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Over the last 10 years, the number of approved disease modifying drugs acting on

the focal inflammatory process in Multiple Sclerosis (MS) has increased from 3 to 10.

This wide choice offers the opportunity of a personalized medicine with the objective

of no clinical and radiological activity for each patient. This new paradigm requires

the optimization of the detection of new FLAIR lesions on longitudinal MRI. In this

paper, we describe a complete workflow—that we developed, implemented, deployed,

and evaluated—to facilitate the monitoring of new FLAIR lesions on longitudinal MRI

of MS patients. This workflow has been designed to be usable by both hospital and

private neurologists and radiologists in France. It consists of three main components:

(i) a software component that allows for automated and secured anonymization and

transfer of MRI data from the clinical Picture Archive and Communication System

(PACS) to a processing server (and vice-versa); (ii) a fully automated segmentation

core that enables detection of focal longitudinal changes in patients from T1-weighted,

T2-weighted and FLAIR brain MRI scans, and (iii) a dedicated web viewer that provides

an intuitive visualization of new lesions to radiologists and neurologists. We first present

these different components. Then, we evaluate the workflow on 54 pairs of longitudinal

MRI scans that were analyzed by 3 experts (1 neuroradiologist, 1 radiologist, and

1 neurologist) with and without the proposed workflow. We show that our workflow

provided a valuable aid to clinicians in detecting new MS lesions both in terms of

accuracy (mean number of detected lesions per patient and per expert 1.8 without the

workflow vs. 2.3 with the workflow, p = 5.10−4) and of time dedicated by the experts

(mean time difference 2
′

45
′′

, p = 10−4). This increase in the number of detected lesions

has implications in the classification of MS patients as stable or active, even for the

most experienced neuroradiologist (mean sensitivity was 0.74 without the workflow and

0.90 with the workflow, p-value for no difference = 0.003). It therefore has potential

consequences on the therapeutic management of MS patients.
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INTRODUCTION

Magnetic Resonance Imaging (MRI) currently plays a central
role in the diagnosis, prognosis and follow-up of patients with
Multiple Sclerosis (MS) (1). In particular, the identification of
new FLAIR hyperintense lesions between two longitudinal MRI
scans allows: (i) to confirm the diagnosis of relapsing-remitting
MS if the criterion of dissemination in time is not met on the
first MRI scan (2); (ii) to provide information on the prognosis
of the disease (3); (iii) to evaluate for each patient the current
efficacy of its disease modifying treatment. Indeed, in recent
years, the number of disease-modifying treatments for MS has
increased significantly (1). In particular, highly effective second-
line immunosuppressive treatments have become available and
the number of first-line treatments has increased. However,
these treatments are not without potential side-effects. The
challenge is therefore to prescribe the right treatment to the
right patient and to monitor its effectiveness closely. In this
context, the concept of No Evidence of Disease Activity (NEDA)
has emerged (4) and implies that MS patients have neither
clinical relapse nor new FLAIR lesions on their follow-up
MRI under treatment. An annual follow-up by brain MRI is
therefore currently recommended, at least during the first year
of treatment (5, 6), and the comparison of annual MRI scans
is frequently performed by the radiologists and neurologists in
charge of the follow-up ofMS patients. However, this comparison
is a complex and mentally demanding task that often leads
to an underestimation of lesion accumulation, even for most
experienced radiologists (7). Consequently, there is a need for
dedicated systems that can provide clinicians, regardless of their
level of expertise, an aid for accurate and robust detection of
new FLAIR MS lesions. The ultimate goal of these systems will
be to reduce the underestimation of patients wrongly reported
as having no or few new lesions as well as the associated expert
dependencies, resulting in better therapeutic decisions. For many
years, different methods have been proposed to address this
issue (8).

More recently, standardization of MR imaging acquisitions
and data-transfer protocols as well as advances in computer
vision methods have offered the premises for an end-to-
end workflow for computer-aided comparative analysis of
longitudinal MRI data. In particular, thanks to the development
of deep learning techniques, powerful tools for the automatic
segmentation of new MS lesions have been proposed in the
context of academic research on the one hand [e.g., (7, 9,
10)], and integrated into commercial products on the other
hand (11). However, the added-value of these tools in clinical
practice is not well-documented, especially regarding therapeutic
strategy and disability progression. In addition, the question
of their integration into clinical practice is generally not
addressed. Finally, commercially available solutions based on
Artificial Intelligence often lack available scientific evidence in
peer-reviewed Journals (11) and their high cost limits their
deployment for patient care. Consequently, such tools have not
yet been adopted in routine clinical practice by the majority of
radiologists and neurologists.

Within this context, we launched the MUSIC project (an
acronym for MUltiple Sclerosis Image Checkout) in 2017 in
Brittany, a region in the north-west of France. The objective of
this project was to develop, deploy and evaluate a fully-integrated
clinical workflow allowing to improve detection of new brain
lesions in MS patients. The system has been designed to be usable
by both hospital and private radiologists and neurologists in
Brittany. The MUSIC project also included centralized storage of
MS patients’ MRI data so that their data could be accessed and
compared even if theymoved from one center to another for their
MRI or neurological follow-up. The first “proof of concept” phase
of the project reported in this article was deployed in 5 centers (2
university hospitals, 2 local hospitals, 1 private radiology center).

The MUSIC workflow consists of three main components: (i)
a software component that allows for automated and secured
anonymization and transfer of MRI data from the clinical Picture
Archive and Communication System (PACS) to a processing
server (and vice versa); (ii) a fully automated MR image
segmentation core that enables detection of new lesions from
patients T1 weighted, T2 weighted and FLAIR brain acquisitions,
and (iii) a dedicated web viewer that provides an intuitive
visualization of new lesions to the clinical staff, easy to show to the
patients. These elements allow clinicians to access and visualize
enhanced patient data scanned in any connected clinical center,
even without being linked to a clinical PACS. In the present
paper, we first illustrate the MUSIC project workflow. Second, we
assess the performance of three clinicians, with different levels of
expertise, in identifying newMS lesions on follow-up MRI scans,
with and without the proposed workflow. For this evaluation, we
used longitudinal pairs of scans from 54 MS patients.

MATERIALS AND METHODS

Figure 1 summarizes the overall MUSIC project workflow.
Briefly, after being stored in the clinical local PACS, MR
images are pseudonymized and securely transferred into a
processing hosting, where images are processed and new
lesions are automatically segmented using a deep neural
network. Then, the processed images and corresponding
segmentation maps are transferred back to the clinical
hosting from which they can be efficiently visualized in a
dedicated web MRI viewer. In the following, we describe
the three main elements of the workflow: the transfer and
storage modules (section The transfer and storage modules:
Servers interoperability and data access), the segmentation
module (section The segmentation module: Detection of
new lesions from longitudinal brain MR images) and the
visualization module (section The visualization module: Efficient
and adapted reporting). Then, in section Evaluation of the
MUSIC workflow, we present a set of experiments that we
designed and carried out to evaluate the radiologist and the
neurologist performances in identifying new FLAIR lesions
between two sets of MRIs of MS patients with and without
the workflow.
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FIGURE 1 | Workflow overview. Colored elements were specifically designed and developed in the context of our MUSIC project and consists of (i) a set of Transfer

and Storage Modules (yellow), (ii) a Segmentation Module (blue) and (iii) a Visualization Module (red). Briefly, after being stored in the clinical PACS, MR images are

pseudonymised and securely transferred into a processing hosting, where images are processed so that new lesions are automatically segmented. Then the resulting

processed images and associated new lesions segmentation maps are returned to the clinical data hosting platform where they can be visualized in a dedicated web

MRI viewer.

Workflow Description
The Transfer and Storage Modules: Servers

Interoperability and Data Access
In order to process the images outside the hospitals, a set of
tools to pseudonymize, securely transfer and reidentify data
has been set up. Overall, this module is composed of five
main components: the hospital PACS, the centralized PACS,
a telemedicine platform, the NodeJS transfer server and the
research PACS. These elements and their interconnections are
presented in Figure 2. The telemedicine platform is responsible
for transferring the medical images from the hospital PACS to
the centralized PACS. The latter gathers images coming from
different hospitals and is hosted in a certified health data hosting
provider. At this stage, patient data are still identified. From
here, a clinical research assistant initiates the pseudonymization
procedure. An HTTP request is sent to a NodeJS server, also
deployed in the same location, with the Universally Unique
IDentifier (UUID) of the study to be transferred and the
new patient identifier. The server, developed using NodeJS, a
JavaScript runtime to develop modular network applications, is
a simple server which listens to incoming HTTP requests. It can
answer two specific requests: “transfer data” and “import results.”
Once it receives a HTTP “transfer data” request, it retrieves the
images from the PACS using a DICOMwebTM WADO-RS (Web
Access to DICOMObjects Retrieved Study) request, de-identifies
the images according to DICOM recommendations (DICOM
Supplement 142), and sends the de-identified images to the
Research PACS over an HTTPS connection to prevent any attack,
using DICOMwebTM STOW-RS (STore Over the Web Retrieved
Study). Thanks to this procedure, the pseudonymization is

performed inside the health data hosting provider and no
identifying data goes out.

To process a set of patient acquisitions, a web application
has been developed. This application lists the patients available
and is able to run a segmentation over one or multiple selected
patients. It also communicates with the research PACS using
DICOMwebTM, locally downloads the data temporarily and runs
the segmentation algorithms from a Python script. Once the
images have been processed and segmented, the NodeJS server
is notified that results are available by an “import result” HTTP
request. It retrieves the images from the research PACS using a
DICOMwebTM WADO-RS request, reidentifies the new images
using a patented method (ID EP3756123), and stores them in
the centralized PACS. The images are finally exported to the
radiologist and neurologist to be analyzed via the telemedicine
platform. In practice, follow-up data from each patient is thus
accessible from any connected clinical environment. The overall
transfer time to perform these various tasks is about 15min per
subject (excluding segmentation).

Overall, this workflow has been designed to use only
standardized requests for interoperability purposes and can be
connected to any telemedicine platform.

The Segmentation Module: Detection of New Lesions

From Longitudinal Brain MR Images
The visual identification of new lesions in MRI requires
the mental processing of a large amount of 3D information
and it is common for radiologists to miss notable lesions
emerging from one acquisition to another, even for highly-
experienced radiologists (7). The segmentationmodule thus aims
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FIGURE 2 | Detailed architecture and interconnections in the MUSIC network. The system is composed of 2 main interconnected PACS (the centralized and the

research PACS). The centralized PACS is interconnected to each connected hospital PACS to download the acquisitions to process and to upload the results. The

research PACS is dedicated to data processing. The different connections are based on standardized HTTP requests (DICOMwebTM) and are secured by an HTTPS

tunnel.

at automatically extracting candidate new lesions that will then
be highlighted in a dedicated viewer accessible to experts. This
design comes with two consequences:

- First, we accept a reasonable amount of false positive
candidates that will be naturally considered as irrelevant by
image readers, with the counterpart that it increases our
chances to detect relevant changes (in other terms, we favor
sensitivity over specificity).

- Second, we accept to segment both growing and new
lesions without distinction and let the image readers
assess the relevance of including each of them into their
radiological analysis.

A first natural solution to detection and segmentation of new
lesions consists in first, independently segmenting the lesions
for each of the two time-points of interest using a dedicated
algorithm and second, comparing the resulting segmentation
masks (or their associated probability maps) to infer a mask
associated to the presence of new lesions. The main advantages of
such an approach consist in its ability to stand on the numerous
methods developed in the last decades to segment lesions from
brainMRI (12) and on the availability of the associated annotated
databases. However, by splitting the original problem into two
subtasks, this approach disregards the temporal correlation in
the images, which may lead to inaccurate segmentations for
small lesions or subtle changes. A second fruitful approach
thus consists in inferring notable signal changes due to lesions
from one acquisition to another directly from the MRI volumes
of interest at the two time points, instead of from the two
lesion maps (9, 13–18). Such a solution has the advantage of
benefiting from all the information available at once and thus
maximizing its ability to detect relevant signals of interest.
Intuitively, by comparing scans from one session to another, we

alleviate the problem from a part of confounding factors due
to interindividual anatomical differences. Nonetheless, such a
method needs databases of serial MR scans acquired at different
time steps and with manually segmented new lesions, which are
relatively uncommon as of now.

In this project, we chose to develop a method following this
second approach. This method is briefly detailed in the four
next subsections. First, we designed a training/testing dataset
consisting of a set of pairs of FLAIR, T2-weighted (T2w) and T1-
weighted (T1w) acquisitions from 41MS patients. Second, we set
out a pre-processing pipeline so that data of a given patient are
appropriately aligned and signal intensity is comparable from one
acquisition to another. Third, we trained a deep neural network
whose inputs consist, for a given patient, of the two sets of T1w,
T2w, and FLAIR images and output consists of the softmax
output map associated with the presence of new lesions at each
voxel. Fourth, we implemented a few post-processing steps to
produce a binary segmentation mask from the network softmax
layer. The resulting trained model achieved a true positive rate of
0.83 and an overall rate of false positive of 0.09 on our testing
dataset (17 patients, 41 new lesions). Moreover, comparable
results were obtained on an additional set of 10 data consisting
of acquisitions on Philips and General Electric 3T MRI scanners.

Building the Training and Testing Dataset
We designed our segmentation module using a dataset from
a previous clinical project (ClinicalTrials ID: NCT02117375)
consisting of a set of MR scans from 41 patients acquired on two
Siemens 3T MRI scanners (Magnetom Verio, VB17). For each
of these patients, data consists of 3D T1w, 2D axial T2w, and
3D FLAIR imaging at two times temporally distant by 1 year.
Acquisition parameters were: for 3D T1w: 4min 30, 1 × 1 ×

1mm, TR = 1,900, TE = 2.26, TI = 900, FA = 9, matrix = 256
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× 256, GRAPPA2; for Axial DPw T2w: 2min 12, 0.7 × 0.7 ×

3mm, TR = 6,530, TE = 9.4/84, FA = 150, matrix = 320 × 320,
GRAPPA2; for 3D FLAIR: 5min, 1 × 1 × 1.1mm, TR = 5,000,
TE= 399, TI= 1,800, matrix= 256× 256, GRAPPA2.

New lesions from the first acquisition to the second one
were manually segmented by an expert and reviewed by another
expert using the ITK-SNAP software (http://www.itksnap.org/).
This procedure provides the delineation of 152 new lesions.
The dataset was split into a learning dataset (24 patients,
111 lesions) and a testing dataset (17 patients, 41 lesions).
Data splitting was achieved by stratifying lesions according to
their locations (deep white matter, periventricular, juxtacortical,
brainstem, cerebellum) and optimizing patients repartition to
achieve balanced (60%/40%) training and testing groups with
respect to these characteristics.

Data Pre-processing
Our preprocessing pipeline, close to the subtraction pipeline
proposed in Ref. (16), aims at preparing the T1w, T2w,
and FLAIR data so that voxel-wise differences between
consecutive scans were as meaningful as possible. Briefly,
firstly MR volumes are reoriented in RAS coordinates.
Secondly, skulls and skin tissues are removed from the
data using a robust registration-based brain extraction method
(animaAtlasBasedBrainExtraction, available at anima.irisa.fr,
RRID:SCR_017017 and RRID:SCR_01707). Thirdly, baseline
and follow-up T1w, T2w, and FLAIR scans are rigidly registered
on the FLAIR baseline using a block matching registration
method [animaPyramidalBMRegistration (19)]. We used the
FLAIR baseline scan as reference for the registration as this is the
one generally used by experts in clinical practice. Nevertheless,
we did not observe any notable difference in results when
modifying the choice of the reference (neither in training, nor in
testing). Fourth, images are all cropped using the FLAIR baseline
as a mask in order to reduce pointless data. Fifth, bias due to
spatial inhomogeneity is estimated using the N4 algorithm (20)
and removed from the data (animaN4BiasCorrection). Finally,
for each pair of baseline and follow-up images (e.g., FLAIR
baseline and FLAIR follow-up) voxel intensities are jointly
corrected using a 2 fold procedure: (i) first, their joint histogram
is linearly rescaled so that it best fits the y = x line in a least
square sense, (ii) second, a Nyul standardization (21) on an
in-house multisequence template is applied independently on
each acquisition (animaNyulStandardization).

Deep Neural Network Architecture and Learning
The core of the segmentation module consists of a fully
convolutional neural network that was trained to segment
new lesions from a pair of preprocessed FLAIR, T1w,
and T2w acquisitions. Specifically, we adopted the nnU-net
framework proposed by Isensee et al. [(22), github.com/MIC-
DKFZ/nnUNet] that enables training of a 3D U-Net (23)
while automating the choice of the hyperparameter values. This
framework has been shown to outperform a number of deep
learning-based methods on a variety of segmentation tasks.
Precisely, our 3D U-Net has 6 input channels (one for each
sequence and each time point) of size [160, 192, 64]. To fit

this frame, each input image is first resampled to size [0.5,
0.5, 1.1mm] (median training image resolution) and then each
set of 6 images (3 sequences for each of the 2 time points) is
split into patches of such a size. Finally, each such 6× [160,
192, 64] patch is processed independently and aggregated to
others to form the final softmax outputs map. Data augmentation
included: (i) isotropic rescaling, (ii) 3D rotation, (iii) mirroring
in the sagittal plane, (iv) smooth elastic deformations and
(v) intensity enhancements and attenuations on lesion voxels
(modeling the diversity of signal change due to lesions). This
network was trained to minimize the sum of Cross-Entropy
and Dice loss over the training dataset and included a drop-
out based regularization (with probability = 0.2). Training
was performed using a stochastic gradient descent run over
1,000 epochs, each of them consisting of 250 minibatches.
Learning was conducted on a GPU NVIDIA Quadro P6000,
24 GB and lasted 10 days. Prediction for a given patient
lasted about 6min (including pre and post-processing) on the
same hardware.

Data Post-processing
Once the neural network evaluated for a given pair of
acquisitions, a binary segmentation map was obtained from
the network softmax outputs using the following empirical
procedure. First, the softmax outputs map is binarized using
a threshold of 0.01. Second, connected components (26-
connectivity) were extracted from the resulting binary map.
Third, only connected components with volume larger than
12 mm3 and including at least one voxel with softmax value
>0.1 were selected as new lesions in the final output mask.
Last, preprocessed data and the corresponding segmentation
mask were resampled to the original baseline FLAIR image slab
and resolution.

The Visualization Module: Efficient and Adapted

Reporting
The CADIMS software has been designed to allow a fast and
intuitive access to the preprocessed volumes and new lesions
segmentation masks (Figure 3, as well as Video available in
Supplementary Material). It was built in collaboration with a
neurologist and a neuroradiologist following MS patients to
meet their clinical needs. It consists of a MRI viewer usable
from a standard web browser. It has been developed using
the AMI framework (https://github.com/FNNDSC/ami) for the
visualization of medical images and integrated in an Angular
application. It allows the visualization of DICOM images that are
directly retrieved from the hospital PACS using DICOMWebTM,
the DICOM Standard for web-based medical imaging. As
explained in section The transfer and storage modules: Servers
interoperability and data access, the processed scans and the
segmentation maps are transferred back via the telemedicine
platform and are directly available in the viewer. Moreover,
images are still stored durably in the centralized backed up
PACS and are also available to any clinicians connected to the
MUSIC network.

From a practical perspective, the viewer is composed of
three synchronized views where three registered images are
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FIGURE 3 | The CADIMS viewer: The CADIMS MRI viewer is usable from a standard web browser. It consists of three synchronized views displaying from left to right

(i) the baseline scan, (ii) the follow-up scan and (iii) the follow-up scan with segmented new lesions highlighted in red.

visualized simultaneously (from left-to-right: initial image,
follow-up image, follow-up image with new lesions mask). The
viewer displays the FLAIR images in the axial plane at startup.
The other sequences (T1-w, T2-w) and other planes (sagittal,
coronal) can be visualized by selecting them on dedicated menus.
If more than one follow-up MRIs has been acquired for the
same patient, previous acquisitions are also accessible. The viewer
also integrates the following basic navigation functionalities:
padding, zooming, and intensity windowing, all accessible from
the computer-mouse.

Evaluation of the MUSIC Workflow
In this section, we present the datasets used and the two sets of
experiments conducted to assess the added value of the MUSIC
workflow on routine clinical practice.

Data Sets
Patients from 5 MRI centers were prospectively included in
the MUSIC project. All patients were informed and written
consents were obtained. All patients were included in the OFSEP
(“Observatoire Français de la Sclérose en Plaques”) cohort,
registered on clinicaltrials.gov (NCT02889965) and compliant
with French data confidentiality regulations. The study was
approved by the relevant ethics committee.

Inclusion criteria were chosen to target a population with
a substantial number of active patients. They included (i) a
diagnosis of MS according to 2017 Mc Donald criteria (2); (ii) a
disease duration <10 years; (iii) an Expanded Disability Status

Scale (EDSS) score <4; (iv) a follow-up MRI available 10–16
months after the first MRI.

Our evaluation dataset consists of 54 pairs (baseline and
follow-up) of 2D or 3D FLAIR, T1w, and T2w scans acquired on
9 different 3T MR scanners from Siemens, Philips and General
Electrics. Thirty out of the 54 studied MS patients had a follow-
up scan on a different MR scanner than the first scan, and 22
out of these 30 on a MR scanner from a different manufacturer.
The overall allocation between scanners is depicted inTable 1. All
data were acquired according to the OFSEP recommendations
(6). The median and range FLAIR, T1w, and T2w spatial
resolutions (in mm) were, respectively [1, 1, 1] (range [0.7, 0.7,
0.6]; [1, 1, 1]), [1, 1, 1] (range [0.5, 0.5, 2]; [1, 1, 1]) and [0.7,
0.7, 3] (range [0.5, 0.5, 1]; [1, 1, 3]). Data were not preselected
according to quality criteria and a few acquisitions were of lower
quality (example in Figure 4). Patients main characteristics were:
mean age 35 yo (SD = 10), mean EDSS 1.1 (SD = 1.3), disease
duration 3.7 years (SD= 1.3), percent of women= 67%.

Experimental Setting
We conducted two experiments involving three experts with
different levels of experience: a senior neuroradiologist with
15 years of experience (named “expert 1” below), a senior
neurologist with 8 years of experience (named “expert 2” below)
and a junior radiologist (named “expert 3” below). Each of
these two experiments are detailed below and consisted of
the visual analysis of a set of pairs of acquisitions in two
different conditions.
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TABLE 1 | Repartition of patients in the different scanners (each row is a different

scanner).

Manufacturer Version Number of sessions (overall 108)

Phillips Ingenia 47

Siemens Prisma 23

Siemens Verio 17

Phillips Ingenia 9

Phillips Ingenia 5

Siemens Aera 3

General Electrics SIGNA Explorer 2

Siemens Aera 1

General Electrics SIGNA Explorer 1

FIGURE 4 | A pair of FLAIR acquisitions from a patient of the evaluation

dataset experiencing a low quality baseline scan. (Left) Baseline FLAIR axial

slice. (Right) Follow-up FLAIR axial slice.

Impact of the Segmentation Module on Expert Performances
In this first experiment, we assessed the added value of the
segmentation module on the ability of each expert to detect new
lesions arising between the two time points. This experiment
was conducted on 48 patients out of the 54. It consists of
a 2-fold procedure. In its first phase, each expert was asked
to annotate all notable new lesions—by simply drawing a
point near the center of the lesion—from the pre-registered
FLAIR, T1w, and T2w volumes for the two time points of
interest. Then, in a second phase 2 weeks later, each expert was
asked to perform the same exercise with an additional input:
the segmentation mask provided by the segmentation module.
Annotated lesions as well as time to perform each segmentation
were recorded.

This experiment was performed on a dedicated reading
system allowing MR volume annotation built from the fsleyes
software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes). The time
measurement was automated. All experts were asked to
conduct this experiment in situations as similar as possible
to clinical practice. In particular, experts were explicitly
instructed not to spend more time reading MRIs than they
would have in clinical routine. However, they had to be

in a quiet environment so as not to be interrupted during
their reading. A few days prior to the first phase, each
expert experienced a short session to experiment with the
reading system.

Impact of the MUSICWorkflow on Routine Clinical Practice
In this second experiment, we explored the added value of the
overall MUSIC workflow in clinical practice. This experiment
was conducted on 6 patients. Again, it was a 2-fold procedure.
In the first phase, each expert was asked to visualize the MRI data
and write a radiological report using the fully manual procedure
currently in use. Hence, the images were viewed directly from the
PACS and MRI for the two time points were manually roughly
registered. The presence of new lesions was visually assessed and
annotated in the radiological report, without any computer-aided
tool. In the second phase of the experiment, 2 weeks later, each
expert was asked to repeat the exercise via the MUSIC workflow
(i.e., from a user perspective, using the new lesion segmentation
mask and realigned data in the dedicated web MRI viewer). The
experts measured the time needed to load data, read the MRI and
write the report in the two phases. As in the first experiment,
experts were explicitly instructed not to spend more time reading
MRIs than they would have in clinical routine. They again had
to be in a quiet environment so as not to be interrupted during
their reading.

Statistical Analysis

Impact of the Segmentation Module on Expert Performances
First, for each expert and during each phase of this first
experiment, detected lesions were colocalized using an
automated analysis and manual intervention when necessary.
This stage allows us to produce a mapping between each detected
lesion, the names of the experts who detected it and the phase
(phase 1 or/and phase 2) in which it was detected. Second, each
lesion that has been reported, regardless of the phase of the
experiment, was labeled as a true positive or a false positive via a
consensus reading of all lesions from the two most experienced
experts. Finally, we computed:

- The number of lesions detected by each expert as well as the
overall number of individual lesions (i.e., counted only once
for all experts) detected, for each phase.

- The inter-expert differences on detected lesions within each
phase reported as ratio, pairwise Cohen’s kappa statistics
and multi-rater Fleiss’ kappa statistic and associated 95%
confidence intervals (CI).

- The number of lesions detected in phase 1 and not in phase 2
and conversely.

- The averaged patient-wise number of lesions detected by
experts in each phase, that is compared between phases using
a paired student test.

- The number of patients reported with at least one notable
lesion by each expert and in each phase, as well as the
associated pairwise Cohen’s kappa statistics and multi-rater
Fleiss’ kappa statistic and associated 95% CIs. The overall
sensitivity and specificity associated to this categorization (i.e.,
at least one new lesion vs. no new lesion) was then computed
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TABLE 2 | Inter-expert heterogeneity during phase 1.

Expert 1 Expert 2 Expert 3

Expert 1 – 23/90

κ =0.38 [0.22, 0.53]

17/90

κ = 0.62 [0.48, 0.75]

Expert 2 16/83 – 19/83

κ = 0.44 [0.29, 0.59]

Expert 3 8/83 18/83 –

The first figures give the number of lesions detected by the expert in row not detected by

the expert in column. For example, over its 90 new lesions detected, expert 1 detected

23 lesions that were not detected by expert 2 and 17 that were not detected by expert 3.

The second figures (only once per expert combination) give the Cohen’s Kappa coefficient

and its associated 95% CI.

for each phase and tested for equality between phase 1 and
phase 2 using a logistic regression including a patient and an
expert random effect.

- The pooled inter-expert standard deviation associated to the
number of lesions detected in each phase, that is compared
between the phases.

- The individual sensitivity together with its 95% CI for each
expert and each phase. Moreover, for each expert, sensitivity
is tested for equality between phase 1 and 2 using a logistic
regression including a patient random effect. Associated odds
ratio, p-values for odds ratio = 1 and associated 95% CI
are reported.

Finally, mean time elapsed for each expert and each phase was
estimated and tested for equality between phases using a paired
student test.

Impact of the MUSICWorkflow on Routine Clinical Practice
First, radiological reports from this second experiment were
gathered. Then for each expert and each setting (i.e., using the
full MUSIC workflow or using the current manual approach),
patients were categorized according to the report as: “no activity,”
“1 lesion” or “> 1 lesion.”

Second, the time spent to perform radiological readings for
each of the three experts and each of the two settings were
summarized and the mean times elapsed in the two settings were
tested for equality using a paired t-test.

RESULTS

Impact of the Segmentation Module on
Expert Performances
Detection of New Lesions Without the Segmentation

Mask
During the first phase, overall 113 lesions were detected. The
three experts, respectively, detected 90, 83, and 83 new lesions.
Table 2 reports the difference of lesions detected from one expert
to another as well as the inter-rater Cohen’s Kappas, illustrating
the high inter-rater variability on detected lesions. Moreover, the
overall Fleiss’s Kappa coefficient was 0.47 with 95% CI = [0.38,
0.57]. Figure 5 gives an example of a notable lesion detected by
only one of the three experts.

FIGURE 5 | An example of lesion detected by expert 1 in the first phase of the

experiment but not by experts 2 and 3. First row shows the baseline FLAIR

scan (from left-to-right: coronal and axial view), second row shows the FLAIR

scan 1 year later (from left-to-right: coronal and axial view). Red arrows

designate the lesion of interest.

At the patient scale, depending on the experts, 19, 19, and
20 patients out of 48 were reported to have at least one
sign of MRI disease activity. When combining the different
expert segmentations, this number increased to 22. The inter-
rater Cohen’s Kappa coefficients associated with these patients
classifications were: for Expert 1-Expert 2: 0.83 [0.66, 0.99], for
Expert 2-Expert 3: 0.78 [0.74, 1], and for Expert 1-Expert 3:
0.96 [0.87, 1]. The overall Fleiss’s Kappa coefficient was 0.86
[0.75, 0.97].

Detection of New Lesions With the Segmentation

Mask
During the second phase (i.e., when segmentation masks
provided by the segmentation module were used as supplemental
information), the three experts, respectively, detected 114, 111,
and 104 lesions. Overall 125 lesions were detected. Table 3

reports the difference of lesions detected from one expert
to another in this second phase. The overall Fleiss’s Kappa
coefficient was 0.59 [0.49, 0.69]. Table 4 details the number of
lesions from the segmentation module accepted and rejected by
the experts as well as the number of supplemental lesions added.
Overall, a large majority of the 121 candidate lesions detected by
the segmentation module were accepted by the experts (between
103 and 107 depending on the expert). Eleven lesions out of
these 121 were rejected by each of the three experts. After the
consensus reading, one supplemental lesion proposed by the
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TABLE 3 | Inter-expert disparity during phase 2.

Expert 1 Expert 2 Expert 3

Expert 1 – 10/114

κ = 0.44 [0.29, 0.59]

16/114

κ = 0.51 [0.34, 0.69]

Expert 2 7/111 – 11/111

κ = 0.69 [0.53, 0.83]

Expert 3 6/104 4/104 –

The first figures give the number of lesions detected by the expert in row not detected by

the expert in column. For example, over its 114 detected new lesions, expert 1 detected

10 lesions that were not detected by expert 2 and 16 that were not detected by expert 3.

The second figures (only once per expert combination) give the Cohen’s Kappa coefficient

and its associated 95% CI.

TABLE 4 | Relevance of the segmentation masks produced by the segmentation

module.

Expert 1 Expert 2 Expert 3

Accepted lesions 105 107 103

Rejected lesions 16 14 18

Supplemental lesions 9 4 1

Number of lesions accepted, rejected and added by the different experts when using the

segmentation mask as supplemental information.

segmentation module was rejected, leading to a total of 12 false
positive lesions distributed among 8 patients (10% rejection rate)
for the segmentation module. At the patient scale, depending on
the experts, 24, 23, and 23 patients were reported to have at least
one sign of disease activity. When combining the different expert
segmentations, this number rises to 25. The inter-rater Cohen’s
Kappa coefficients associated with these patients classifications
were: for Expert 1-Expert 2: 0.96 [0.88, 1], for Expert 2-Expert
3: 0.92 [0.80, 1], and for Expert 1-Expert 3: 0.88 [0.74, 1]. The
overall Fleiss’s Kappa coefficient was 0.92 [0.83, 1].

Consensus Lesions Reading and Patient

Characteristics
Overall, 138 individual lesions were reported by the experts
during the two phases. Two of these 138 lesions were then
discarded during the concerted reading (one was reported in
phase 1 and the other one in phase 2). The patient-wise
repartition of lesions is given in Supplementary Figure 1. Briefly,
the median lesion number was 1, ranging from 0 to 18. Twenty-
two patients (about 46%) did not develop new lesions.

Comparison of New Lesions Detection With and

Without the Segmentation Mask at the Lesion Scale
By comparing lesions detected in the two phases (and excluding
the two false positive lesions), we identified 103 cases of lesions
that were not detected by an expert in the first phase but were
detected by this expert in the second phase. Figure 6 displays an
example of lesion that was detected by the segmentation module
and accepted by the three experts in the second phase of the
experiment but that was reported by none of the three experts
during the first phase of the experiment. Conversely, we identified

FIGURE 6 | Example of a lesion detected by none of the experts in the first

phase of the experiment, detected by the segmentation module and accepted

by all experts in the second phase of the experiment. First row shows the

baseline FLAIR scan (from left-to-right: coronal and axial view), second row

shows the FLAIR scan 1 year later (from left-to-right: coronal and axial view).

Red arrows designate the lesion of interest.

only 30 cases of lesions that were first detected by an expert in the
first phase but not detected in the second phase.

Table 5 reports the statistics on lesion detection averaged over
patients and highlights the added value of the segmentation
module to increase expert performance. Similarly, Table 6

reports increased ability of each expert to detect new lesions using
the segmentation module. Finally, Table 7 reports the statistics
on elapsed time for each of two phases for the three experts and
highlights the gain in expert processing time brought by the use
of the segmentation mask.

Comparison of New Lesions Detection With and

Without the Segmentation Mask at the Patient Scale
Table 8 provides a contingency table summarizing the numbers
of patients that were identified as having no lesion, one lesion or
more than one lesion during the two phases of the experiment.
Moreover, 20 patients (by adding those identified by each expert)
were wrongly identified as having no new lesion in the first phase,
against only 8 patients in the second phase of the experiment.
The overall sensitivity at the patient scale (i.e., no new lesion
vs. at least one new lesion) was 0.74 in the first phase, and 0.90
in the second phase of the experiment (p-value for unit odds
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TABLE 5 | Statistics on lesion detections averaged over patients and differences between phase 1 (lesions detection only using patient acquisitions) and phase 2 (lesions

detection using patient acquisitions and segmentation mask produced by the segmentation module).

Phase 1 Phase 2 Phase 2 to Phase 1 differences

value, [95%CI]

and p-value for

no difference

Mean number of detected lesion per patient and per expert 1.8 Lesion 2.3 Lesion Mean difference = 0.5

[−0.78, −0.23]

p = 5.10−4

Pooled standard deviation from interexpert variability 0.76

Lesion

0.55

Lesion

Mean difference = 0.09

[−0.02, 0.29]

p = 0.12

First row: averaged patient-wise number of lesions detected in phase 1 (column 1) and 2 (column 2) and mean difference, associated 95% CI and p-value for a null difference between

the two phases (column 3). Second row: pooled inter-expert standard deviation associated with lesions number detected in phase 1 (column 1) and 2 (column 2) and mean difference,

associated 95% CI and p-value for a null difference between the two phases (column 3).

TABLE 6 | Ability of each expert to detect a new lesion during the two phases.

Phase 1

sensitivity

[95%CI]

Phase 2

sensitivity

[95%CI]

Phase 2 to Phase 1

differences

odds ratio, [95%CI]

and p-value

Expert 1 0.66

[0.58, 0.74]

0.84

[0.76, 0.90]

2.77

[1.55, 5.15]

p = 7.10−4

Expert 2 0.60

[0.51, 0.68]

0.82

[0.74, 0.88]

3.35

[1.84, 6.29]

p = 8.10−5

Expert 3 0.61

[0.52, 0.69]

0.75

[0.68, 0.83]

2.31

[1.33, 4.10]

p = 3.10−3

For each expert (in row): the ratio of new lesions detected over the overall 136 lesions (the

overall number of lesions detected on all patients, by all experts during the two phases and

confirmed during the concerted reading) as well its 95% CI for phase 1 (first column) and

phase 2 (second column) and difference between phase 1 and phase 2 (third column).

TABLE 7 | Statistics on time elapsed for each of two phases for the three expert

and comparison between the two phases.

Phase 1

duration

(mean, [range])

Phase 2

duration

(mean, [range])

Phase 1 to Phase 2

difference

[mean, (sd), p-value]

Expert 1 317s

[144, 807]

232 s

[91, 603]

85 s (137 s)

p =10−5

Expert 2 283s

[125, 847]

204s

[93, 511]

78 s (126 s)

p = 10−5

Expert 3 272 s

[146, 525]

160 s

[82, 287]

112 s (79 s)

p = 10−13

First column: Mean time and associated range associated with the processing of the 48

patients in Phase 1. Second column: same elements for phase 2. Third column: Mean

time reduction from Phase 2 to Phase 1, associated standard deviation and p-value for a

null time reduction.

ratio = 0.003). Moreover, for each expert and each phase, the
patient-wise specificity was equal to 1.

TABLE 8 | Contingency table of numbers of patients reported with no (0), one (1),

or more than one (>1) lesion in the two phases of the experiment.

Phase 2

0 1 >1

Phase 1 0 71

(23, 23, 25)

13

(5, 5, 3)

2

(1, 1, 0)

1 3

(1, 2, 0)

10

(3, 3, 4)

2

(0, 0, 2)

>1 0

(0, 0, 0)

2

(1, 0, 1)

41

(14, 14, 13)

In each cell, the top figure indicates the overall number of reported patients while the three

bottom figures give, respectively, these figures for expert 1, expert 2, and expert 3.

When assessing the reported new lesions as detected by the
segmentation module (i.e., with no adjustment by an expert),
we computed a sensitivity of 0.90 and specificity of 0.84 at the
patient scale.

Impact of the MUSIC Workflow on Routine
Clinical Practice
Supplementary Table 1 gives the main elements of reporting for
each expert and each patient when using a standard manual
examination of data from the clinical PACS (phase 1) and when
using the MUSIC workflow (phase 2). In particular, expert 2
and expert 3 reported two patients without activity in phase 1
(patients 2 and 3) while they reported a notable new lesion for
these same patients in the second phase. Finally, Table 9 gives
the mean time elapsed by the three experts in the two settings.
Mean times elapsed in the two settings differ significantly [mean

difference= 2
′

45
′′

(SD= 2
′

00
′′

), p= 10−4].

DISCUSSION

While there is a growing number of methodological works
addressing the question of automating the detection of new MS
lesions from one acquisition to another using deep learning
techniques [e.g., (7, 9, 10)], the integration of such tools in clinical
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TABLE 9 | Mean (standard deviation) time elapsed to perform radiological

readings of the patients of interest for each of the three experts and each of two

phases of the second experiment.

Expert 1

mean

(standard deviation)

Expert 2

mean

(standard deviation)

Expert 3

mean

(standard deviation)

Phase 1 4
′

45
′′

(1
′

30
′′

)

7
′

00
′′

(3
′

00)

5
′

15
′′

(1
′

30
′′

)

Phase 2 3
′

15
′′

(0
′

30
′′

)

3
′

00
′′

(0
′

30
′′

)

3
′

45
′′

(0
′

30
′′

)

practice as an aid to clinicians and the associated added-value on
the resulting radiological reports have not been fully evaluated.
This work aims at providing elements to document these two
points. In particular, we described a fully-integrated workflow
and showed that the proposed workflow increases MRI reader
performance to detect newMS lesions on longitudinal MRI scans
while decreasing MRI comparison time. Beyond the number of
lesions detected, our workflow has an impact on the number
of MS patients classified as stable or active based on their MRI,
even by the most experienced neuroradiologist. It may therefore
have substantial consequences on the therapeutic management of
MS patients.

Visual Detection of New MS Lesions Is a
Complex Task
First, as previously reported, we observed a high inter-expert
variability in the detection of new FLAIR lesions (24, 25).
In practice, a significant part of this variability is not due
to differences of MR signal interpretations but related to the
difficulty to visually notice them within the whole 3D volumes
of interest. Indeed, while we did not investigate the intra-expert
variability, a previous study reported a mean intraobserver kappa
score for new lesions detection at 0.72 (25). As expected, in the
present study, the expert with the highest level of experience
(neuroradiologist with 15 years of experience) detected a higher
number of new lesions than the other clinicians.

Automated New Lesion Segmentation
Tools Provide a Relevant and Valuable Aid
for Clinicians
Second, we observed that the use of lesion masks produced by
the lesion detection module significantly increases the number
of lesions detected regardless of the level of expert’s experience
(more than 15% more lesions with the MUSIC workflow than
without). This observation is in line with recent studies not
involving deep learning based segmentation (26–28). In parallel,
while not significant, we also observed a natural reduction of the
inter-expert variability when using the segmentation masks.

It is also interesting to note that we deliberately put ourselves
in difficult conditions by including longitudinal data acquired
on different scanners in 56% of the cases. These conditions are
representative of the follow-up conditions in clinical practice
where patients may be followed in different centers and on

different scanners. Moreover, we did not discard lower quality
acquisitions from the study. Despite these heterogeneities the
segmentation module provides valuable aid to clinicians. In
particular, we did not observe evidence of mean differences in
sensitivity of the segmentation module depending on whether
baseline and follow-up data come from the same scanner or
from two different scanners/brands (mean difference = 0.10, p
= 0.44 for “same scanner vs. different scanners,” mean difference
= 0.04, p = 0.77 for “same brand vs. different brands”). This
point must however be mitigated by our sample size that may
be too low to evidence subtle mean differences. Meanwhile, the
rejection rate, i.e., the percentage of candidate lesions detected
by the segmentation module that were rejected by the experts
was moderate (about 10%) and most segmentation masks (about
80%) did not present any false positive lesions. Overall, this
rate must be considered in light of our methodological choices.
Indeed, in this work, we chose to accept the presence of a
reasonable amount of false positives (favoring sensitivity over
specificity). Optimizing the balance between the number of false
negative lesions (increasing experts’ acceptance and comfort) and
the number of true positive lesions (decreasing the probability to
miss a new lesion) may consist of interesting future directions.
In particular the segmentation module, and especially the post-
processing rules that drive most of this balance, could be
modified for this purpose. This optimization could also depend
on acquisition characteristics (e.g., acquisition signal-to-noise
ratio, scanner brand) to reduce potential effect of these factors
on performance.

It is worth noting that we do not think these results are
intrinsically related to our segmentation module. Indeed, while
being built on state-of-the-art solutions and exhibiting satisfying
performances, it may be replaced by other recent methods
of the literature [e.g., (7–10)]. Our aim is not to show the
superiority of our segmentation module but to evidence the
potential impact of using state-of-the-art segmentation methods
on MS clinical practice.

Using a New Lesion Segmentation Mask
Was Well-Received by the Experts
Importantly, all three experts reported a satisfying and
comfortable reading experience when using the segmentation
mask as an aid, especially with the full workflow (Experiment
2). Additionally, for each of them, the time spent to analyze
the images was significantly reduced in the second phase of
the experiments.

More specifically, the three experts were satisfied by the
information provided by the segmentation masks and reported
that the segmentation module offered very good performances.
While this result is satisfactory, it also raises issues related to
the confidence to place in these segmentation masks, especially
regarding their potential lack of sensitivity. As an example, in
the second phase of our first experiment, expert 3 only added
1 supplemental lesion to those proposed by the segmentation
module, while being the expert exhibiting the highest gain of
processing time between Phase 1 and Phase 2. While on average,
the performances of expert 3 were notably superior with the
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MUSIC workflow than without, this observation also suggests a
risk for the experts to place too much trust into the automated
outputs. We think that ways to mitigate such risk, such as
confidence intervals or uncertainty estimation (10, 29), have to
be considered in future methodological developments.

Automated New Lesion Segmentation
Tools May Have Substantial Consequences
on the Therapeutic Management of MS
Patients
Beyond lesion-wise statistics, our results suggest that the use
of segmentation masks has also consequences at the patient
level. Indeed, in the first experiment, it allows each expert to
identify three to five supplementary active MS patients (i.e.,
with at least one new lesion on MRI). This result, which may
seem important, should be interpreted in relation to our dataset,
including particularly active patients. This high activity rate is
well-explained by our inclusion criteria, selecting patients at the
early stage of the disease.

Moreover, it would be interesting to evaluate the consequences
on patient management by the clinician (in particular with
respect to potential treatment changes). Indeed, the appearance
of new lesions under treatment is recognized as being prognostic
of an increased risk of clinical relapse and of disability
progression. It consequently often leads to a change of treatment
in clinical practice (30, 31). This point could be evaluated in
a future study including the neurologists in charge of these
patients. In the longer term, the objectives would be to evaluate
the impact of such a tool on the evolution of disability in patients
and on the costs of managing the disease. Finally, it would be
interesting to evaluate this workflow from the patient’s point of
view. There is indeed a potential added-value of a straightforward
visualization enhancing new lesions to facilitate the clinician-
patient dialogue, especially to argue for a change of DMT.

Limits and Perspectives
Our study has several limitations that need to be discussed. First,
our evaluation must be interpreted in light of our population,
which exhibits a high prevalence of new lesions due to our
inclusion criteria. Indeed, we voluntarily put ourselves in a
setting where the inter-expert and intra-expert variabilities are
exacerbated and, as a consequence, where a computer-guided
aid is likely to offer a high added-value. If the number of
active patients had been lower, we can reasonably assume that
average expert performances without the computer-guided aid
would have been better and that the resulting added-value of our
workflow would have been less pronounced.

Secondly, all FLAIR, T2-w, and T1-w images were used
as input to the automatic lesion detection module. These 3
sequences correspond to those currently recommended in the
OFSEP protocol in France (6) and are mostly performed in
clinical routine for the follow-up of MS patients. However, in
some cases, due to time constraints, some of these sequences are
not acquired. Our segmentation module therefore needs to be
adapted and evaluated to deal with this configuration.

Thirdly, while it is consistent with that used in other studies
(26, 32), our evaluation sample size (54 patients) is limited. It
will be interesting to evaluate our workflow and confirm our
results on a larger sample from all centers involved in the follow-
up of MS patients in our region. Moreover, some MRI scanners
are under-represented in our sample (as GE scanners) and the
size of our cohort did not allow us to analyze the performance
of our tool by subgroup, e.g., according to the type of MRI
scanners used. Despite these limitations, overall, the added value
of our segmentation module compared to a standard radiological
reading appears clearly significant, both on the number of lesions
detected and on the time to perform this task.

Fourth, the fact that all readings were firstly performed
without assistance (phase 1) and secondly using the segmentation
mask as an aid (phase 2) may have introduced a bias that would
have been reduced by using a dedicated design. However, we are
confident about the lack of such substantial bias. Indeed, a 2-
week period was included between the two phases and this period
consisted, for each expert, of a dense clinical and radiological
activity. Moreover, the number of data analyzed was consequent
and the order of analysis of the patients was different between the
two readings.

Fifth, our segmentation module could be improved following
recent methodological advances. In particular, a two-path
encoder that extracts hierarchical features for each time-point
separately, while allowing for an exchange of information at
certain levels of abstraction, might be explored in the future (33).
In parallel, the design of methods using both a joint analysis of
the baseline and follow-up acquisitions (as in the present work)
and an analysis of each cross sectional segmentation probability
maps, obtained from dedicated algorithms, could maximize
the use of the information available in the different annotated
databases (34, 35). In particular, these latter segmentation
probability maps could be obtained estimating the confidence
maps associated with the presence of lesions (10), that have
already shown their interests to detect new MS lesions.

Sixth, our experiments were limited to follow-up with two
time points and did not include settings with more time
points. Our workflow can actually deal with such settings by
processing the data sequentially, using the first baseline images as
reference target for registration, and performing segmentations
independently for each consecutive pair of acquisition sessions.

Finally, in our study, we mainly evaluated our workflow at
the lesion scale. Evaluating the impact of such workflow at the
patient scale, and in particular its consequences on patient’s
management (continuation or change of treatment, effect on
disability progression for example) is a final objective that we
did not fully address in this study and constitutes the future
directions of our work.

CONCLUSION

The workflow proposed in this paper consists of a fully-
integrated and user-friendly computer-aided MRI reading
system, potentially accessible to all neurologists and
radiologists in a given area. Importantly, the aid provided
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by the segmentation module significantly improved both
the number of new FLAIR lesions detected by MRI-readers,
including highly experienced ones, the number of patients
classified as having active disease, and the time spent
interpreting follow-up MRIs. These results should make us
think about how to widely disseminate such workflows, to
allow an optimized follow-up for all MS patients wherever
they are followed and whatever the level of expertise of
their clinicians.
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