1 -17.1 34.0 -17.1 33.7 -2.1 35.4 -18.7 30.0 -18.7 29.7

10/25 0/0 -1.0 15.6 -0.4 40.8 -1.1 47.3 -1.1 46.5 -0.1 37.2 -0.9 43.6 -0.8 43.7

10/25 25/0 1.1 16.6 0.0 40.3 -16.2 34.4 -16.2 33.0 -0.1 36.5 -16.2 32.3 -16.8 30.5

Compound Symmetry ρ = 0.7

-6/-15 0/0 -0.1 17.1 -0.6 77.7 -0.5 85.4 -0.5 85.1 -0.2 73.7 -0.4 81.0 -0.3 81.3

-6/-15 25/0 0.1 17.1 0.9 80.6 -16.4 71.5 -16.4 71.0 1.2 75.9 -16.2 67.2 -16.2 67.1

0/0 0/0 -1.8 14.8 -0.1 79.2 -0.2 87.9 -0.2 88.0 -0.1 73.8 0.0 83.5 -0.1 83.5

0/0 25/0 -2.7 15.2 0.9 79.4 -16.3 71.9 -16.3 71.8 0.9 74.7 -16.3 66.8 -16.5 67.0

10/25 0/0 -0.4 15.7 -1.4 78.6 -0.9 87.0 -0.9 85.9 -1.8 72.6 -1.2 82.8 -1.1 81.8

10/25 25/0 3.5 16.0 3.3 80.8 -14.3 74.3 -14.3 71.3 3.2 77.1 -14.4 68.7 -16.0 64.5

Toeplitz Covariance

-6/-15 0/0 -3.2 15.8 0.4 62.4 -0.1 71.5 -0.1 71.0 1.1 59.9 -0.4 86.0 -0.3 86.4

-6/-15 25/0 1.2 16.0 -1.9 61.4 -18.4 54.9 -18.4 54.6 -1.7 59.6 -26.9 61.2 -26.9 61.5

0/0 0/0 1.5 17.1 1.0 62.5 0.9 73.1 0.9 73.1 1.4 61.9 0.9 87.2 0.9 87.1

0/0 25/0 -0.7 16.0 0.4 62.2 -16.7 56.5 -16.7 56.3 2.6 61.6 -24.3 64.9 -24.3 64.6

10/25 0/0 5.3 17.4 1.2 62.6 0.7 72.8 0.7 71.9 0.7 59.9 0.0 86.0 -0.1 85.8

10/25 25/0 2.8 16.5 0.8 62.5 -16.2 57.0 -16.2 55.2 1.4 60.8 -25.5 62.5 -26.0 60.3

Unstructured Covariance

-6/-15 0/0 -1.1 54.8 2.6 68.7 2.0 76.4 2.0 76.2 0.9 80.6 0.9 90.6 0.9 90.6

-6/-15 25/0 0.9 56.7 -0.4 65.9 -17.3 58.6 -17.3 58.5 0.0 80.5 -15.3 77.5 -15.3 77.6

0/0 0/0 1.7 56.8 -1.0 65.5 -0.3 75.5 -0.3 75.7 0.5 80.1 1.2 90.9 1.2 91.2

0/0 25/0 1.6 57.2 0.8 66.5 -15.8 60.1 -15.8 59.9 0.8 79.6 -14.2 79.2 -14.2 78.9

10/25 0/0 0.0 55.7 -2.0 64.2 -1.6 72.6 -1.6 71.4 -0.9 77.8 -0.6 89.2 -0.6 88.9

10/25 25/0 -0.9 55.4 0.1 66.2 -16.5 59.5 -16.5 57.1 -0.2 79.7 -14.9 80.2 -15.3 78.6

† Period 2/Period 3 effects as proportions of Period 3 standard deviation.
‡ T1/T2 carryover effects as proportions of Period 3 standard deviation.

https://doi.org/10.1371/journal.pone.0213436.t005
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For three-treatment crossover trials with a substantial number of sequences, the GLMs

including carryover and period effects (i.e., the PE-CE models) can provide significantly

higher empirical power than does the one-way ANOVA approach, by which only the measure-

ments from the first period are tested, and unbiased treatment effect estimates can be attained

with this model assuming the UN covariance structures. Otherwise, misspecification in either

period effects, carryover effects, or covariance structures can induce inflated type I error,

declined power, or biased treatment effect estimates. Therefore, we recommend adopting the

PE-CE model with a UN covariance structure for the data analysis in this setting. Additionally,

the balanced crossover design should be preferred over the unbalanced crossover design. The

numerical results also indicate that, to achieve additional power against the conventional par-

allel-group study design, the two-period crossover design is recommended only when the

Table 6. Average percent error, power, and 95% coverage probabilities obtained from the analysis of three-period, three-treatment crossover trials based on 2000

simulated datasets, unbalanced design, sequence CT1T2:CT2T1:T1CT2:T1T2C: T2CT1:T2T1C = 4:4:1:1:1:1, sample size n = 24, and an effect size of 0.5 for T1 and 0

for T2.

Period

Effect

(%)†

Carryover

Effect

(%)‡

One-Way

ANOVA

GLMs with CS GLMs with UN

PE-CE model PE-NCE model NPE-NCE model PE-CE model PE-NCE model NPE-NCE model

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

PE

(%)

Power

(%)

Compound Symmetry ρ = 0.2

-6/-15 0/0 1.3 11.9 -0.8 32.2 -1.1 38.5 -11.1 40.4 -0.5 31.2 -0.5 35.3 -10.7 37.3

-6/-15 25/0 3.4 13.9 0.8 35.2 -17.2 30.2 -18.3 34.0 0.8 33.5 -17.1 27.9 -18.2 32.4

0/0 0/0 -4.1 13.3 0.5 35.2 0.6 40.0 0.4 48.7 0.5 32.2 0.2 36.3 0.1 44.3

0/0 25/0 2.8 13.9 0.9 34.8 -16.5 29.9 -7.7 42.4 1.5 32.6 -16.2 28.8 -7.6 38.7

10/25 0/0 3.6 14.7 0.6 34.5 0.4 39.3 17.4 59.1 1.1 31.5 0.4 36.2 17.2 56.2

10/25 25/0 3.3 13.7 0.0 34.3 -17.8 28.6 8.8 52.9 -0.2 31.8 -18.2 26.9 7.6 48.2

Compound Symmetry ρ = 0.7

-6/-15 0/0 0.8 12.9 0.1 69.5 0.4 79.2 -10.4 79.3 0.6 65.9 0.8 75.7 -9.9 75.5

-6/-15 25/0 -1.1 14.1 0.4 69.9 -16.9 62.4 -18.3 71.0 0.7 65.5 -16.9 57.4 -18.2 66.3

0/0 0/0 0.6 13.4 2.2 72.9 1.8 80.6 1.3 87.4 1.7 68.4 1.6 75.6 1.1 83.7

0/0 25/0 -3.7 13.2 -1.0 69.9 -18.1 61.9 -9.3 79.4 -1.1 65.2 -18.2 57.6 -9.4 74.9

10/25 0/0 2.6 14.1 -0.3 69.1 -0.5 77.5 16.9 95.0 -0.1 64.3 -0.5 72.7 16.2 91.9

10/25 25/0 0.3 13.5 -0.6 70.3 -17.2 62.6 9.5 90.7 -0.7 66.5 -17.3 58.0 7.3 85.1

Toeplitz Covariance

-6/-15 0/0 -1.5 13.2 0.3 54.9 -0.4 62.3 -10.9 62.2 1.0 52.0 -0.3 78.7 -6.2 83.2

-6/-15 25/0 0.6 13.9 -0.2 53.3 -17.2 46.8 -18.1 54.4 -0.3 49.1 -25.3 53.6 -22.7 66.1

0/0 0/0 0.3 13.3 0.0 54.2 -0.9 62.5 -1.0 71.9 -0.5 51.3 -0.5 78.8 -1.1 87.1

0/0 25/0 1.9 15.5 1.2 56.0 -16.8 46.7 -7.7 64.4 2.0 52.3 -24.6 55.0 -16.6 73.5

10/25 0/0 0.1 14.5 -1.8 52.8 -1.4 61.0 16.5 83.7 -1.4 50.7 -1.2 76.6 9.1 91.2

10/25 25/0 3.5 14.9 1.1 54.5 -16.1 48.0 9.5 77.5 0.8 51.3 -23.8 55.7 -8.0 79.7

Unstructured Covariance

-6/-15 0/0 0.6 47.3 -1.5 54.7 -0.9 64.3 -11.1 65.4 -0.5 71.8 0.1 85.5 -5.7 85.3

-6/-15 25/0 -0.5 47.5 -0.3 57.1 -17.0 49.8 -18.0 58.2 -0.8 72.2 -15.9 72.1 -16.2 77.0

0/0 0/0 1.9 49.6 -0.6 57.3 -1.1 64.9 -0.7 73.7 -0.3 73.1 -1.1 85.2 -0.7 89.8

0/0 25/0 -1.9 45.4 -0.5 56.5 -18.0 48.2 -8.3 67.1 -0.3 72.5 -16.4 69.0 -11.0 80.2

10/25 0/0 -0.9 47.6 -1.9 54.7 -1.6 64.1 16.2 85.4 -1.4 71.7 -1.2 83.5 8.4 93.6

10/25 25/0 -1.6 46.8 0.7 57.5 -16.8 50.4 9.4 79.9 0.0 72.0 -16.2 69.8 -2.3 85.3

† Period 2/Period 3 effects as proportions of Period 3 standard deviation.
‡ T1/T2 carryover effects as proportions of Period 3 standard deviation.

https://doi.org/10.1371/journal.pone.0213436.t006
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carryover effect is negligible, and the three-period crossover design is recommended even

when substantial carryover effect exists. However, to make a fair comparison between parallel-

group and crossover designs, investigators need to consider costs and duration of the clinical

trials.

In this research note, we only considered two-period, two-treatment and three-period,

three-treatment crossover trials involving first-order carryover effects. Extrapolation of our

results and recommendations beyond this range of design specifications require further inves-

tigation and evidence.
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