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Abstract: Multiple antibiotic resistance has now become a major obstacle to the treatment of infectious
diseases. In this context, the application of nanotechnology in medicine is a promising alternative
for the prevention of infections with multidrug-resistant germs. The use of silver as a powerful
antibacterial agent has attracted much interest. TiO2 and SiO2 thin films enhanced with Ag particles
have been developed with the aim of maintaining the transparency of the polymer films. Antibacterial
activity was evaluated for a Gram-negative species-Escherichia coli-in concentrations of 105 and
104 CFU/mL in different conditions-activation by UV irradiation, single layer and double layer.
Increased antibacterial efficacy of TiO2-deposited foil was found for the tests that had been exposed
to UV activation. In the case of bilayer tests, the efficiency was higher compared to those in a single
layer, as the contact surface between the films and the bacterial suspension increased. Films can be
used as a potential method to limit bacterial growth on hospital surfaces, such as telephone screens
and medical equipment, given their optimized characteristics and proven antibacterial efficacy.

Keywords: antibacterial film; medical application; antibacterial properties; silver particle

1. Introduction

Bacterial and viral infections, as well as other public health problems considered
incurable diseases, have been effectively managed in recent decades due to remarkable
advances in medicine. However, poor living conditions and a lack of knowledge about
hygiene are contributing to high morbidity in many parts of the world, especially in
less developed countries. Infectious pathology can also aggravate the evolution of other
diseases and increases the mortality rate [1,2]. In recent decades, antibiotic resistance of
many pathogens has been constantly increasing, becoming a major threat to global public
health [3].

Since 2014, World Health Organization (WHO) reports have drawn attention to this
serious threat to public health and recommended harmonizing and streamlining public
health strategies and finding new alternatives to infection prevention and therapy. Data
collected by the European Antimicrobial Resistance Surveillance Network (EARS-Net) in
2011–2019 indicated high levels of resistance to several classes of antimicrobials, with the
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highest percentages in Southern and Eastern Europe, including Romania [4,5]. Nosocomial
infections are a serious problem facing hospitals around the world, with a significant medi-
cal, social and economic impact. Surveillance and control of healthcare-associated infections
involves the development of appropriate strategies and the implementation of determined
measures. Sources of infection can be exogenous, such as air, medical equipment and
medical staff’s hands, or endogenous, such as normal skin bacterial flora [6]. The hands
of medical staff play an important role in transmitting nosocomial infections. Therefore,
contaminated mobile phones, which are used in various hospital wards, laboratories or
halls, may play a role in the spread of microorganisms in medical units [7,8]. Unfortunately,
the phones of medical staff are rarely disinfected and the transmission of microorganisms,
including multidrug-resistant strains, is favored [9,10]. Gram-negative bacterial species
that may be often agents of hospital infections are Escherichia coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa and Acinetobacter baumannii. Among the Gram-positive bacteria,
methicillin-resistant Staphylococus aureus (MRSA) and Enterococcus species are more fre-
quently implicated [5,11,12]. Antimicrobial surfaces have the potential to play a key role in
infection management in healthcare institutions by decreasing cross-contamination and
managing the surface bacterial load [13]. Given the above, it is possible to understand the
need for methods to limit antibacterial infections by minimizing bacterial growth in hos-
pital conditions. Thus, several researchers have focused on developing new antibacterial
materials for screen phones, medical devices or medical equipment.

Most current research has focused on developing metal oxide nanoparticles for appli-
cation as novel antibacterial materials by integrating scientific techniques with the natural
antibacterial activity of inorganic metal oxides [14,15]. Nanomaterials of the next gener-
ation that can be activated by an external stimulus to gain antibacterial capabilities are
an exciting step forward in the development of antimicrobial alternatives. Often, the
nanomaterial’s antibacterial activity is also to blame for the related adverse effects, such
as dissolved ions [16]. Nanomaterials that have been stimulated can, however, stay “dor-
mant” until they are selectively “turned on,” lowering the risk of harmful side effects
on human cells or helpful microorganisms [17]. Current stimuli-triggered antimicrobial
nanomaterials use light and magnetism as their main stimuli, with various methods of
action in each case. Photocatalytic and photothermal nanomaterials are driven by energy
from specific wavelengths of light to produce reactive oxygen species (ROS) and localized
temperature rises, which have been shown to be efficient against harmful bacteria and
fungi, respectively. Magnetic hyperthermia and magnetophysical nanomaterials respond to
magnetic fields by increasing the localized temperature and rupturing, respectively, to kill
microorganisms [17]. Metal oxides are a viable alternative to the conventional antibacterial
techniques since most have antibacterial properties. Ag2O, ZnO, SiO2, TiO2, CuO, MgO
and CaO are some of the metal oxides that are often used as antibacterial materials [18,19].
Because of their high catalytic activity, great chemical and thermal stability, low toxicity
and inexpensive cost, titanium dioxide (TiO2) nanoparticles are considered one of the most
suited materials. Many benefits have been attributed to TiO2, including its high quan-
tum efficiency, low cost, biocompatibility and great optical and chemical stability [20,21].
Deposition on TiO2 of noble metals such as silver and gold is one of the most effective
ways to limit the possibility of electron–hole recombination in photocatalytic processes.
Silver is frequently used with TiO2 because of its diverse photocatalytic and antibacterial
characteristics [22,23]. Due to the carriage of silver-resistance bacterial genes by plasmids,
the presence of silver-coated surfaces could contribute to the selection and propagation
of antimicrobial-resistance genes [24]. Silica nanoparticles have proven to be a viable op-
tion for a variety of medicinal applications, including cancer and antibacterial treatments.
Given the mounting threat of antimicrobial resistance, silica nanoparticles’ adaptability is
particularly helpful for antimicrobial therapies, including biofilm treatment. The window
for the development of antimicrobial resistance is quite narrow because these nanopar-
ticles can attack pathogens through multiple modes, including physical damage to cell
membranes, ROS production and endo-lysosomal burden, in addition to the antimicrobial
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activity induced by the cargo itself [25]. By attaching to the bacterial cell wall and/or
releasing metallic ions, metal-based nanoparticles can disturb the cell membrane potential
and integrity [26]. Because nanoparticles have a positive charge and cellular components
have a negative charge, they interact at the surface through electrostatic communication.
These interactions harm bacterial proteins by disrupting the membrane and increasing
oxidative stress [27].

The aim of this study is to evaluate the antibacterial activity of polyurethane self-
adhesive foils coated by TiO2 and SiO2 thin films enhanced with silver particles, in various
conditions such as UV exposure and film doubling, to improve antimicrobial efficiency, as
a potential material to protect screens used in medical environments.

2. Materials and Methods
2.1. Synthesis and Characterization of Films

The silver-containing thin film was obtained by the magnetron sputtering technique [24],
in so-called confocal configuration. This configuration employs 3 targets located at equal
distance from substrate holder position, in such a way that uniform deposition on a 9 cm
diameter of the substrate is obtained. Each of the materials can be deposited individually,
resulting in multilayer structures [27,28], or simultaneously-depositing 2 or 3 materials—
resulting in a mixed uniform composition [29].

Both SiO2 and TiO2 targets operated in Radio Frequency (RF) mode at 50 W, having a
constant power for the deposition of the dielectric matrix. Ag was obtained by sputtering
the silver target (purity of 99.99%) in high-power impulse magnetron sputtering mode,
HiPIMS [30], allowing us to obtain higher ion fluxes and also good control of the deposition
rate through the temporal characteristics of the pulse. The pulse voltage was set at 650 V,
with a peak current of 1.5 A, a pulse duration of 50 µs and the repetition frequency of 1 Hz.
This allowed us to obtain a deposition rate that was typically 10 times smaller than that
of the oxide. The substrates were made of thin self-adhesive polyurethane foils. The foils
were cleaned with isopropyl alcohol before placing them into the vacuum chamber, and
then additionally cleaned by RF sputtering at 50 V self-bias for 15 min. The deposition
was performed in argon at 6 mTorr pressure, and the deposition rates were chosen so that
the oxides remained the main material and the silver was merely a dopant. The typical
deposition time was 30 min, resulting in film thicknesses ranging in the 30 to 35 nm interval.

UV-spectrophotometry was performed using a Jasco V-670 UV-Vis/NIR Spectropho-
tometer (Jasco, Tokyo, Japan). A SEM-Hitachi Tabletop Microscope (TM3030-PLUS, Tokyo,
Japan) system equipped with an energy-dispersive X-ray spectrometer (EDS, QUANTAX 70,
Bruker, Billerica, MA, USA) was used for the investigation of the composition of thin films.

The adhesion between the coated surface and uncoated substrate was determined
by the “tape test”, performed according to the protocol described in the ASTM D3359-17
standard [31]. The test was carried out with an Elcometer 107 Cross Hatch Adhesion Tester
kit (Ulmer, Aalen, Germany). The coating adhesion was evaluated in terms of area removed
by analyzing the lattice pattern indentation and was classified in terms of percentages
(from highest to weakest): 5B: 0%; 4B: ≤5% 3B: 5% ÷ 15%; 2B: 15% ÷ 35%; 1B: 35% ÷ 65%;
0B: ≥65%. A more detailed presentation of the procedure is available in reference [31].

2.2. Bacterial Culture

The antibacterial performance of films was assessed using Escherichia coli strains
(ATCC 25922) in accordance with ISO 22196:2011 [32], although with various revisions
based on the type of films tested, as explained below. A stock suspension of Escherichia
coli of 0.5 McFarland equivalent to 1.5 × 108 CFU/mL was prepared using a densitometer.
Serial dilutions of 105 and 104 CFU/mL were made from this stock suspension. The films
were inoculated with the bacterial suspension (V = 113 µL) for 30 min. at room temperature,
after which they were washed in 3 mL of NaCl 0.9%. A volume of 100 µL was taken from
the washing liquid and inoculated onto blood agar. Petri dishes with blood agar were
analyzed after 24 h and also 48 h of incubation in a thermostat.



Nanomaterials 2022, 12, 902 4 of 11

2.3. Antibacterial Culture

Comparative tests were performed in which the samples were exposed to UV radiation
from a source placed at 30 and 60 cm, respectively, in order to activate the deposition under
UV stimuli-taking into account the fact that some materials deposited on the samples
had photocatalytic properties. At the same time, tests were performed to evaluate the
antibacterial activity of only one sample, but also of two overlapping samples facing each
other with the deposited side (sandwich) for the same volume of bacterial suspension.

After 24 h and, respectively, 48 h of incubation in the thermostat of the Petri dishes, the
number of Escherichia coli colonies was quantified using an automatic analyzer (InterScience
Scan 300-Soft Scan InterScience, Saint Nom la Brétèche, France).

The results were analyzed and the average and standard deviations between the
two experiments were calculated. The antibacterial efficiency of the tested samples was
calculated using Equation (1) [33]:

Antimicrobial activity (%) =
Nc − Ns

Nc
× 100 (1)

where:
Nc represents the number of colonies on the control samples;
Ns represents the number of colonies on the tested samples.

3. Results
3.1. Characteristics of the Films

The optical properties of the resulting structure were investigated in this study through
UV–Vis-NIR spectroscopy, to assess the changes induced by the thin films deposited on the
transparent polymer foil (Figure 1). Maintaining high transparency is an important feature,
enabling the use of such foils as protective covers for touchscreens or other surfaces that
require see-through characteristics.
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Figure 1. Spectrophotometric curves, reflectivity (a), transmittance (b) and absorbance (c) of the
uncoated foil and the foils coated with SiO2 + Ag, TiO2 + Ag.

From the transmission and reflection spectrum presented in Figure 1, it may be ob-
served that the transparency decreases when Ag particles are added into the oxide matrix.
The transparency is significantly lower for the TiO2 + Ag layer, the decrease being associated
both with higher reflectivity, up to 20%, and slightly higher and broader absorption in the
visible range. An absorption peak around 450–500 nm is present for both silver-containing
coatings, as can be seen from the absorption spectra in Figure 1. This peak is specific to the
absorption on silver nanoparticles, being associated with the surface plasmon resonance
phenomena [34]. It is evident that the peak position depends on the matrix, indicating that
the size and density of the Ag nanoparticles are different, depending on the matrix they are
embedded in [35] The presence of this peak confirms that the Ag nanoparticles are finely
dispersed in the oxide matrix. Comparing both layers, the one with the SiO2 matrix has the
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best transparency, the one containing TiO2, on the other hand, being less transparent, most
probably due to an insufficient amount of oxygen and a corresponding sub-stoichiometric
composition [36].

The film composition was assessed by EDS (Figure 2). A measurable amount of Ag
was detected for both types of thin films. The ratio between Ag and Si is around 23%,
whereas the ratio between Ag and Ti is around 28%, showing a slightly higher content
of Ag in the TiO2 matrix. When comparing the nominal ratios of Ag embedded in the
two dielectrics, the difference is even higher, with 0.13% from the total in SiO2 compared
with 0.23% in TiO2.
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Figure 2. EDS spectra and element distribution of the polymer foils and the foils deposited with
TiO2 + Ag films, SiO2 + Ag; all films have a total thickness of ~33 nm.

In Figure 3, the SEM images of the coatings after performing the adhesion assays
by the “tape test” are presented. Similar examinations were also performed by other
researchers [37,38], who investigated the adhesion between hydroxyapatite-based thin
films deposited on titanium substrates used for medical applications. The SEM results
of the adhesion tests revealed that the Ag-doped SiO2 thin films have strong adhesion to
the uncoated substrate classified according to the ASTM D 3359-17 standard at the top
of the category, identified as 4B, indicating only small detachments of film in line with
indentations or at cut intersections. By adding the Ag into TiO2 thin films, we observed a
much more pronounced delamination/detached area, in the range of 5 ÷ 15% according
to the ASTM D 3359-17 standard, and thus the adhesion falls into the 3B category of
the standard.
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3.2. Antibacterial Activity

Partial results of this work were published and described the synthesis of TiO2-Ag
and SiO2-Ag films deposited on polyurethane self-adhesive substrates by a combined
sputtering technique, namely RF sputtering for the oxide and HiPIMS for Ag, and also the



Nanomaterials 2022, 12, 902 6 of 11

complete structural characterization and evaluation of the antimicrobial activity at 24 and
48 h for the films in contact with Escherichia coli suspensions of concentrations 105 CFU/mL
and 104 CFU/mL [39]. In addition, in this paper, the advantages and the novelty of the
study are included, as well as the extension of tests in different conditions, which are
described below.

An experiment for evaluating the antibacterial activity was conducted using unmodi-
fied foil, considered a reference sample. The antibacterial activity was evaluated according
to the incubation period of the Petri dishes-24 h and 48 h, respectively-and according to
the concentration of the Escherichia coli suspension-104 and 105 CFU/mL. The antibacterial
activity is concentration-dependent as well and it is unaffected by the bacteria’s acquisition
of antibiotic resistance. A recent study performed by Ayala-Núñez et al. [40] demonstrated
that Ag particles have dose-dependent antibiotic activity against MRSA and non-MRSA,
and that, at concentrations above 1.35·10−3 µg·mL−1, both MRSA and non-MRSA are
suppressed at inoculum concentration 105 CFU/mL [11].

The cell wall of Escherichia coli bacteria contains a negative charge, which aids the
electrostatic contact between Ag particles and bacteria [40]. The generated Ag+ ions cross
the cell membrane and bind with the thiol groups of proteins, inhibiting DNA replication
and potentially killing the bacteria [17].

Figure 4a reveals that samples coated by SiO2 + Ag at a concentration of 105 CFU/mL
have 11.97% efficiency after 24 h of incubation and 80.66% after 48 h of incubation, hence
indicating poorer bacterial growth than the reference sample. The samples coated by
TiO2 + Ag, under the investigated conditions, showed enhanced bacterial growth as com-
pared to the reference sample (polymer foil sample without thin film).
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Figure 4. Antibacterial efficacy depending on the type of film and on the incubation time-24 h and
48 h-and the applied Escherichia coli inoculum concentration: (a) 105 CFU/mL and (b) 104 CFU/mL.

Figure 4b shows a percentage of 96.43% for the antimicrobial efficiency of the sample
coated by SiO2 + Ag, at the concentration of 105 CFU/mL, after 24 h and 96.55% after
48 h of incubation, so bacterial growth was much poorer at both incubation intervals than
the reference sample. As a result, increased antibacterial potential was obtained at the
concentration of 104 CFU/mL as compared to the tests performed at the concentration
of 105 CFU/mL for the samples coated by SiO2 + Ag. For samples coated by TiO2 + Ag,
the bacterial proliferation may have occurred due to a lack of UV radiation stimuli, given
that ROS species interact with the bacterial cell membrane. The ROS are thought to first
interact with the bacterial membrane, causing oxidative damage and breaking the cell wall,
exposing the bacteria’s internal compartment to the external environment. This action
causes the uncontrolled flow of components into and out of the cell, eventually leading to
cell death [41,42].
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Antibacterial nanomaterials can be activated by various factors and methods, more
often by light or magnetism. Photocatalytic and photothermal nanomaterials are stimulated
by energy from specific wavelengths of light to produce reactive oxygen species (ROS) and
localized temperature rises, which has been shown to be efficient against harmful bacteria
and fungi, respectively [17].

Considering the fact that TiO2 is a very good photocatalyst in UV radiation [43], the
tests were performed to activate the materials at different distances from the UVC lamp in
the micro-biological hood-30 and 60 cm, respectively (Figure 5).
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Figure 5. Antibacterial efficacy of UV-treated coatings (30 and 60 cm) for activation at different
concentrations of Escherichia coli inoculum: 105 CFU/mL (a) and 104 CFU/mL (b).

Experiments for evaluating the antibacterial activity were conducted using an unmod-
ified sample (polymer foil sample without thin film) irradiated with UV at 30 and 60 cm,
considered a reference sample. The Petri dishes were evaluated after 24 h of incubation
in thermostat.

In the case of tests performed at concentrations of 105 CFU/mL at 30 cm distance
of irradiation (Figure 5a), the antibacterial efficiency compared to the reference sample
was reduced for the sample coated by SiO2 + Ag (11.97% antibacterial efficiency), and
for the sample with TiO2 + Ag, a lower degree of bacterial growth was recorded (0.80%
antibacterial efficiency). A lower degree of bacterial growth was observed when activated
at 30 cm, corresponding to the samples with SiO2 + Ag (4.51% antibacterial efficiency). For
tests performed at 60 cm from UV radiation, for the SiO2 + Ag sample, high percentages of
antibacterial efficiency were maintained compared to the TiO2 + Ag sample. A possible
explanation for this result could be due to the fact that silica nanoparticles change their
chemical composition and reorganize their structure following UV irradiation, which
leads to a correlation with the decrease in antibacterial efficiency at a concentration of 105

CFU/mL. Another possible explication would be a photorefractive effect caused by the
production of hydroxyl groups (SiOH), which causes alterations in the SiO2 material’s
optical index of refraction [44].

Figure 5b shows high percentages of antibacterial efficiency for the SiO2 + Ag material
at a concentration of 104 CFU/mL. For the sample coated by TiO2 + Ag, a percentage of
31.03% antibacterial efficiency was determined for UV activation at a distance of 30 cm,
and at a distance of 60 cm, a percentage of −32.14% was registered (higher bacterial growth
compared to the reference sample). In this system, silver might help to build Schottky
barriers at the Ag/TiO2 interfacial contact area, which would reduce the electron–hole
recombination in the photocatalytic process [45,46]. The same trend was registered for
the plates incubated for 24 h; the layer with SiO2 + Ag and irradiated with UV stimuli
at a 60 cm distance had the highest efficiency of the tested materials-96.43% antibacterial
efficiency—while, with the concentration of 104 CFU/mL, the percentages were higher
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than those for the concentration of 105 CFU/mL-11.97% antibacterial efficiency for tests
performed under these conditions. The antibacterial effects of photocatalytic nanomaterials
are based on the generated •O2

−, •OH radicals and H2O2. Additionally, photocatalysis
with metal nanomaterials has been used to demonstrate the formation of singlet oxygen
(1O2), a powerful oxidation reagent [47]. Although the antibacterial action of these ROS
has not been definitively identified, it is hypothesized that a variety of mechanisms are
involved [48].

To demonstrate the efficacy of the deposited thin films, tests were performed that
analyzed the antibacterial efficacy for a single sample compared to the tests in which
two samples were used facing each other, with bacterial inoculum placed between the
two faces deposited with thin films. The purpose of this test was to record the increased
variability in the number of bacterial colonies for experiments performed using a single
deposited layer, which leads to uneven coverage of the surface with the bacterial inoculum.
To avoid this factor, a second foil was used on top of the first one, to increase contact with
the bacterial suspension (Figure 6).
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Figure 6. Antibacterial efficacy of films for concentrations other than Escherichia coli-105 CFU/mL (a)
and 104 CFU/mL (b)-for single-layer experiments and double-layer tests (sandwich).

Notably, Ag particles’ adhesion to cell membranes and consequent lipid bilayer
changes result in enhanced membrane permeability, damage and cell death, a power-
ful antibacterial action that appears to be more pronounced when smaller nanoparticles are
utilized [49].

Tests performed using a single layer of SiO2 + Ag showed a percentage of 11.97% for
antibacterial efficiency, for the concentration of 105 CFU/mL of Escherichia coli suspension,
and for the concentration of 104 CFU/mL, efficiency of 96.43% was observed. Compared to
these results, the double layers registered a percentage of 100% antibacterial efficiency. A
significant difference was also indicated in the case of TiO2 + Ag layers, where, in the case
of the single layer, there was a proliferative effect in contact with the material, while, in the
case of doubling the contact surface, the percentages of antibacterial efficiency were 68.82%
(Escherichia coli 105 CFU/mL) and 65.96% (Escherichia coli 104 CFU/mL). Because both
types of foils dispersed the Ag particles evenly, it was observed for both concentrations
of Escherichia coli that the efficiencies were higher in the case of the bilayers compared
to the tests where a single layer was used. A study performed in 2020 by Pal, Tak and
Song [50] showed that the surface area to volume ratio of silver nanoparticles, as well as
the crystallographic surface structures, are critical determinants in silver nanoparticles’
antibacterial efficacy.

The positive charge induces electrostatic attraction between silver nanoparticles and
the microorganisms’ negatively charged cell membranes, allowing silver nanoparticles
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to adhere to cell membranes more easily. When such interactions occur, morphological
changes such as cytoplasm atrophy and membrane separation occur, eventually leading to
cell wall rupture [51]. The cell membrane of Escherichia coli cells becomes entirely broken
after a few minutes of interaction with silver nanoparticles, according to transmission
electron microscopy [52]. As demonstrated by TEM, the cell wall becomes circumferential,
and many electron-dense pits develop at silver nanoparticle-induced damage areas [11,53].

4. Conclusions

Thin films consisting of an oxide matrix with silver nanoparticles were obtained on
polymer self-adhesive foils, using magnetron sputtering. The antibacterial activity on
Escherichia coli has been shown to be more effective for SiO2 + Ag films. A potential way
to improve the antibacterial effects of the material with TiO2 + Ag is to activate it with
UV radiation. It was shown that, for the foil deposited with TiO2 + Ag under conditions
of UV irradiation at a distance of 30 cm from the films, the antibacterial efficiency was
almost 30 times higher for the concentration of Escherichia coli of 104 CFU/mL compared
to irradiation at 60 cm from samples. As a result, it was observed that the demonstrated
photocatalytic activity of TiO2 may increase the antibacterial efficacy under the described
experimental conditions. Moreover, using a setup that doubles the interaction surface by
placing the inoculum between two facing active surfaces, it was shown that the adhesion
to the bacterial suspension is increased. This is therefore an alternative way to evaluate the
antimicrobial activity. Films can be used as a potential method to limit bacterial growth on
hospital surfaces, such as telephone screens and medical equipment, given their optimized
characteristics and proven antibacterial efficacy [54].
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