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Abstract: In recent years, machine vision algorithms have played an influential role as core
technologies in several practical applications, such as surveillance, autonomous driving, and object
recognition/localization. However, as almost all such algorithms are applicable to clear weather
conditions, their performance is severely affected by any atmospheric turbidity. Several image
visibility restoration algorithms have been proposed to address this issue, and they have proven
to be a highly efficient solution. This paper proposes a novel method to recover clear images from
degraded ones. To this end, the proposed algorithm uses a supervised machine learning-based
technique to estimate the pixel-wise extinction coefficients of the transmission medium and a
novel compensation scheme to rectify the post-dehazing false enlargement of white objects. Also,
a corresponding hardware accelerator implemented on a Field Programmable Gate Array chip
is in order for facilitating real-time processing, a critical requirement of practical camera-based
systems. Experimental results on both synthetic and real image datasets verified the proposed
method’s superiority over existing benchmark approaches. Furthermore, the hardware synthesis
results revealed that the accelerator exhibits a processing rate of nearly 271.67 Mpixel/s, enabling it
to process 4K videos at 30.7 frames per second in real time.

Keywords: haze removal; machine learning; supervised learning; hardware accelerator; field
programmable gate array

1. Introduction

The world is currently going through the fourth industrial revolution (also known as 4IR or
Industry 4.0) and is ’on the cusp’ of the fifth one (5IR or Industry 5.0). In particular, machine vision
algorithms play an influential role in 4IR and 5IR technologies due to their rapid development
over the last few decades. They have appeared in various systems, including autonomous driving
vehicles, driver-assistance systems, and smart surveillance cameras. However, weather conditions
and atmospheric turbidities such as haze, snow, and yellow dust have affected such systems’ accuracy
adversely, threatening operational failures that could lead to unfortunate consequences. For example,
adverse weather conditions severely affect the maritime surveillance systems (e.g., ship tracking [1]),
whose accuracy and performance consistency are of great importance. Thus, various algorithms have
come into use to address scene visibility degradation, and they primarily fall into two categories:
multi- and single-image techniques. While those belonging to the former category usually outperform
those belonging to the latter in terms of the quality of image enhancement, their requirement of
extensive external knowledge engenders multiple practical difficulties. Therefore, the latter type
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algorithms garnered increasing interest among researchers over the past decade, and researchers have
approached them from two perspectives—image enhancement and image restoration.

Histogram equalization [2,3], low-light stretching [4], unsharp masking [5,6], and homomorphic
filtering [7,8] are fast-and-straightforward image enhancement techniques. They are highly efficient
when the captured scene is slightly hazy because they primarily enhance low-level features such as
edges, brightness, and contrast, which significantly influence human perception of image quality.
Nevertheless, as these methods do not take the cause of distortion into account, the effects of
atmospheric turbidity persist, inducing unsatisfactory visual perception. An example of such a method
is the nonlinear unsharp masking algorithm presented in [5]. This method begins by decomposing
each input image into constituent background and detail signals, followed by enhancement of the
detail signal via an adaptive gain and optional contrast enhancement of the background signal.
Finally, the sum of two signals takes place to obtain the output image with enhanced contrast and
sharpness. It is worth noticing that all these operations are executed by generalized operators to
avoid the out-of-range problem. A qualitative evaluation of the aforementioned algorithm reveals
that, while faded details of hazy images were of significant enhancement, the haze persisted in the
enhanced images.

On the other hand, image restoration techniques for single-image visibility enhancement have
improved upon the aforementioned methods by taking the cause of image distortion into account.
In this context, Koschmieder’s law [9], which describes the multiplicative attenuation of scene radiance
and additive light scattering, has been used to model image distortion. While Section 2.1 will explain
Koschmieder’s law in greater detail, its ill-posed nature merits attention. The impossibility of direct
recovery of clear visibility from a sole input image gives rise to this ill-posed problem. Accordingly,
strong priors or assumptions are essential to facilitate the restoration process. A series of studies in
this direction [10–14] are prime examples. In these studies, prior knowledge about the image to be
recovered—such as partial uncorrelatedness between the propagation of projected light and surface
shading [10], attenuated saturation [13], and the distribution of color pixels in Red-Green-Blue (RGB)
space [14]—was assumed to estimate the optimal values of the parameters appearing in Koschmieder’s
law. Due to their dependence on such imposed priors, the aforementioned methods run the risk of
failure under particular circumstances. It is worth noticing that visibility restoration algorithms from
the image enhancement perspective recently exploited haze-relevant image priors [15] and multi-scale
processing [16] to improve the restoration performance.

This paper proposes a single-image method to restore scene visibility based on Koschmieder’s law.
As atmospheric scattering usually increases brightness and decreases saturation, it is efficient to use a
prior proposed in [13] to estimate the atmosphere’s extinction coefficients via a machine learning-based
method. Additionally, a parallel computing scheme inspired by the quad-decomposition algorithm
proposed in [17] establishes a hardware-friendly means to estimate the atmospheric light. Furthermore,
to overcome the drawbacks of current state-of-the-art methods, several ideas are discussed to remove
background noise, color distortion, and the side-effect of false enlargement of white objects. Finally,
to facilitate real-time processing, a hardware accelerator is designed with noticeable novelties to
maximize the processing speed. The main contributions of this paper may be summarized as follows.

• This study is the first attempt to address the problem of the false enlargement of white objects.
Based on the observation of failure of current methods in estimating atmospheric light in scenes
containing white objects, an adaptive compensation scheme is proposed to offset the light in
such cases.

• Prior to the aforementioned compensation step, a parallel algorithm is developed based on
quad-decomposition to estimate the atmospheric light coarsely. This newly proposed method is
beneficial to the hardware implementation phase due to eliminating burdensome image buffers
and is a substantial contributor to the hardware architecture’s 4K capability.

• Furthermore, a novel hardware architecture was developed to realize the modified hybrid median
filter. Although the previously developed architecture based on Batcher’s sorting network [18] is
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considerably compact and fast, the proposed design, which exploits both sorting and merging
networks, is established to be even more efficient. This newly proposed architecture significantly
contributes to the 4K capability of the proposed hardware accelerator.

The rest of this paper is organized as follows. The preliminary knowledge is introduced in
Section 2, including Koschmieder’s law and typical visibility restoration algorithms. The proposed
method is discussed in detail in Section 3 and the experimental validations are provided. The hardware
accelerator is presented in Section 4 alongside the hardware synthesis results. Finally, the paper is
concluded in Section 5.

2. Preliminaries

2.1. Koschmieder’s Law

Koschmieder’s law [9] describes the formation of images in turbid atmosphere conditions, and is
as follows.

E(x, λ) = e−β(λ)d(x)E0(x, λ) +
[
1− e−β(λ)d(x)

]
E∞(λ), (1)

where E and E0 denote the scene radiance of the observed image and the clear image, respectively.
E∞ denotes the observed scene’s lightness, x denotes the horizontal and vertical coordinates of pixels,
λ denotes the wavelength of visible light, β denotes the extinction coefficient of the atmosphere,
and d denotes the scene depth. The first term on the right-hand side denotes the direct attenuation,
representing the multiplicative attenuation of the scene radiance in the transmission medium.
The second term denotes the airlight, representing the additive scattering of the lightness. It is
convenient to define I(x) = E(x, λ), J(x) = E0(x, λ), t(x) = e−β(λ)d(x), and A = E∞(λ) for ease of
expression, subsequently reducing Equation (1) to the following.

I(x) = t(x)J(x) + [1− t(x)]A, (2)

where t and A are now referred to as the transmission map and the atmospheric light, respectively.
The symbols I, J, and A are written in bold as they possess three color components. According to the
Rayleigh scattering phenomenon, the wavelength-dependent β(λ) induces t(x) to vary with respect to
the color channels. However, this dependency is assumed to have a negligible impact on the accuracy
of Equation (2) in almost all visibility restoration algorithms. As I(x) is the sole input captured by
sensors, recovery of the clear scene radiance J(x) is an ill-posed problem due to the unknown variables
t(x) and A. Therefore, the goal of visibility restoration is to estimate t(x) and A by imposing some
priors on J(x) and subsequently obtain the clear scene radiance via the following equation.

J(x) =
I(x)−A

t(x)
+ A. (3)

2.2. Related Work

In the literature, visibility restoration is also known as haze removal, dehazing, or defogging
because atmospheric turbidity is universally referred to as haze or fog. Accordingly, in this paper,
we have used these terms interchangeably. Recent studies on single-image visibility restoration
generally fall into three main categories: simple image processing, machine learning, and deep
learning-based techniques.

The dark channel prior (DCP) proposed by He et al. [11] is a prime example of a restoration
technique belonging to the first category. Based on extensive observation of clear outdoor
images, the authors discovered that most local non-sky patches contain some pixels that possess
very low intensities in at least one color channel. Assuming this prior, they estimated the
transmission map by using a channel-wise minimum operator followed by a local minimum filter.
Additionally, soft matting [19] was adopted to refine the transmission map to suppress halo artifacts.
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Although DCP demonstrated good dehazing performance and broad applicability (e.g., underwater
image restoration [20]), it is computationally expensive due to soft matting use. This drawback left
room for improvement and thereafter inspired researchers to several approaches [21–24]. He et al. [25]
also proposed a multi-function guided filter, which could replace soft matting to ease the burden of
expensive computations at the cost of a certain degree of degradation in image quality. Gibson et al. [26]
improved upon DCP and proposed the median dark channel prior, eliminating the step of transmission
map refinement, thereby significantly accelerating the dehazing process. However, this elimination
induced unsatisfactory enhancement quality. Kim et al. [27] presented a fast approach that employed a
modified hybrid median filter to estimate the airlight. This filter, equipped with good edge-preserving
characteristics, was used to exclude the refinement step, thereby accelerating the processing rate.
However, post-dehazing background noise is the main drawback of this method [27].

Machine learning-based techniques such as maximum likelihood estimates (MLE), random forest
regression, and support vector machine belong to the second category. They have been used by various
researchers to restore clear visibility to images. Zhu et al. [13] identified a correlation between scene
depth and the difference between an image’s saturation and brightness. Based on this observation,
they proposed a linear model called color attenuation prior (CAP) to estimate the scene depth, which
is exponentially proportional to the transmission map. CAP’s parameters were estimated using
MLE under supervised learning, and a guided filter was used to refine the depth map. This method
functions well in most circumstances except dark scenes, in which post-haze-removal background
noise and color distortion are possible. Another machine learning-based algorithm proposed by
Tang et al. [28] extracts haze-relevant features from an input image. It then transmits them to a random
forest regressor to calculate the transmission map. Ngo et al. [29] proposed a similar method, exploiting
the Nelder-Mead direct search algorithm to calculate the optimal transmission map. They also devised
an adaptive atmospheric light to prevent the loss of dark details. Although the methods proposed
by Tang et al. [28] and Ngo et al. [29] exhibit good dehazing performance, they are inappropriate for
practical applications owing to their high time consumption. Choi et al. [30] proposed two approaches
named fog aware density evaluator (FADE) and density of fog assessment-based defogger (DEFADE)
for haze density assessment and haze removal, respectively. FADE computes the haze-relevant features
from a collection of 500 hazy images and fits the features to a multivariate Gaussian model. It performs
the same procedure on a collection of 500 haze-free images. The calculated mean vectors and covariance
matrices establish the ground truth for haze density evaluation. DEFADE executes dehazing by using
image fusion following the Laplacian pyramid scheme with corresponding weights calculated from
haze-relevant features. However, DEFADE is also a computationally expensive method.

Finally, a recent research trend of applying deep learning-based methods to haze removal has also
been observed. Cai et al. [31] proposed an end-to-end convolutional neural network (CNN), which
accepts an input image and produces a corresponding transmission map. However, this method’s
performance is limited, owing to the lack of real training datasets comprising pairs of hazy and
haze-free images of the same scenes. Other studies presented in [32–34] have attempted to improve
dehazing performance by increasing the receptive field via deeper CNNs or developing a sophisticated
loss function instead of the widely employed mean squared error. However, the aforementioned lack
of real training datasets continues to affect their results partially. Another shortcoming that might limit
the broad deployment of deep learning-based approaches is their high computational cost. Currently,
the graphics processing unit is the primary means for realizing such approaches, which has made
the implementation of deep neural networks at end devices an active research area in recent years.
Interested readers are referred to a comprehensive work conducted by Li et al. [35], which provides a
thorough evaluation of traditional and deep learning-based haze removal methods.

Figure 1 summarizes this section by providing visual illustrations of Koschmieder’s law and the
three main categories of haze removal techniques. The sun represents the light source whose emitting
light waves traverse the turbid transmission medium represented by dust and water droplet icons.
Accordingly, the captured image exhibits a faint color induced by direct attenuation and atmospheric
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scattering. Researchers developed various algorithms for restoring the image visibility in such a
case, and the developed algorithms generally fall into three main categories. This paper named the
categories according to their underlying technique, including image processing, machine learning,
and deep learning.

Figure 1. Visual illustrations of Koschmieder’s law and the three main categories of haze
removal techniques.

3. Proposed Algorithm

This study is an extension of our previous work (i.e., Ngo et al. [36]) and can be characterized by
three new improvements:

• a solution to the issue of false enlargement of white objects,
• an image buffer-free parallel computing scheme for atmospheric light estimation,
• and an optimized merging sorting network to implement the modified hybrid median filter.

Of the three points mentioned above, the first one is for the base algorithm, and it is seemingly
a first attempt to deal with the false enlargement problem. The last two points are for the hardware
counterpart, and they play an essential role in facilitating the real-time processing of 4K images/videos.
Figure 2 depicts an overview of the proposed algorithm regarding its main contributions to the
previous work. Our improved color attenuation prior (ICAP) [36] was developed based on the method
of Zhu et al. [13] by adding several features such as enhanced equidistribution, adaptive constraints
for the transmission map, background noise removal, color distortion correction, and adaptive tone
remapping. The proposed algorithm completes the ICAP by integrating the three aforementioned
characteristics. In the following subsections, the previous novelties of ICAP are first briefly presented
to provide an adequate context for the subsequent discussion of the newly proposed ones.

Figure 2. The proposed algorithm with its main contributions to the previous work.
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3.1. Improved Color Attenuation Prior

3.1.1. Enhanced Equidistribution for a More Reliable Training Dataset

The linear model proposed by Zhu et al. [13] for estimating the scene depth, d(x), based on the
difference between an image’s saturation, s(x), and brightness, v(x), is as follows.

d(x) = a0 + a1s(x) + a2v(x) + ε(x), (4)

where a0, a1, and a2 denote the model’s parameters, and ε(x) denotes the model’s error. For parameter
estimation, collecting a training dataset consisting of hazy images and their corresponding scene
depths is essential. However, this task appears to be infeasible due to the complete lack of reliable
means to capture scene depth. Hence, Zhu et al. [13] proposed the three-step procedure illustrated
in Figure 3 to prepare the training dataset. They first collected 500 clear images from image-sharing
services such as Google Image, Flickr, and Pinterest. Then, corresponding to each image, random
numbers drawn from the uniform distribution were used as the corresponding measurements of scene
depth and atmospheric light. Finally, Koschmieder’s law was employed to synthesize the hazy images,
whose saturation and brightness were included in the training dataset for parameter estimation in
addition to the random depth maps.

Figure 3. The procedure of preparing the synthetic training dataset for supervised learning-based
parameter estimation.

Since current pseudo-random number generators do not guarantee the uniform distribution,
the enhanced equidistribution developed in our previous work [37,38] is used as a surrogate for
the standard uniform distribution to prepare the training dataset in this study. Figure 4 depicts
three histograms of 262,144 random numbers drawn from the standard uniform distribution,
the equidistribution [37], and the enhanced equidistribution [38], respectively. Although the leftmost
set of values follows the uniform distribution, its standard deviation is relatively high. In contrast,
the two right ones resemble the theoretical uniform distribution significantly, inducing better
quantitative evaluation, as presented in [37,38]. The cropped regions highlighted in red further
demonstrate the superiority of the enhanced equidistribution over the equidistribution as it resembles
the theoretical uniform distribution more closely.
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Figure 4. Histograms of data drawn from standard uniform distribution, equidistribution,
and enhanced equidistribution.

3.1.2. Adaptive Constraints for The Transmission Map

The value of the transmission map presented in Equation (2) lies within the range (0, 1] and
is inversely proportional to the image’s haze density. Due to the existence of clear regions in most
images, it is reasonable to retain the transmission map’s upper bound to be 1. Conversely, because
image regions rarely become obscured by atmospheric turbidity entirely, Zhu et al. [13] limited the
transmission map by instituting a fixed lower bound. In ICAP [36], by exploiting the linearity of
Koschmieder’s law, two adaptive constraints for preventing the over-removal of haze were devised
and then combined with the upper bound, as follows.

max

{
1−minc∈{R,G,B}

[
Ic(x)

Ac

]
, 1−

meany∈Ω(x) [Igray(y)]− f · stdy∈Ω(x) [Igray(y)]

A

}
≤ t(x) ≤ 1, (5)

where y denotes the pixel location inside the square window Ω(x) centered at x, A denotes the
channel-wise average of A, f denotes the user-defined parameter to control the tightness of the
imposed constraint proportionally, mean(·) denotes the mean filter, and std(·) denotes the standard
deviation filter.

3.1.3. Solutions for Background Noises and Color Distortion

The algorithm proposed by Zhu et al. [13] suffers from background noise and color distortion,
according to our previous investigation [36]. The cause of background noise was successfully traced
back to spike-like noise in the saturation channel, and the linearity of Equations (3) and (4), which
propagate the noise to the restored image. Hence, a simple low-pass filter with a normalized cut-off
frequency of 0.16π radians/sample was applied to the saturation channel to suppress the noise.
Concerning color distortion, dark regions with low saturation and brightness were discovered to
be frequently misinterpreted as close regions by Equation (4). Thus, the uneven removal of haze is
the fundamental cause underlying color distortion. The adaptive weight given by Equation (6) was
proposed to ensure the execution of haze removal on dark regions as well.

ωt(x) =
(

1−ω0

d0

)
d(x) + ω0, (6)

where ω0 and d0 denote user-defined parameters for specifying the gain in close regions and the
close regions themselves. The equation for scene radiance recovery was revised as follows using the
aforementioned weighting scheme.

J(x) =
I(x)−A [1−ωt(x)t(x)]

t(x)
. (7)
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3.1.4. Adaptive Tone Remapping

Assuming the image data to be normalized between 0 and 1, computations of the haze removal
process usually produce results lying outside this range. The simple saturation arithmetic widely used
in various algorithms reduces the dynamic range of the input image. Tarel et al. [12] first attempted
to solve this problem by employing the tone remapping operation. However, their method operates
solely on the luminance channel, which could induce color artifacts. In ICAP, we exploited a more
sophisticated algorithm called adaptive tone remapping. It was first proposed by Cho et al. [39] to
execute both luminance enhancement and color emphasis according to the following equations.

EL(x) = L(x) + GL(x)WL(x), (8)

EC(x) = C(x) + GC(x)WC(x) + 0.5, (9)

where L denotes the input luminance, EL denotes the enhanced luminance, GL denotes the luminance
gain, and WL denotes the adaptive luminance weight. The variables in Equation (9), which gives
the rule for color emphasis, can be interpreted similarly. The constant of 0.5 is an offset since the
chrominance is zero-centered due to subtracting by 0.5 in advance. Interested readers are referred to
Cho et al. [39] for a detailed description and computational formulas.

3.2. Atmospheric Light Estimation and Compensation Scheme for False Enlargement of White Objects

Existing algorithms that estimate atmospheric light usually suffer from two main problems:
high computational costs and false localization of the light source. The method employed by
He et al. [11] is a prime example. The top 0.1% brightest pixels in the dark channel, i.e., those
corresponding to the most opaque region of an image, are first selected by the method. Among them,
the pixel with the highest intensity in the input image is then singled out as a representative of the
atmospheric light. This approach comprises expensive computations such as sorting the dark channel
and searching over the selected pixels for the highest intensity. Plus, it undoubtedly fails in scenes
containing white objects, because white pixels of normalized values (1, 1, 1) always stand out as
the atmospheric light. The previously proposed ICAP [36] used the quad-decomposition method to
avoid the high computational cost and false localization of the light source. In this method, the input
image’s luminance is preprocessed by a minimum filter to reduce white objects’ influence. It is then
divided into quarters, and the division is repeated in the quarter with the highest average intensity.
The decomposition is continued until the quarter’s size is less than a predetermined value. In this final
quarter, the pixel with the smallest Euclidean distance to the white point in the RGB space represents
the atmospheric light.

However, from a hardware designer’s point of view, the quad-decomposition algorithm appears
unattractive because of multiple image buffers’ requirement in its implementation. This paper aims to
design a real-time hardware accelerator, and we accordingly propose an image buffer-free version of
the quad-decomposition method. The preprocessing step with a minimum filter is retained without
changed as it is computationally efficient and beneficial to reducing the influence of white objects.
The decomposition step is modified following the procedure illustrated in Figure 5, where the number
of decompositions is determined in advance, e.g., four in this case. At each level, the total number of
decomposed image patches is an exponent of four, and each set of four individual local patches are
labeled using ‘00’, ‘01’, ‘10’, and ‘11’. For example, at the second level, the number of patches is 42 = 16,
and there are four groups of ‘00’, ‘01’, ‘10’, and ‘11’ patches, as illustrated in Figure 6. The four levels
are processed concurrently, and each of them outputs a label representing a selected patch. Meanwhile,
256 candidates for the atmospheric light corresponding to the 256 patches (=44) comprising the fourth
level are calculated and stored in three small RAMs. Then, by combining the four output labels into an
8-bit address, the atmospheric light can be easily read out from the memories.
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Figure 5. Parallel computing scheme for atmospheric light estimation and compensation.

Figure 6. Example of labeling scheme for quarters at each level of decomposition.

A post-dehazing false enlargement of white objects is a common problem affecting several haze
removal algorithms, e.g., ICAP, as depicted in Figure 7. This paper represents the first attempt to
address this problem. In the cropped region highlighted in red, the train’s headlight has mistakenly
become larger after haze removal. The underlying cause of this is as follows. If the atmospheric light
of lower intensity compared to specific image pixels, haze removal increases their intensity values
instead of reducing them, which is evident from Equation (3). As a result, pixels surrounding the
train’s headlight, which are of higher intensity than the atmospheric light, according to Figure 8 and
Table 1, appear brighter after haze removal, causing the false enlargement.

Figure 7. False enlargement problem shown by the train’s headlights.
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Figure 8. (A) Atmospheric light pixel and (B, C, and D) pixels surrounding the train’s headlight.

Table 1. Red-Green-Blue (RGB) values of atmospheric light pixel and pixels surrounding the
train’s headlight.

Pixel RGB Values

Before Dehazing After Dehazing

A [0.7529, 0.7529, 0.7529] [0.8000, 0.8000, 0.8000]
B [0.9804, 0.7961, 0.6235] [1.0000, 0.8549, 0.5020]
C [0.9373, 0.7569, 0.5961] [1.0000, 0.7804, 0.4627]
D [0.9922, 0.8078, 0.6314] [1.0000, 0.8784, 0.5176]

To overcome the false enlargement problem, we propose a compensation scheme that scales up
the atmospheric light based on the difference between its channel-wise maximum and the maximum
pixel intensity, using the following equation.

Â = A + ωA

{
maxΨ

[
maxc∈{R,G,B} (I

c)
]
−maxc∈{R,G,B} (A

c)
}

, (10)

where Â denotes the compensated atmospheric light, Ψ denotes the entire image domain, and ωA
denotes the user-defined parameter controlling the compensation amount. When the input image
contains a single light source, the compensation term is zero since the estimated atmospheric light is
the brightest pixel. Conversely, when the input image contains multiple light sources, the estimated
atmospheric light might not be as bright as other objects. Hence, the compensation term is necessary
to avoid the false enlargement of white objects. The result presented in Figure 9 demonstrates that the
false enlargement problem is successfully resolved by applying the proposed compensation scheme.
Moreover, the one-dimensional cross-sections of the train’s headlights (i.e., lines 157 and 184 in
Figure 9) depicted in Figure 10 and the measured diameters recorded in Table 2 quantitatively verify
the effectiveness of the proposed solution in preventing the false enlargement problem. The straight
purple line in Figure 10 denotes the reference luminance value of 211 during the measurement of the
diameters of the train’s headlights.
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Figure 9. Result of applying the proposed atmospheric light compensation scheme.

Figure 10. One-dimensional cross sections of the train’s headlights.

Table 2. Diameter of one-dimensional cross sections of the train’s headlight.

Line
Diameters (pixels)

Input Image ICAP’s Output ICAP’s Output with
the Proposed Solution

157 20 22 20
184 Left = 18, Right = 21 Left = 21, Right = 23 Left = 18, Right = 21
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3.3. Experimental Validation

3.3.1. Quantitative Evaluation

This section evaluates the proposed algorithm against five benchmark approaches, including
those proposed by He et al. [11], Tarel et al. [12], Zhu et al. [13], Kim et al. [27], and Ngo et al. [36]
on both synthetic and real image datasets. FRIDA2 [40] is used as the synthetic image dataset,
consisting of 66 clear images and 264 corresponding hazy images pertaining to four different
haze types—homogeneous, heterogeneous, cloudy homogeneous, and cloudy heterogeneous.
Computer graphics generate each of the images for advanced driver-assistance systems. The second
synthetic dataset is D-HAZY [41], comprising more than 1400 indoor images and their corresponding
scene depths captured via Microsoft’s Kinect sensor. Koschmieder’s law is then in order for
synthesizing the corresponding hazy images. IVC [42], O-HAZE [43], and I-HAZE [44] are real image
datasets considered. IVC consists of 25 real hazy images of various subjects, including landscapes,
animals, humans, and plants. O-HAZE contains 45 pairs of outdoor hazy and haze-free images, while
I-HAZE is composed of 30 pairs of indoor hazy and haze-free images. Haze was added to the images
in the O-HAZE and I-HAZE datasets by using a specialized vapor generator.

For image datasets with available ground-truths, structural similarity (SSIM) [45], tone-mapped
image quality index (TMQI) [46], feature similarity extended to color images (FSIMc) [47],
and FADE [30] are the assessment metrics. In contrast, the rate of new visible edges (e) and the
quality of contrast restoration (r) proposed by Hautiere et al. [48] are used alongside FADE for image
datasets that do not contain ground-truth references. Assuming that X and Y denote two image
luminance signals, the SSIM measure between them is calculated as follows.

SSIM(X, Y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (11)

where (µx, µy) and (σx, σy) denote the local mean and local standard deviation of (X, Y), respectively;
σxy denotes the correlation coefficient between (X− µx) and (Y− µy), and (C1, C2) denote positive
constants that prevent the values of (µ2

x + µ2
y) and (σ2

x + σ2
y ) from approaching too close to zero.

SSIM varies between 0 and 1, and a higher value indicates that the compared image structurally
resembles the ground-truth reference to a greater extent.

TMQI is a measure that evaluates the multi-scale structural similarity in combination with the
naturalness of images. It is given by Equation (12), where S(X, Y) denotes the multi-scale structural
fidelity, N(X, Y) denotes the statistical naturalness measure, the parameter 0 ≤ a ≤ 1 controls
the relative importance of S(X, Y) and N(X, Y), and α and γ are used to adjust their respective
sensitivities. The value of TMQI ranges between 0 and 1, and a higher score is more favorable to
visibility restoration tasks.

TMQI(X, Y) = a · S(X, Y)α + (1− a) · N(X, Y)γ. (12)

As both SSIM and TMQI operate solely on the image luminance channel, FSIMc is additionally
adopted to conduct a more thorough evaluation. Zhang et al. [47] developed FSIMc based on
the observation that low-level features, including phase congruency, image gradient magnitude,
and chrominance similarity, exert a significant influence on the human perception of images. FSIMc is
computed using the following equation.

FSIMc(X, Y) = ∑i∈Ψ SL(i) · SC(i)ν · PCm(i)
∑i∈Ψ PCm(i)

, (13)

where X and Y henceforth denote color images, Ψ denotes the entire image domain, SL denotes the
combined similarity, SC denotes the chrominance similarity, PCm denotes the weighting coefficient,
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and ν denotes a positive constant that controls the importance of the chrominance. FSIMc also varies
between 0 and 1, where higher values induce a better performance.

Concerning the evaluation metrics for datasets without reference ground truths, Hautiere et al. [48]
proposed two indicators based on restored edges visible in the output but not in the input. They are
given by the following equations.

e = nr−no
no

, (14)

r = exp
[

∑i∈Φ log(ri)
nr

]
, (15)

where nr and no denote the numbers of sets of visible edges in the restored image and the original image,
respectively, and ri denotes the ratio indicating the improvement in visibility with respect to the set of
visible edges, Φ. Both e and r are directly proportional to the quality of image enhancement. However,
it is worth noticing that these indicators are susceptible to noise. Therefore, it is advisable to employ
them together with a qualitative assessment for accurate judgment. FADE is another evaluation
measure for images without ground truths, and it has been discussed previously in Section 2.2.
As FADE proportionally represents the image’s haze density, smaller FADE values correspond to better
haze removal algorithms. However, FADE suffers from the same problem as e and r because it does
not take the structural information into account, leading to a phenomenon that overly dehazed images
with noticeable loss of details surprisingly result in smaller FADE scores. Thus, it is also advisable
to employ FADE in conjunction with other metrics or a qualitative evaluation to guarantee dehazing
assessment reliability.

Tables 3 and 4 present the average SSIM, TMQI, FSIMc, and FADE scores on the FRIDA2 and
D-HAZY datasets, respectively. The boldface numbers represent the best results. On the FRIDA2
dataset, the proposed method exhibits the best dehazing performance in terms of TMQI and FSIMc
and the second-best under SSIM and FADE. Since FRIDA2 comprises images of road scenes solely,
the atmospheric light compensation scheme for preventing white objects’ false enlargement has little
effect in this case. On the D-HAZY dataset, the proposed algorithm is observed to perform the
best in terms of FADE and the third-best in terms of SSIM, TMQI, and FSIMc. This observation can
be attributed to the fact that D-HAZY consists of daylight indoor images of similar scenes, while
the proposed method is tuned to achieve acceptable performance in most circumstances. Overall,
the experimental results are consistent with those reported by Ancuti et al. [41]. Their results also
demonstrated that the algorithm proposed by He et al. [11] exhibited the best dehazing performance
on the D-HAZY dataset.

Tables 5–7 display the quantitative evaluation results on the IVC, O-HAZE, and I-HAZE datasets,
respectively. On IVC, the algorithm proposed by Tarel et al. [12] performs the best in terms of e and
r because of the metrics’ shortcoming of misinterpreting noise as visible edges. Hence, the primary
contributors to its high e and r scores are halo artifacts and background noise. The method proposed
by Kim et al. [27] is developed based on the one by Tarel et al. [12] to suppress halo artifacts but
not background noise, therein lies the cause of smaller e and r scores. Our previous work, which is
the method developed by Ngo et al. [36], eliminated background noise, achieving smaller e and r
scores than the two methods mentioned earlier. The algorithm proposed in this paper, equipped with
the atmospheric light compensation scheme, furthers the improvement to achieve better results
in terms of e and FADE. It is observed to be the best performing method on the IVC dataset.
On the O-HAZE dataset, the proposed method shares the best performance with that proposed
by He et al. [11]—whereas their algorithm exhibits the best scores in terms of SSIM and FSIMc, ours
exhibits the best dehazing performance with respect to TMQI and FADE. The proposed approach
achieves even more impressive results on I-HAZE dataset, as illustrated by the highest SSIM, TMQI,
and FSIMc scores.
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Table 3. Average structural similarity (SSIM), tone-mapped image quality index (TMQI), feature
similarity extended to color images (FSIMc), and fog aware density evaluator (FADE) scores on
FRIDA2 dataset.

Method Haze Type SSIM TMQI FSIMc FADE

He et al. [11]

Homogeneous 0.6653 0.7639 0.8168 1.0177
Heterogeneous 0.5374 0.6894 0.7251 1.2793

Cloudy Homogeneous 0.5349 0.6849 0.7222 1.2587
Cloudy Heterogeneous 0.6500 0.7781 0.8343 1.0792

Overall Average 0.5969 0.7291 0.7746 1.1587

Tarel et al. [12]

Homogeneous 0.7096 0.7259 0.7833 0.9307
Heterogeneous 0.6970 0.7310 0.7725 1.4961

Cloudy Homogeneous 0.6719 0.7312 0.7567 1.3583
Cloudy Heterogeneous 0.7431 0.7373 0.8104 1.1021

Overall Average 0.7054 0.7314 0.7807 1.2218

Zhu et al. [13]

Homogeneous 0.5651 0.7533 0.7947 0.5527
Heterogeneous 0.5519 0.7254 0.7845 0.9599

Cloudy Homogeneous 0.5310 0.7080 0.7764 0.8267
Cloudy Heterogeneous 0.5412 0.7674 0.8117 0.6752

Overall Average 0.5473 0.7385 0.7918 0.7536

Kim et al. [27]

Homogeneous 0.5949 0.7320 0.8048 0.9675
Heterogeneous 0.6245 0.7037 0.7805 1.6836

Cloudy Homogeneous 0.6124 0.7015 0.7751 1.5741
Cloudy Heterogeneous 0.6078 0.7343 0.8135 1.0774

Overall Average 0.6099 0.7179 0.7935 1.3256

Ngo et al. [36]

Homogeneous 0.7022 0.7475 0.8013 0.7825
Heterogeneous 0.7089 0.7318 0.7919 1.1610

Cloudy Homogeneous 0.6918 0.7268 0.7854 1.0711
Cloudy Heterogeneous 0.7253 0.7539 0.8152 0.8895

Overall Average 0.7070 0.7400 0.7984 0.9761

Proposed Algorithm

Homogeneous 0.7039 0.7491 0.8020 0.7856
Heterogeneous 0.7046 0.7339 0.7918 1.1485

Cloudy Homogeneous 0.6864 0.7288 0.7860 1.0522
Cloudy Heterogeneous 0.7282 0.7538 0.8153 0.8834

Overall Average 0.7058 0.7414 0.7988 0.9674

Table 4. Average SSIM, TMQI, FSIMc, and FADE scores on D-HAZY dataset.

Method SSIM TMQI FSIMc FADE

He et al. [11] 0.8348 0.8631 0.9002 0.7422
Tarel et al. [12] 0.7475 0.8000 0.8703 0.9504
Zhu et al. [13] 0.7984 0.8206 0.8880 0.9745
Kim et al. [27] 0.7520 0.8702 0.8590 0.8556
Ngo et al. [36] 0.7691 0.8165 0.8787 0.7420

Proposed Algorithm 0.7766 0.8373 0.8788 0.7325

Table 5. Average e, r, and FADE scores on IVC dataset.

Method e r FADE

He et al. [11] 0.39 1.57 0.56
Tarel et al. [12] 1.30 2.15 0.53
Zhu et al. [13] 0.78 1.17 0.83
Kim et al. [27] 1.27 2.07 0.73
Ngo et al. [36] 1.11 2.03 0.50

Proposed Algorithm 1.16 2.03 0.46
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Table 6. Average SSIM, TMQI, FSIMc, and FADE scores on O-HAZE dataset.

Method SSIM TMQI FSIMc FADE

He et al. [11] 0.7709 0.8403 0.8423 0.3719
Tarel et al. [12] 0.7263 0.8416 0.7733 0.4013
Zhu et al. [13] 0.6647 0.8118 0.7738 0.6531
Kim et al. [27] 0.4702 0.6509 0.6869 1.1445
Ngo et al. [36] 0.7322 0.8935 0.8219 0.3647

Proposed Algorithm 0.7520 0.9017 0.8212 0.3612

Table 7. Average SSIM, TMQI, FSIMc, and FADE scores on I-HAZE dataset.

Method SSIM TMQI FSIMc FADE

He et al. [11] 0.6580 0.7319 0.8208 0.8328
Tarel et al. [12] 0.7200 0.7740 0.8055 0.8053
Zhu et al. [13] 0.6864 0.7512 0.8252 1.0532
Kim et al. [27] 0.6424 0.7026 0.7879 1.7480
Ngo et al. [36] 0.7600 0.7892 0.8482 1.1277

Proposed Algorithm 0.7781 0.8122 0.8655 0.8556

3.3.2. Qualitative Evaluation

Figure 11 depicts a real hazy photograph of a train. We use this image to qualitatively assess the
dehazing performance of both the proposed algorithm and the five benchmark methods. It is evident
that the methods proposed by He et al. [11] and Ngo et al. [36] suffer from the false enlargement
problem. The cause underlying this visual artifact was discussed in Section 3.2. In contrast, this
issue is not apparent in the output image produced by the methods proposed by Tarel et al. [12] and
Kim et al. [27] since the atmospheric light is always the maximum value of (1, 1, 1) in these methods.
However, halo artifacts and background noise are noticeable. The algorithm proposed by Zhu et al. [13]
produces an over-dehazed image due to the use of a fixed lower bound for the transmission map.
The algorithm proposed in this paper generates the most satisfactory result without halo artifacts,
background noise, false enlargement, and over-removal of haze.

Figure 11. Qualitative assessment of the outputs produced by different algorithms on an image
of a train.
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Figure 12 illustrates a real hazy nocturnal scene of a sunset. It is apparent that the proposed
algorithm produces a result that favors the human perception of image quality, as it removes haze
without introducing any unpleasant side-effects. As in the previous case, the false enlargement problem
is noticeable in the outputs obtained via the methods proposed by He et al. [11] and Ngo et al. [36].
The method proposed by Tarel et al. [12] suffers from severe halo artifacts near the fine details of the
tree’s twigs. The method proposed by Zhu et al. [13] overly dehazes the image, producing a result that
is too dark, completely obscuring the tree’s twigs. Other examples, supporting the conclusion that the
proposed algorithm outperforms the five benchmark methods, can be found in Figure 13.

Figure 12. Qualitative assessment of the outputs produced by different algorithms on an image
of a sunset.

Figure 13. Qualitative assessment of the outputs produced by different algorithms on other
real-world images.

4. A 4K-Capable Hardware Accelerator

In general, algorithms are useful if they can find their applications in popular real-world systems.
Specifically, for an image processing algorithm to be a part of real-time systems, such as surveillance
cameras, it is required to satisfy a minimum processing rate of 25 or 30 frames per second (fps).
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This requirement depends on whether the employed color encoding system is Phase Alternation
by Line (PAL) or National Television System Committee (NTSC) [49], respectively. Table 8 presents
the processing times achieved by the proposed method and the five benchmark methods. The data
demonstrate that none of the methods deliver the required processing speed. All six algorithms
were programmed in MATLAB R2019a and tested on a computer with Intel Core i9-9900K (3.6 GHz)
CPU, 64 GB RAM, and NVIDIA TITAN RTX GPU. For the smallest image resolution of VGA (Video
Graphics Array, 640× 480), the fastest method was the one proposed by Kim et al. [27], which was
only able to process 6.25 fps (=1/0.16). As the image size increases, the processing rates decrease
dramatically, and the maximum attainable speed for 4K resolution (4096× 2160) is merely 0.21 fps
(≈1/4.81). These observations suggest that the software implementation is unable to put visibility
restoration algorithms into practical use. We present a hardware accelerator capable of processing
images in 4K resolution at 30.7 fps to address this issue.

Table 8. Processing time in seconds of haze removal algorithms for different image resolutions.

Method\Image Size 640 × 480 800 × 600 1024 × 768 1920 × 1080 4096 × 2160

He et al. [11] 12.64 19.94 32.37 94.25 470.21
Tarel et al. [12] 0.28 0.59 0.76 1.51 9.02
Zhu et al. [13] 0.22 0.34 0.55 1.51 6.39
Kim et al. [27] 0.16 0.29 0.43 1.01 4.81
Ngo et al. [36] 0.17 0.31 0.44 1.03 5.22

Proposed Algorithm 0.18 0.34 0.49 1.13 5.77

4.1. Overall Architecture

Figure 14 depicts the overall hardware architecture of the proposed method. The system controller
is responsible for input-output operations of the image data, and it employs a double-buffering
scheme with separate read/write buffers to avoid data bottleneck. The local white balance module
processes the input RGB image to remove any unrealistic color casts and transmits the data to three
modules—depth map estimation, adaptive constraints calculation, and atmospheric light estimation
and compensation—in parallel. The depth map estimation module performs the following series
of operations:

• RGB-to-HSV conversion,
• low-pass filtering on the saturation channel to suppress background noise,
• and depth map estimation using Equation (4) with predetermined parameters via MLE.

The modified hybrid median filter, which is realized by a novel hardware architecture named
optimized merging sorting network, then refines the estimated depth map. The following subsection
will delve deeply into this novel hardware architecture. The adaptive constraints calculation module
computes the two adaptive constraints presented in Equation (5). Simultaneously, the atmospheric
light estimation and compensation module identifies the compensated lightness pixel via the parallel
scheme discussed in Section 3.2. Section 4.3 will set this module out in greater detail. The transmission
map is easily calculated based on the refined scene depth and the two constraints since the exponential
function t(x) = e−βd(x) can be efficiently realized using a look-up table (LUT). Subsequently, the scene
radiance recovery module calculates the adaptive weight ωt(x) defined by Equation (6) and recovers
the scene following Equation (7). Finally, the adaptive tone remapping module performs dynamic
range expansion to enhance the recovered image, in which RGB-to-YCbCr422 and YCbCr422-to-RGB
modules are deployed as color format converters to facilitate its computations. Arithmetic circuits,
including split multipliers, dividers, and square rooters, are separated from the main computations
to favor the automated place-and-route procedure. Likewise, the employed block memories are also
segregated from the logic circuits. The proposed hardware accelerator uses three 256× 8-bit memories
to store the atmospheric light pixel candidates, as mentioned in Section 3.2. Two 1024× 32-bit memories
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are used to calculate the requisite histogram for the adaptive tone remapping post-processing, while
other memories are used as line memories to filter operations. It is worth noticing that the proposed
design does not use any of the memories as image buffers.

Figure 14. Overall architecture of the hardware accelerator for the proposed algorithm.

4.2. Optimized Merging Sorting Network-Based Architecture for the Modified Hybrid Median Filter

The modified hybrid median filter (mHMF) is employed in the proposed algorithm to refine the
estimated depth map. Based on the observation that the scene depth is predominantly smooth except
for discontinuities such as objects’ contours, the application of the standard median filter (SMF), as in
the method proposed by Tarel et al. [12], leads to the problem of smoothing image edges, subsequently
inducing the halo artifacts discussed in Section 3.3.2. mHMF overcomes this problem by using the
cross and diagonal windows in combination with the traditional square window. It identifies three
median values corresponding to three windows and then calculates their median as the final result.
Figure 15 demonstrates the process of mHMF on specific input data.

The mHMF exhibits better edge-preserving characteristics at the cost of more expensive
computations, giving rise to its burdensome hardware implementation. Our previous work in [18]
presented the first attempt to develop a fast and compact architecture based on Batcher’s parallel
sorting network (BSN). mHMF with a N × N window is decomposed into four SMFs, including an
N2-input filter for the square window, two (2N − 1)-input filters for the cross and diagonal windows,
and a 3-input filter to select the final result. Since the median identification procedure essentially
comprises sorting input data and separating the median value, the median filter design can be further
simplified to the design of a sorting network, which comprises a set of compare-and-swap (CS)
operations connected with a fixed configuration of interconnections. Therefore, the use of BSNs to
construct the mHMF results in a fast and compact architecture. However, it suffers from the significant
problem of repeated use of specific pixels within the filtering window. The reason is the use of three
separate SMFs for three different types of windows. For example, BSN-based mHMF uses the central
pixel thrice and other pixels that lie on the cross and diagonal lines twice. This issue increases the
fan-out of related logic gates, resulting in the elongation of the signal propagation delay. The following
equation, presented in [50], is employed to quantify the influence of fan-out on propagation delay.

tD = m + n · SL, (16)

where tD denotes the propagation delay of a logic gate, (m, n) denotes a pair of constants characterizing
its timing behavior, and SL denotes the standard load connected to its output. When an output signal
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from a logic gate is wired to another digital circuit, it is convenient to model the target circuit as a
capacitive load. Thus, if a signal is wired to several different circuits, the output capacitive load of
a logic gate producing that signal is increased in an additive manner, causing the elongation of the
signal propagation delay according to Equation (16).

Figure 15. Example of the operation of the modified hybrid median filter (mHMF).

Based on the aforementioned investigation, it is evident that addressing the problem of high
fan-out guarantees shortened propagation delay, i.e., an improvement in the throughput. Therefore, we
propose a new architecture called an optimized merging sorting network (OMSN), which uses pixels
within the filtering window exactly once. OMSN is based on the observation that it is unnecessary to
sort the pixels within the three windows separately to identify the final median. Instead, it suffices to
follow the following procedure.

1. Only sorting pixels within one of the two small windows, e.g., the cross window, to identify the
corresponding median.

2. For the diagonal window, sorting corresponding pixels except for the central one and then
merging them with the delayed central pixel to identify the median.

3. For the square window, only sorting those pixels that have not been sorted during the previous
two steps and merging them with the two sorted sequences to identify the corresponding median.

4. Lastly, selecting the final median from the medians corresponding to the three windows.

Figure 16 depicts the BSN-based and the OMSN-based architectures for a 5× 5 mHMF. The yellow
cell represents the central pixel’s delayed value, and the abbreviation OSN denotes the optimized
sorting network presented in [51]. For each module, the top-left number denotes the corresponding
latency in terms of clock cycles, and the under or above number denotes the constituent CS operations.
The 9-input BSN and the 9-input OSN are fundamentally different. The former comprises 22 CSs
because it eliminates the CSs that are not pertinent to the median identification procedure. In contrast,
the latter (i.e., 9-input OSN) needs to retain all of its inputs to identify the median corresponding to
the square window, giving rise to the difference in the number of CSs between the two approaches.
However, the difference between their latencies demonstrates that the 9-input OSN is superior to
the 9-input BSN. The BSN-based mHMF architecture comprises 160 CSs and exhibits a latency of
18 clock cycles. In contrast, the proposed OMSN-based mHMF architecture consists of merely 118 CSs.
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Notwithstanding the same latency of 18 clock cycles, the proposed design is faster since it reduces the
clock period by precluding the high fan-out problem.

Figure 16. Previously developed and the newly proposed architectures for a 5× 5 mHMF.

In order to validate the aforementioned claims, mHMFs with 5× 5 and 7× 7 windows were
implemented on a system-on-a-chip (SoC) evaluation board [52] using the Verilog hardware description
language (IEEE Standard 1364-2005) [53]. The corresponding hardware synthesis results were
summarized in Table 9, in which slice registers and slice LUTs represent logical gate regions,
and RAM36E1/FIFO36E1s represent memory regions. The ‘Used as Memory’ category denotes
the number of LUTs that can be synthesized as distributed memories, while the block memories are
mapped to RAM36E1/FIFO36E1s. The synthesis data demonstrate that the number of used registers
and LUTs is reduced significantly using the proposed OMSN-based architecture. More specifically,
the reduction rates are 17.5% and 18.0% for a 5× 5 mHMF, and 16.1% and 13.5% for a 7× 7 mHMF.
The number of requisite RAM36E1/FIFO36E1s is equal for both models as they are used to realize
line memories, which are 4 and 6 for the window sizes of 5× 5 and 7× 7, respectively. Finally, by
resolving the high fan-out problem, the proposed OMSN-based design improves the throughput by
approximately 10% for both the 5× 5 and 7× 7 mHMF.

Table 9. Hardware synthesis results of different architectures for realizing the modified hybrid median
filter with 5× 5 and 7× 7 windows.

Xilinx Design Analyzer 1

Device xc7z045 - 2ffg900

Design 5 × 5 mHMF 7 × 7 mHMF

BSN-Based OMSN-Based BSN-Based OMSN-Based

Slice Logic Utilization Available Used Util. Used Util. Used Util. Used Util.

Slice Registers (#) 437,200 4916 1.12% 4,056 0.93% 11,139 2.55% 9344 2.14%
Slice LUTs (#) 218,600 4599 2.10% 3771 1.73% 9745 4.46% 8427 3.85%

Used as Memory (#) 70,400 74 0.11% 124 0.18% 104 0.15% 234 0.33%
RAM36E1/FIFO36E1s 545 4 0.73% 4 0.73% 6 1.10% 6 1.10%

Minimum Period 2.800 ns 2.542 ns 2.803 ns 2.547 ns
Maximum Frequency 357.143 MHz 393.391 MHz 356.761 MHz 392.619 MHz

1 The EDA Tool was supported by the IC Design Education Center.



Sensors 2020, 20, 5795 21 of 27

4.3. Atmospheric Light Estimation and Compensation

Figure 17 depicts the hardware architecture used for atmospheric light estimation and
compensation. The input RGB image data first undergo a conversion to extract the grayscale channel,
which in turn undergoes the minimum filter to reduce white objects’ influence on the estimation
process’s accuracy. Four decomposition levels accept the filtered grayscale channel in parallel, and each
module computes the corresponding 2-bit index ‘00’, ‘01’, ‘10’, or ‘11’ corresponding to the image patch
with the highest average intensity. The index information is passed down across all levels between the
second and the fourth because the chosen image patch at each level must necessarily lie within the
image patch selected at the preceding level. Additionally, the four indices are combined to form an
8-bit read address to identify the lightness pixel from the memories. Simultaneously, RGB data also
undergo the RAM content generator module, which calculates all 256 candidates for the atmospheric
light. These candidates, coupled with timely signals including write address, read/write control,
and write enable, are stored in memories. The controller module receives timing signals of input RGB
data, i.e., horizontal and vertical active video signals, and is responsible for the proper functioning of
all other modules. Then, the estimated lightness pixel is read out from the memories and is made to
undergo the compensation procedure described by Equation (10). While the channel-wise maximum
operations, maxc∈{R,G,B} (Ic) and maxc∈{R,G,B} (Ac), are easily implemented, the maximum operation
across the entire image domain maxΨ(·) generally requires an image buffer. However, by exploiting
the high similarity between successive video frames, a viable alternative is to identify the maximum
corresponding to each current frame and apply it to the next frame. As a result, the necessity of an
image buffer is completely eliminated from the proposed architecture depicted in Figure 17.

Figure 17. The proposed hardware architecture for atmospheric light estimation and compensation.

4.4. Hardware Verification

The SoC evaluation board mentioned in Section 4.2 is used for hardware verification at this stage.
It includes a Field Programmable Gate Array (FPGA) chip, dual ARM Cortex-A9 core processors, 1 GB
DDR3 memory, and 1 GB DDR3 SODIMM. A C/C++ platform is developed on a host computer to
provide input data to and read processed data from the SoC board. The top and middle thirds of
Figure 18 depict the platform, while the bottom third depicts the board. Users can select the input data
from various sources, such as still images, real-time videos from a camera, or videos stored on the
host computer, via the platform control. On the other hand, the algorithm control includes several
slide bars and check-boxes, which can tune input parameters before sending them to the implemented
design on the evaluation board. Input and output data are displayed side-by-side, as depicted in
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the top third of Figure 18. The output image on the right depicts the result obtained from the SoC
evaluation board. Users can also select one of two video saving modes—output only and input-output
(side-by-side)—using the platform’s buttons. This C/C++ platform is used to verify the performance
of the proposed hardware accelerator. Based on the top third of Figure 18, it is evident that the false
enlargement in the image of the train was effectively surmounted, which is consistent with the result
illustrated previously in Figure 11. Moreover, the overall visibility was significantly improved, which
is apparent based on the observation of the train’s cars. This visibility improvement is primarily
attributed to the post-processing application of adaptive tone remapping, while the success in dealing
with the false enlargement problem is attributed to the proposed compensation scheme presented in
Section 3.2.

Figure 18. Hardware verification using a system-on-a-chip evaluation board.

Table 10 summarized the detailed hardware synthesis result corresponding to the proposed
visibility restoration algorithm. Our design used 57,848 registers, 53,569 LUTs, 58 RAMB36E1s,
and 25 RAMB18E1s, which occupied 13.23%, 24.51%, 10.64%, and 2.29% of available resources on
the FPGA chip, respectively. The fastest attainable processing rate was 271.67 MHz, or equivalently,
271.67 Mpixel/s. Based on this information, the maximum processing speed (MPS) in terms of fps can
be calculated as follows.

MPS =
fmax

(W + HB)(H + VB)
, (17)

where fmax denotes the maximum operating frequency; W and H denote the width and the height of
the input frame, respectively; and HB and VB denote the horizontal and vertical blank periods. In this
study, the hardware accelerator was designed to function properly while minimizing the number of
blank periods corresponding to one pixel and one image line. The MPSs achieved for different video
resolutions, as recorded in Table 11, demonstrated that the proposed design is capable of processing
the maximum video resolution of DCI 4K at 30.7 fps. In particular, the number of clock cycles required
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by the proposed algorithm to process one frame is 8,853,617 (=4097 × 2161). Substituting this value
into Equation (17) yields an MPS of 30.7 (≈271.67 × 106/8,853,617). Therefore, the proposed hardware
accelerator is verified to be highly appropriate for real-time applications requiring fast processing of
high-quality images.

Table 10. Hardware synthesis result of the proposed visibility restoration algorithm.

Xilinx Design Analyzer

Device xc7z045 - 2ffg900

Slice Logic Utilization Available Used Utilization

Slice Registers (#) 437,200 57,848 13.23%
Slice LUTs (#) 218,600 53,569 24.51%

RAM36E1/FIFO36E1s 545 58 10.64%
RAM18E1/FIFO18E1s 1090 25 2.29%

Minimum Period 3.68 ns
Maximum Frequency 271.67 MHz

Table 11. Maximum processing speed for various video resolutions.

Video Resolution Frame Size Required Clock Cycles (#) Processing Speed (fps)

Full HD (FHD) 1920× 1080 2,076,601 130.8
Quad HD (QHD) 2560× 1440 3,690,401 73.6

4K
UW4K 3840× 1600 6,149,441 44.2

UHD TV 3840× 2160 8,300,401 32.7
DCI 4K 4096× 2160 8,853,617 30.7

Table 12 summarized the results of a comparative evaluation of the proposed implementation
in the context of those of other hardware designs. Park et al. [54] developed a fast implementation
of DCP by reducing the complexity of the atmospheric light estimation procedure. Although their
design exhibited a maximum operating frequency of 88.70 MHz, it could only handle the fixed frame
sizes of 320× 240, 640× 480, and 800× 600. Thus, it is solely capable of processing images of the
Super VGA (SVGA) resolution. Moreover, except for the number of used registers, it requires more
of every other resource than the algorithm proposed in this paper—in terms of LUTs, digital signal
processing slices (i.e., DSPs), and memories. Ngo et al. [18] presented a direct implementation of the
algorithm developed by Kim et al. [27] using fewer memories than the proposed accelerator. However,
this difference is because the proposed algorithm employs more filtering operations than the one
developed by Kim et al. [27]. As discussed in Section 3.3, this enables better dehazing performance.
Furthermore, the accelerator proposed in this study is more efficient in terms of the used registers and
LUTs. Additionally, although both designs can handle DCI 4K resolution, our algorithm delivers faster
speed and is preferable. Furthermore, the design implemented by Ngo et al. [18] is only compatible
with the PAL color encoding system, while ours is compatible with both PAL and NTSC standards.

Table 12. A comparative evaluation with other hardware designs.

Hardware Utilization Park et al. [54] Ngo et al. [18] Proposed Design

Registers (#) 53,400 70,864 57,848
LUTs (#) 64,000 56,664 53,569
DSPs (#) 42 0 0

Memory (Mbits) 3.2 1.5 2.4
Maximum Processing Rate (Mpixel/s) 88.70 236.29 271.67
Maximum Attainable Video Resolution SVGA DCI 4K DCI 4K
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5. Conclusions

In this paper, we presented a machine learning-based visibility restoration algorithm and its
corresponding 4K-capable hardware accelerator. The proposed algorithm is an improvement on
our previous work based on the color attenuation prior. We devised effective solutions to solve
the common problems observed in existing algorithms, such as background noise, color distortion,
reduced dynamic range, and false enlargement of white objects. We also exploited the enhanced
equidistribution to prepare a more reliable training dataset, used to estimate parameters of the depth
estimating model via supervised learning using the maximum likelihood estimates technique. Notably,
the proposed approach represents the first attempt to address the false enlargement of white objects.
By identifying the cause of this problem to be the difference between the atmospheric light and bright
pixels surrounding white objects, we proposed a compensation scheme to deal with the unpleasant
visual effects effectively. Experimental results proved the superiority of the proposed algorithm over
the five benchmark methods, both quantitatively and qualitatively. The source code and datasets are
publicly available for facilitating future research: https://datngo.webstarts.com/blog/.

It was discovered during the hardware implementation phase that the previously developed
hardware architecture for the modified hybrid median filter suffers from a high fan-out problem.
To rectify this, we proposed an optimized merging sorting network-based architecture as an efficient
alternative and achieved a reduction in hardware use and an increase in throughput. Moreover,
to eliminate the necessity for image buffers during the implementation of the quad-decomposition
algorithm, we adopted a parallel computing scheme, which is highly beneficial for real-time processing.
The hardware synthesis result demonstrated that the proposed design could handle a maximum DCI
4K resolution at 30.7 fps. Additionally, a comparative evaluation against two other designs further
proved that our hardware accelerator is relatively efficient in terms of resource use and throughput,
making it highly appropriate for a wide variety of real-time applications.
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