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Implementation of leakage 
elimination operators and subspace 
protection
B. G. Markaida1 & L.‑A. Wu1,2*

Decoherence-induced leakage errors can potentially damage physical or logical qubits embedded in 
a subspace of the entire Hilbert space by coupling them to other system levels. Here we report the 
first experimental implementation of Leakage Elimination Operators (LEOs) that aims to reduce this 
undermining. LEOs are a type of dynamical decoupling control that have been previously introduced 
to counteract leakage from a chosen subspace into the rest of a Hilbert space, and have been widely 
explored theoretically. Different from other error correction strategies, LEOs are compatible with 
any gate sequence in a code space, and thus, compatible with universal quantum computation. Using 
IBM’s cloud quantum computer (QC), we design three potentially applicable examples of subspaces in 
two- and three-qubit Hilbert spaces and derive the explicit forms of the corresponding LEOs for these 
subspaces. For the first time, we experimentally demonstrate that these LEOs significantly suppress 
leakage. The results also show that the LEO time-scale condition can be satisfied with noise in the 
IBM’s cloud QC and pave a way for quantum setups to get rid of leakage trouble.

Quantum computation relies on qubits, the fundamental quantum information units. For robustness and error 
correction purposes, it is beneficial to encode the available physical qubits into logical qubits, forming the logical 
qubit subspace. Ideally, no information would be lost from this subspace into the rest of the qubit system or the 
environment; however, whenever we deal with a real quantum system, we will encounter non-unitary system 
dynamical processes arising from system-environment coupling, referred to as decoherence. Such decoherence 
results in a loss of information from the system to the environment, as well as between subspaces of the system. 
This mixing between subspaces is called leakage, and it is a source of severe errors in quantum computing. 
Decoherence contributes to the decay of quantum coherence and entanglement, which are crucial in quantum 
computing and control1, and, particularly, leakage errors destroy the error protection benefit that we would 
expect from an encoding of the qubits2,3. It is, therefore, unsurprising that decoherence is regarded as the biggest 
challenge nowadays in quantum information, technologies and quantum computation in particular.

Numerous efforts have been made to overcome the hardships that decoherence produces, both through a 
quantum circuit model point of view and in the realm of equivalent adiabatic quantum computation4–7. These 
efforts include quantum error correction codes (QECCs)8, error avoiding and noiseless quantum codes or deco-
herence-free subspaces (DFS)1,9–14, dynamical decoupling15,16, getting rid of decoherence in solid-state quantum 
devices by encoding17. Among different types of decoherence, the particularly deleterious leakage errors in 
quantum information processing aroused our special attention2. Over the years, theories based on Leakage 
Elimination Operators have been perfectly developed and applied in various theoretical aspects of quantum 
information processing and quantum control dynamics18, for instance, strategies to improve quantum adiabatic 
processes19,20, control of decoherence through randomized white noise fields21. Therefore the next crucial step 
is to experimentally test the feasibility of these theoretical predictions and proposals.

In this paper, we consider three potentially applicable examples of subspaces in two- and three-qubit Hilbert 
spaces and study the feasibility of leakage suppression via leakage elimination operators (LEOs) on IBM’s cloud 
quantum computer. For the first time, we implement LEOs on the IBM’s QC15 and experimentally confirm that 
the LEOs can significantly suppress leakage, as predicted in the previous theory2,3,22. While other error-correction 
protocols such as QECCs are not necessarily compatible with all encodings, the LEO commutes with all opera-
tions on the code space and is compatible with universal quantum computation2, which allows their application 
alongside any algorithm running in a QC. On the other hand, a universal large-scale fault-tolerant quantum com-
puter (QC) is still far from reach, due to complications in experimental implementations of the aforementioned 
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logical qubit-encoding and stabilizers. Most research is thus focused on the application of quantum theory to 
quantum setups and quantum algorithms, which are of interest for building a future large-scale fault-tolerant 
QC. Therefore, this study also paves a way for generic use in these quantum setups to dispose of leakage troubles.

Universal leakage elimination
Efforts to get rid of decoherence begin with the choice of the logical qubit subspace. If one could, somehow, 
find an available subspace that remains protected against decoherence, a decoherence-free subspace, that would 
constitute the most adequate choice for the logical qubit subspace. However, such a passive idealization is dif-
ficult to find, so typically, one looks for active ways to prevent decoherence. In this work, we aim to make the 
logical qubit subspace leakage-free, that is, we try to suppress leakage from the encoded subspace, or codespace, 
C , to other states of the Hilbert space which reside in the orthogonal complement of the codespace, C⊥3, such as 
in continuous variable systems23. Elimination of the coupling between these subspaces rids the system from the 
most pressing decoherence-induced error. Further protection from decoherence, if necessary, could be achieved 
through, for instance, quantum error-correction codes (QECCs). To obtain these leakage-free subspaces, we will 
apply leakage-elimination operators, and we will do this through dynamical decoupling sequences.

Leakage elimination operators are based on dynamical decoupling controls. These are control pulses used 
to average away noise in quantum systems, and can be understood as a projection onto a subspace of the space 
of operators acting on the system Hilbert space HS

3. More specifically, we will benefit from the application of 
fast, intense bang-bang (BB) pulses. The briefness and strength of these pulses effectively reduce the system-bath 
interaction Hamiltonian. Consider a general Hamiltonian,

with HS ( HB ) acting exclusively on the system (bath) and HSB , the system-bath interaction Hamiltonian coupling 
the system to the bath. If we are to apply the dynamical decoupling method, that means we will be applying 
control pulses periodically to our system, leaving an interval �t of free evolution between them. Denoting these 
control pulses as Ui , and considering free evolution to be negligible while the control pulses are acting on the 
system, we obtain an expression for an effective unitary evolution for the combined system-bath after N control 
pulses3,

The control sequences should be applied as fast as possible, and the propagator (2) will be exact when N → ∞ 
and �t → 0 . The first order Ueff  is described by an effective Hamiltonian,

Ideally, we would be able to completely eliminate the system-bath interaction for N → ∞ . The closer our experi-
mental realization is to an ideal BB pulse scenario, the more efficient our LEO will be. This effectiveness depends 
mainly on three factors: pulse strength, pulse duration, and the time interval between pulses. The higher the 
pulse strength and the shorter the time scales, the closer the pulse will be to an ideal BB pulse. More precisely, the 
effectiveness of an LEO depends on the integral of these pulse sequences24, which can be of great interest when 
considering non-ideal LEOs. However, in this work, we will consider our BB sequences to be ideal.

To construct an LEO, we arrange the basis vectors of a N-level Hilbert space HN and assume the first two 
levels, |0� and |1� , correspond to our logical qubits. Then, as is stated in2, we can easily classify all system operators 
into (a) logical operators E acting on the qubit subspace C , (b) operators acting on the orthogonal complement 
of this subspace, that is, acting on C⊥ , that thus act entirely outside of the logical qubit subspace, and (c) leakage 
operators L, that connect these two orthogonal subspaces, and that take the following forms:

Here B, C, D and F are blocks of dimensions 2× 2 , (N − 2)× (N − 2) , 2× (N − 2) and (N − 2)× 2 , respectively. 
This decomposition is valid both for physical and logical qubits. The general form of an LEO is2,

where the identity blocks I have the dimension of the subspace of the encoded qubits and its orthogonal subspace. 
That is, the dimension of these blocks matches the ones of the blocks in (4). ϕ is a global phase. This operator 
satisfies the following commutation and anti-commutation relations:

Since the LEO RL commutes with all operators that act on the encoded qubit subspace, we conclude that LEOs 
can be applied alongside any logical operation and are, thus, compatible with universal quantum computing. 
After applying a BB parity-kick sequence, we have

(1)H = HS +HB +HSB,

(2)Ueff ≈
N−1
∏

i=0

Ui exp [−iH�t]U†
i .

(3)Heff ≈ 1

N

N−1
∑

i=0

UiHU
†
i .

(4)E =
(

B 0
0 0

)

, E⊥ =
(

0 0
0 C

)

, L =
(

0 D
F 0

)

.

(5)RL = eiϕ
(

−I 0
0 I

)

,

(6)[RL,E] = [RL,E⊥] = 0, {RL, L} = 0
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where HSB = HE +HE⊥ +HL is the system-bath interaction. Here HE and HE⊥ correspond to the Hamiltonians 
acting on the qubit subspace and its orthogonal subspace, respectively, and HL is the Hamiltonian of leakage oper-
ators. Note that, taking into account the relations in (6), and knowing that each of the terms of the Hamiltonian 
will be composed of operators as the ones described in (4) the term e−iR†LHSBRLt/m becomes e−i(HE+H

E⊥−HL)t/m . 
The term e−iH

E⊥ t in (7) acts outside the logical qubit subspace and will thus have no effect on the code of inter-
est. The term e−iHEt does act on the logical qubit subspace and can therefore be the source of logical errors. If 
necessary, these errors may need further treatment, either by QECCs or additional BB pulses3. We see, however, 
that the leakage HL has been eliminated. For practical purposes, we need only consider m = 1 , and Eq. (7) will 
hold up to order t2 . The condition t ≪ 1/ωc must also be fulfilled, where ωc is the bath high-frequency cutoff2.

A general choice for LEOs is

where �σ is a vector containing all three Pauli matrices (or X, Y and Z logical operations), n̂ is a real unit vector, 
and P is a projector operator onto the qubit subspace. When a canonical logical operation is available, however, 
this projector becomes redundant and we may write an LEO as in3:

where σL is any operation fulfilling σ †
L = σL , σ 2

L = I , and σL|ψ� = 0 for any |ψ� ∈ C⊥.

Methodology
We have experimentally tested three LEOs using IBM’s cloud quantum computer. The IBM Q project offers 
access to several quantum devices; in particular, we have worked with the five-qubit IBMX2 server in Yorktown 
(see25 for technical specifications)—as well as the QASM simulator in the same platform, for testing the code 
before sending it to the server. The native gates in IBMQ are single qubit rotation Rα(φ) = exp (iφ/2σα) , with 
α = {x, y, z} and σα being the Pauli matrices. In practice, we have used X ( σx ), Z ( σz ) and H (Hadamard gate) as 
single-qubit gates and the two-qubit CNOT (controlled-X) gate. For each program, the computer makes 1024 
shots. The programs have been written in qiskit26, using the notebooks provided by IBM’s platform. See27,28 for 
a introductory tutorials on qiskit.

For testing the effectiveness of each LEO, we have proceeded as follows: We first initialize the system to be 
in a quantum state corresponding to the leakage-free subspace of interest. Then we study the effect of the LEO 
in the system. For that purpose, we apply the corresponding LEO N times, and measure. Similarly, to study the 
free evolution of the same state, we apply N identity gates to a system initialized in the same way. We repeat this 
process for N ∈ [1, 600] . Each experiment was then repeated inserting an identity gate between LEO pulses, to 
study the effect of increased free-evolution intervals in the effectiveness of leakage elimination. In summary, we 
took the following steps: 

1.	 Initialization of the system.
2.	 Evolution of the system for N ∈ [1, 600] pulses: 

(a)	 Under application of LEO 

	 i.	 With the smallest possible time interval between pulses.
	 ii.	 With an extra identity gate between pulses.

(b)	 Under free evolution 

	 i.	 With the smallest possible time interval between pulses.
	 ii.	 With an extra identity gate between pulses.

3.	 Measurement.

We have tested whether the subspaces S1 = �01�, |10�} , S2 = {|001�, |010�, |100�, |111�} and S3 = {|10� − |11�} 
are decoherence-free against collective dephasing, for three-site quantum state transfer29 and eigenvectors of the 
CNOT gate. For each of these subspaces we have used the appropiate LEO por protection from leakage.

The first two LEOs we tested consist of a sequence of Z gates applied to all qubits in the system, which 
is the first example presented in2. The protected subspace for the two-qubit (d = 2) case is {|01�, |10�} with 
Rd
L = Z1Z2 ; in the three-qubit (d = 3) case, the protected subspace is {|001�, |010�, |100�, |111�} and Rd

L = Z1Z2Z3 . 
In these subspaces, the application of a Z operator for each qubit follows the form given in (8) with n̂ = ûz ; 
acting as I in the protected subspace S1 or S2 and as −I in its orthogonal subspace. For our tests, we have cho-
sen initial states with equal populations in every state of the protected subspace: |�2� = (|01� + |10�)/

√
2 and 

|�3� = (|001� + |010� + |100� + |111�)/2 , respectively. The gates applied for initialization and LEO application 
can be seen in the circuits in Fig. 1a,b.

(7)

lim
m→∞

(

e−iHSBt/mR†
Le

−iHSBt/mRL

)m

= lim
m→∞

(

e−iHSBt/me−iR†LHSBRLt/m
)m

= e−iHEte−iH
E⊥ t ,

(8)RL = exp (±iπ n̂ · �σP),

(9)RL = exp(−iπσL),
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The third example considers how a CNOT gate behaves as an LEO. In this case, the subspace spanned by 
|10� − |11� , S3 , is protected from leaking into {|00�, |01�, |10� + |11�} . The effectiveness of CNOT as an LEO in 
this system is easy to see if we write its explicit matrix form in the basis of {|00�, |01�, |10� + |11�, |10� − |11�}:

This is in accordance with the form of a universal LEO given in (5), meaning that CNOT is an LEO in the cho-
sen basis. We prepare the initial state |�� = (|10� − |11�)/

√
2 when studying this LEO. Since the measurement 

options in IBM’s cloud computer are limited to measuring the z component of the spin of the qubits, further 
manipulation of the system has been needed for measurement purposes − that is, to be able to discern what part 
of the populations of |10� and |11� correspond to the protected subspace {|10� − |11�} . After the LEO has been 
applied N times, we have applied a Hadamard gate to the second qubit, and then an X gate to both qubits, so that 
|�� turns into |00� before the measurement. The circuit describing this can be seen in Fig. 2.

Once we have completed all runs, we compare the fidelity of the run where an LEO was applied with the one 
achieved through free evolution. This quantity is obtained for each N, by computing the ratio of the populations 
of the desired states by the number of total pulses in each run. For example, in the case of the two-qubit system 
where we used Z as an LEO, this fidelity would be f1 = (number of |01� states+ number of |10� states)/1024.

(10)CNOT =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1







Figure 1.   Circuits for the initialization and application of a two-qubit (a) and three-quibit (b) LEO, through Z 
gates. At step 1, we have successfully initialized the system in the desired state, and step 2 means the application 
of the LEO has finished.

Figure 2.   Circuit for the initialization and application of a two-quibit LEO, through CNOT gates. At step 1, 
we have successfully initialized the system in the desired state, and step 2 means the application of the LEO has 
finished. Note that after the application of the LEO, we must further manipulate our system for measurement 
purposes.
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Results and discussion
Figure 3 shows the population of each state in the cases where Z was used as an LEO. We can clearly see that, 
when an LEO is used (see Fig. 3a,c), initial populations remain roughly constant over time, with some expected 
fluctuations due to the probabilistic nature of quantum mechanics. While one would expect populations of the 
components of the initial state to be evenly distributed [for example, having equal populations of |01� and |10� in 
Fig. 3a, differences in the physical qubits prevent this from happening25. When the LEO is not applied (Fig. 3b,d), 
the population of the ground state increases, as the population of the states of interest decreases. This is due 
to the decay of qubits in state |1� into the lower energy state |0� . This is precisely the leakage we seek to prevent 
through the use of LEOs.

We have found that the performance of the LEOs varies between operators. It also depends on the dimension 
of the studied system. All experiments, however, share one trait: application of an LEO maintains the fidelity 
of the final state constant in time, as we can see in Fig. 4. This, in accordance to Fig. 3a,c, means the population 

Table 1.   Parameters obtained after fitting the measured fidelities of systems prepared 
in states |�1� = (|01� + |10�)/

√
2 , |�2� = (|001� + |010� + |100� + |111�)/2 and 

|�3� = (|001� + |010� + |100� + |111�)/2 after application of N ∈ [1, 600] LEOs to the linear function in Eq. 
(11). The specific LEOs we used are Z for |�1� and |��2 and CNOT for |�3�.

ai bi

f lin1 (8.75± 0.01)× 10−1 (1.4± 0.4)× 10−5

f lin2 (6.60± 0.01)× 10−1 (1.0± 0.4)× 10−5

f lin3 (9.81± 0.01)× 10−1 (−3± 3)× 10−6

Table 2.   Parameters obtained after fitting the measured fidelities of systems prepared 
in states |�1� = (|01� + |10�)/

√
2 , |�2� = (|001� + |010� + |100� + |111�)/2 and 

|�3� = (|001� + |010� + |100� + |111�)/2 after application of N ∈ [1, 600] identity gates (free evolution) to the 
exponential function in Eq. (12).

αi βi γi

f
exp
1

0.546875 0.345703 (2.91± 0.03)× 10−3

f
exp
2

0.515625 0.15332 (3.61± 0.06)× 10−3

f
exp
3

0.43457 0.53125 (1.20± 0.08)× 10−2

Table 3.   Parameters obtained after fitting the measured fidelities of systems prepared 
in states |�1� = (|01� + |10�)/

√
2 , |�2� = (|001� + |010� + |100� + |111�)/2 and 

|�3� = (|001� + |010� + |100� + |111�)/2 after application of N ∈ [1, 600] LEOs to the exponential function in 
Eq. (12), with extra identity gates between LEO applications. The specific LEOs we used are Z for |�1� and |��2 
and CNOT for |�3�.

αi βi γi

f
exp
1

0.557617 0.166992 (2.35± 0.07)× 10−3

f
exp
2

0.619141 0.233398 (4.16± 0.09)× 10−3

f
exp
3

0.255859 0.738281 (3.00± 0.04)× 10−2

Table 4.   Parameters obtained after fitting the measured fidelities of systems prepared 
in states |�1� = (|01� + |10�)/

√
2 , |�2� = (|001� + |010� + |100� + |111�)/2 and 

|�3� = (|001� + |010� + |100� + |111�)/2 after application of N ∈ [1, 600] pairs of identity gates (extended 
free evolution) to the exponential function in Eq. (12).

αi βi γi

f
exp
1

0.369141 0.280273 (3.01± 0.05)× 10−3

f
exp
2

0.452148 0.404297 (3.82± 0.04)× 10−3

f
exp
3

0.202148 0.790039 (1.01± 0.01)× 10−2
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of states in the protected subspace remains constant—that is, protected. To quantify this, we have fitted several 
curves to the gathered data through Mathematica, obtaining what can be seen in Fig. 5. Since we expect LEOs to 
fully protect the system from leakage and we thus anticipate that the initial fidelity will remain constant in time, 
we have chosen a linear fit for the cases in which the LEO was applied optimally, that is, Fig. 5a,c,e:

The obtained parameters and their standard deviations can be seen in Table 1. The rest of the curves have been 
fitted to an exponential function of the form

where we choose βi the fidelity at N = 1 and αi to be the fidelity at N → ∞ . In practice, we have imposed 
αi = f

exp
i (N = 600) , since it is the last piece of information we have. In any case, this is an optimistic choice, 

since we expect exponential decay to continue after our last measurement. The values we obtained for these 
parameters are collected in Tables 2, 3 and 4.

Taking a look at Table 1, we are able to quantify the efficiency of LEOs. The linear fitting of the data confirms 
what we already suspected from Fig. 4a–c: the fidelity of the protected states remains nearly constant, the bi being 
at least four orders of magnitude smaller than all ai . In fact, we would expect bi < 0 for all cases, however, we 
only get this for b3 , which has an standard error of the same magnitude and even value as the parameter itself. 
The standard errors of the ai , however, allow for three significant figures in the parameters. This difference in 
precision, together with our knowledge that the fidelity of this states should decrease in time, makes the accu-
racy of the bi dubious, and we will thus consider the fidelity constant from now on, taking the values given by ai.

To compare these results to the freely evolving case, we will compare the expected fidelities at N → ∞ . For 
the system protected by a LEO, this will be ai , as we have previously justified. For the freely evolving systems, we 
have chosen αi to be the fidelity at N → ∞ , even if, as has already been stated, this actually corresponds to the 
fidelity at N = 600 . We must thus keep in mind that we weill be dealing with an optimistic prediction for the 
expected fidelity at N → ∞ for the freely evolving case.

When Z gates were used as an LEO, we have achieved f LEO1 (N → ∞) ≈ a1 = (8.75± 0.01)× 10−1 for the 
two-qubit case, and f LEO2 (N → ∞) ≈ a2 = (6.60± 0.01)× 10−1 for the three qubit case. Compared to their 
freely evolving counterparts of f Free1 (N → ∞) ≈ α1 = 5.47× 10−1 and f Free2 (N → ∞) ≈ α2 = 5.16× 10−1 , 
this poses a clear improvement, specially if we remember that we should expect an even lower fidelity at N → ∞ 
for the freely evolving case. The improvement is even more so notorious for the system where we applied CNOT 
gates as an LEO, with f LEO3 (N → ∞) ≈ a3 = (9.81± 0.01)× 10−1 and f Free3 (N → ∞) ≈ α1 = 4.35× 10−1 . 
This greater efficiency may be a consequence of the presence of |00� states prior to the manipulation of the final 
state for measurement purposes. The improvement in fidelity is, nonetheless, the most significant among our 
three cases of study.

(11)f lini (ai , bi;N) = ai + bi(N − 1), i = 1, 2, 3

(12)f
exp
i (αi ,βi , γi;N) = αi + βie

−γi(N−1), i = 1, 2, 3 ,
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Figure 3.   Populations of individual states measured at different times, corresponding to up to 600 pulses, 
with he application of Z as an LEO in (a,c), and with free evolution in (b,d). (a,b) Show the populations of 
|00�, |01�, |10� and |11� , while (c,d) show the populations of |000� , |001� , |010� , |111� and |100� (that is, the 
populations of the protected subspace states). At each time, 1024 shots where fired.
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On another note, looking at Fig. 4d–f, we can see that an increase in free evolution time between LEO 
pulses decreases the effectiveness of leakage elimination. This is to be expected, since, as explained in “Universal 
leakage elimination”, the ideal LEO relies on BB pulses for effectiveness. That is, elongating the time between 
pulses strays us further away from the ideal LEO. This effect is the most prominent for the case of CNOT gates 
(see Fig. 4f), which makes the application of an LEO counterproductive. These data have been fitted to expo-
nential curves of the form (12), and the obtained parameters can be seen in Table 3, for the case where LEOs 
were applied, and (4), for the freely evolving cases. We see that the fidelity achieved at N → ∞ is lower than 
when LEOs were applied with no identity gates between pulses, with f LEO+ID1 (N → ∞) ≈ α1 = 5.58× 10−1 , 
f LEO+ID2 (N → ∞) ≈ α2 = 6.19× 10−1 and f LEO+ID3 (N → ∞) ≈ α3 = 2.56× 10−1.
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Figure 4.   Fidelity of quantum states measured at different times, corresponding to up to 600 pulses, 
with 1024 shots at each time. The blue dots correspond to the run where LEO pulses where applied; the 
red dots correspond to the freely evolving system. (a,b) Show the evolution of a two-qubit system, with 
inital state |�2� = (|01� + |10�)/

√
2 and Z pulses used as an LEO, with (b) having identity pulses applied 

between LEO applications; (c,d) depict the three-qubit case that also uses Z as an LEO, with initial state 
|�3� = (|001� + |010� + |100� + |111�)/2 , again, (d) has had identity pulses applied between LEO applications. 
In (e,f) we used |�� = (|10� − |11�)/

√
2 as our initial state and the role of LEO was carried out by CNOT gates, 

having identity pulses applied between LEO applications for (f).
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Conclusion
The present experiments confirm that LEOs are able to help stabilize fidelity for two- and three-qubit leakage-free 
subspaces on IBMQ’s 5-qubit QC, as predicted in our theories. The three subspaces are decoherence-free against 
collective dephasing, for three-site quantum state transfer and eigenvectors of the CNOT gate. Although IBMQ’s 
5-qubit QC limits the application of ideal dynamic decoupling control sequences, further decay in fidelity has 
been successfully suppressed, confirming that the LEO time-scale condition can be satisfied with noise in the 
device. Figure 4f shows a counterexample, where the LEO time-scale condition is not satisfied with noise in the 
device. Therefore, as long as the time interval between pulse applications is short enough (within the capability 
of IBMQ’s 5-qubit QC), the use of an LEO is surely advantageous with respect to a free evolution of the system. 
Keeping in mind that LEOs are universal and can be applied alongside other qubit operations in the correspond-
ing code space, we have experimentally provided a powerful tool for higher accuracy of quantum algorithms.
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Figure 5.   Curves fitted to the fidelity of quantum states measured at different times, corresponding to up 
to 600 pulses, with 1024 shots at each time. The blue curves correspond to the run where LEO pulses where 
applied, and have been fitted with Eq. (11) for (a,c,e) and Eq. (12) for (b,d,f). The red curves correspond to the 
freely evolving systems and have all been fitted with the exponential function in (12). (a,b) Show the evolution 
of a two-qubit system, with inital state |�2� = (|01� + |10�)/

√
2 and Z pulses used as an LEO, with (b) having 

identity pulses applied between LEO applications; (c,d) depict the three-qubit case that also uses Z as an LEO, 
with initial state |�3� = (|001� + |010� + |100� + |111�)/2 , again, (d) has had identity pulses applied between 
LEO applications. In (e,f) we used |�� = (|10� − |11�)/

√
2 as our initial state and the role of LEO was carried 

out by CNOT gates, having identity pulses applied between LEO applications for (f).
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