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Abstract: Nowadays, many big cities are suffering from heavy air pollution and continuous haze
weather. Compared with the threat on physical health, the influence of haze on people’s mental health
is much less discussed in the current literature. Emotion is one of the most important indicators of
mental health. To understand the negative impact of haze weather on the emotion of the people,
we conducted an investigation based on historical weather records and microblog data in Tianjin,
China. Specifically, an emotional thesaurus was generated with a microblog corpus collected from
sample data. Based on the thesaurus, the public emotion under haze was statistically described. Then,
through correlation analysis and comparative study, the relation and seasonal variation of haze and
negative emotion of the public were well discussed. According to the study results, there was indeed
a correlation between haze and negative emotion of the public, but the strength of this relationship
varied under different conditions. The level of air pollution and weather context were both important
factors that influence the mental effects of haze, and diverse patterns of negative emotion expression
were demonstrated in different seasons of a year. Finally, for the benefit of people’s mental health
under haze, recommendations were given for haze control from the side of government.
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1. Introduction

Along with economic development and natural resource exploitations, many environmental
problems have arisen around the world and to a different extent have influenced the daily lives of
people [1,2]. Due to fast, large-scale industrialization and the extensive use of fossil fuels [3,4], haze has
become one of the most common-seen climate phenomena in many big cities [5]. Heavy air pollution
of the haze weather poses a great risk to the public health [6,7], especially in the South and Southeast
Asian countries, such as China, Malaysia, Indonesia, and even Singapore, the air quality in urban areas
is often very poor nowadays [8–11].

A great deal of research work has been done to examine the impacts of haze on the physical health
of the public. According to the medical statistics, the morbidity of cardiovascular, cerebrovascular, and
respiratory diseases is closely associated with haze [12], and hospital admissions increase significantly
in haze weather [13]. Meanwhile, there are also strong evidences showing that haze is a potentially
modifiable risk factor for lung cancer [14] and an underlining cause for the high mortality in some
places [15]. To better understand the effect mechanism, the chemical composition of air pollutants and
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their sources, regional flows, and interactions have been widely studied [16–18]. On the basis of these
studies, a number of protection measures [19,20] and policies [21–23] were proposed out to reduce the
influences of the haze from different perspectives.

However, the threat of the haze is not just to people’s physical health but also to their mental
health. From the perspective of the environmental psychology, the mentality of individuals is largely
determined by the built and natural environments [24]. Yet, the effect of haze on mental health has not
been widely discussed within the current literature. With the course of urbanization, mental problems
among the population have become increasingly prevalent and serious in recent years [25]. Although
it is proven that the improvement of living conditions [26], such as increasing green and blue spaces
in the neighborhood [27,28], is beneficial to mental health, the challenges from climate change are
still non-negligible [29–31]. Emotion is one of the most important indicators of mental health. As
demonstrated in previous studies, daily moods and sentiment are potentially affected by the weather
and reflected in outward expressions and behaviors [32,33]. With the online diary and weather station
data, Denissen et al. [34] studied the mental effects of temperature, wind power, sunlight, precipitation,
air pressure, and photoperiod. Using an experience-sampling method, Kööts et al. [35] examined
the relationship between affective experiences and weather variables. Lucas et al. [36] discussed the
association between daily weather conditions and life satisfaction of American people through a
cross-sectional investigation. As for the effect of haze, Zhang et al. [37] conducted a nationwide
longitudinal survey in China, revealing that a dirty sky did have some negative impacts on mental
health and the subjective well-being of people.

In today’s highly information-based society, an increasing number of people prefer to express
their opinions and feelings on the web, particularly through the social media [38]. Judging from the
verbal expression and reactions of people in the digital world, their cognition, likes, and dislikes can be
to some extent depicted [39]. Thus, many works have been done to study the emotion and sentiments
of the public based on social media data [40–42]. With the results of sentiment analysis, it is possible
to improve our knowledges of citizens’ political preferences [43], stock movements [44], trends of
financial markets [45], and so on. Meanwhile, to figure out the psychological effects of terrors [46] and
various stressful events that people may experience [47], the emotions expressed in the social media
are also significant clues.

Based on the microblog and weather records of Tianjin, China, we investigate the relation between
haze weather and negative emotion of the public in this paper. Through historical data analysis, not
only was the correlation between the two proven, but the seasonal variation was also discussed. The
contributions of the study mainly lie in the following three aspects: first, on the theoretical level, the
negative impacts of haze on the mental health was explored; second, technically, the tendency of
public emotion under haze weather was judged through the semantic parsing and statistical analysis
of microblog data; and third, according to the investigation results, some suggestions are given for
haze control from the perspective of mental health protection.

2. Methodology

2.1. Study Scope and Research Design

According to the statistics produced by the China National Environmental Monitoring Centre,
from 2013 to 2017, 74 major cities were under the haze in over 100 days of a year. Compared with
other places suffering from heavy air pollution, the region of Jingjinji in the northern China was the
hardest-hit area. In geography, the Jingjinji region covers 2 municipalities and 11 prefecture-level
cities, with a total area of 218 thousand square kilometers. Within the region accounting for about
2.35% area of China, there are about 110 million permanent residents, ~8.1% population of the country,
contributing to ~10% of Chinese gross domestic product (GDP). Aside from Beijing, Tianjin is one of
the central cities in the Jingjinji urban agglomeration (see Figure 1). It is not only an epitome of Chinese
urbanization progress, but also a typical city that frequently experienced large-scale and continuous
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haze in recent years (see Figure 2). In 2014, Tianjin was ever covered by haze for about 200 days in
total, and in 8 instances, the period of haze weather lasted for more than one week. The life of the
people was greatly influenced by the haze, and the poor air quality was hotly discussed on the web.
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In our research, Tianjin was chosen as the case study area, and the public emotion under the
haze in 2014 were specifically investigated. To ensure the representativeness of the research work, the
data was collected in January, April, August, and November, which were typical samples of the four
different seasons of the year. On one hand, the weather records of Tianjin in the selected months were
checked to decide the levels of air pollution each day; and on the other hand, within the corresponding
periods of time, all the microblog messages that had mentioned “haze”, “fog”, or “bad air quality”
were examined for investigation of the public’s emotions.

• Since fine particulate matter (PM) is the main cause of haze in Tianjin, as in most other Chinese
cities, the average density of PM2.5 was taken as the direct indicator of air quality in this paper.

• Comparing with the microblog platforms of Tencent, Netease, and Sohu, the Sina microblog was
the most active and popular one, and so it was chosen as the data source for sentiment analysis.

Through time series analysis of both the number of Sina microblog messages concerning haze
and the PM2.5 density in the air, similar variation trends were actually demonstrated, especially in the
late autumn and winter (see Figure 3). For the 4 sample months, the correlation coefficient of the two
factors was 0.641, showing statistically significance under the level of 0.05 on both sides.
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2.2. Emotional Thesaurus Generation with a Microblog Corpus

As the basic unit of language, words are fundamental to emotion expression and
understanding [49–51]. Based on the 65 emotional words of the Profile of Mood States (POMS)
in psychology, Pepe and Bollen had ever developed a thesaurus with 793 words to extract mood
indicators from emails [52]. With the help of OpinionFinder and Google Profile of Mood States
(GPOMS), Bollen searched and selected 964 emotional words from the web to infer the public moods
with Twitter [53]. Zhao et al. had mapped 95 emoticons into four categories of sentiments and
developed the first sentiment analysis system for Chinese microblog [54].

With the purpose to analyze public emotion under the haze, a specific thesaurus was firstly
generated with an actual microblog corpus.

2.2.1. Microblog Corpus Collection

When people talk about the same topic in microblog, their emotion expressions are often
similar [55]. To figure out the most frequently used emotional words towards haze, the corpus
was collected with the K-sampling method, which chose 4 short periods of time from different seasons
in 2014 and extracted 200 sample microblog messages in each period with an uniform interval (see
Figure 4). In the process of corpus collection, different lengths of sample periods were actually set
to ensure the approximately equal quantity of overall samples in different seasons (see Table 1). As
a result, 800 microblog messages with 45,595 words were selected as the corpus. The corpus might
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Table 1. Sampling parameters for corpus collection in different seasons.

Seasons Sample Periods Overall Samples (N) Interval Value (K)

Winter 15 January 2014–20 January 2014 12,372 61
Spring 04 April 2014–15 April 2014 12,070 60

Summer 10 July 2014–07 August 2014 12,483 62
Winter 02 November 2014–November 2014 12,483 63

2.2.2. Emotional Thesaurus Generation

Based on the microblog corpus, an emotional thesaurus was generated by NLPIR (ICTCLAS 2014),
which is a word segmentation system developed by the Chinese Academy of Science [56]. It is capable
of word splitting, speech discrimination, keyword extraction, etc., and there are more than 300,000
users all over the world, including some respectable research institutions, such as Qinghua University
and MIT.

Using the NLPIR, the process of emotional thesaurus generation can be divided into four steps
(see Figure 5): first, the basic vocabulary of the NLPIR system was loaded in advance; second, some
new keywords related with haze were added into the user dictionary of the NLPIR; third, based on
the basic vocabulary and the new keywords, the NLPIR searched the corpus and extracted all the
high-frequency words from the microblog messages concerning haze; and fourth, with reference to the
meanings and parts of speech of the extracted words, proper ones were selected to build the thesaurus.
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To enhance the completeness and reliability of the result, four rounds of keyword addition and
word extraction were actually conducted in the whole process of thesaurus generation. Every time that
the microblog corpus was analyzed with the NLPIR, some new keywords would be recommended.
Following the recommendations of the system, the keywords in the user dictionary were progressively
enriched (see Table 2), and in the end, 72 words were successfully extracted from the microblog
messages concerning haze (see Table 3).
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Table 2. The lists of keywords for addition in the four rounds of corpus analysis.

Rounds Keyword Lists

1

haze, complaints, negative energy, fresh air, miserable, automobile
exhaust, gas emission, traffic restriction, APEC blue, pollution control,
crazy, serious haze, bad weather, very serious, haze control, sorrow, bad
mood, big wind

2 northwest wind, heavy, disgusting, nausea, depressed, hate haze, heart
broken

3 haze subsidies, haze reduction, enduring haze
4 air pollution, blowing wind

Note: all the keywords are translated from Chinese, and it is the same for the words in the following tables.

Table 3. The high-frequency words extracted by the NLPIR.

Frequencies Word Lists

≥100 haze, weather, Tianjin
50~99 Beijing, pollution, air, sunshine

20~49
breath, serious, mood, feeling, hope, blue sky and while cloud, air
quality, blowing wind, environment, gutter oil, traffic restriction, mask,
expert

10~19
blue sky, sky, governance, continue, like, away, blowing big wind, damn,
big wind, serious haze, PM2.5, cloudy, haze weather, grey, good weather,
beautiful

5~9
covered by haze, bothering, heating supply, indulge, bad, gloom, haze
subsidies, enjoy, crazy, serious pollution, great pollution, tolerate,
thanks, complaint, heavy haze, horrible, waste

<5
haze control, happy, terrible, nima, cleaning the lung, smoke, helpless,
sentiment, end of the world, comfortable, dispersing, fireworks,
uncomfortable, tired, sorrow, not bad, hard, bright, hurt

Eliminating the unrelated words, as well as the nouns and verbs which cannot reflect the emotions
of the people, 25 effective words were screened out from the 72 ones extracted by the NLPIR. Based
on the model of positive and negative affect (PANA) proposed by Watson and Tellegen [57], the
25 effective words were further classified into two categories, the negative words and the positive
words. All together, they constituted the emotional thesaurus of microblog under the haze (see Table 4).

Table 4. The emotional thesaurus of microblog under the haze.

Categories Word Lists

Positive like, good weather, beautiful, enjoy, thanks, happy, comfortable, not bad,
bright

Negative
serious, away, damn, bothering, bad, gloom, tolerate, complaint,
horrible, terrible, nima, helpless, end of the world, uncomfortable, tired,
sorrow, hurt

2.3. Statistical Description of Public Emotion Under the Haze

Taking the emotional words, together with the keyword “haze”, as the searching words, the
number of microblog messages expressing different sentiments in each day of the sample period was
able to be recorded. With reference to the records of the words in the thesaurus, the public emotion
under the haze were statistically described with the following function.

EIs,t =
Ns

∑
i=1

recs,t(i), (1)
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where, EIs,t stands for the emotion index of certain sentiment s in the day of t, Ns is the number of
words that are able to express the s sentiment in the thesaurus, and recs,t(i) is the record of microblog
message number for the No. i word expressing the s sentiment in the day of t.

Specifically, two emotion indexes were calculated based on the nine positive words and 16
negative words. Judging from the quantity-time curves of the two indexes in the four sample months
(see Figure 6), the positive emotion was always at low level when it came to haze, yet the negative
emotion was at the higher level for most of the time, especially in the late autumn (November) and
winter (January) seasons.Int. J. Environ. Res. Public Health 2018, 15, x 7 of 14 
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In terms of the statistics (see Table 5), the overall mean value (21.61), and standard deviation
(26.627) of the negative emotion index were all much higher than those of the positive emotion index
(11.90, 8.274), indicating frequent expression and great fluctuation of negative emotion under the haze.
While the emotion fluctuation (9.890 for the positive emotion and 36.326 for the negative emotion) was
the greatest in November, the difference of the different emotion indexes was the biggest (22.47 for
the mean difference) in January. In August, the summer time, both the mean values and the standard
deviations of positive (6.50, 3.309) and negative indexes (2.93, 1.799) declined to the lowest, and the
positive emotion expression had only the change to surpass that of the negative emotion.



Int. J. Environ. Res. Public Health 2019, 16, 86 8 of 15

Table 5. Statistics of the emotion indexes in the four sample months.

Months
The Minimum The Maximum Mean Std. Dev.

Positive Negative Positive Negative Positive Negative Positive Negative

January 2 9 25 122 12.03 34.50 6.641 27.361
April 2 2 23 37 9.27 14.40 5.112 8.767

August 1 0 14 6 6.50 2.93 3.309 1.799
November 2 5 40 160 19.80 34.60 9.890 36.326

Overall 1 0 40 160 11.90 21.61 8.274 26.627

3. Results

3.1. Relationship between Haze and the Negative Emotion of the Public

To study the relationship between haze and the negative emotion of the public, correlation analysis
was conducted based on the PM2.5 density records and the negative emotion index calculated in each
day of the sample months.

Overall, the correlation coefficient of the two factors reached up to 0.781, statistically significant
under the level of 0.05 on both sides. However, the psychological influence is always a complicated
mechanism. For better understanding of the effect manner of haze, we made further detailed
discussions from different perspectives.

3.1.1. Discussions on the Relationship at Different Haze Levels

According to the grading standards of air quality in China, the weather condition was generally
categorized into five levels based on the PM2.5 density, from excellent air (0–35 µg/m3), good
air (35–75 µg/m3), light haze (75–115 µg/m3), moderate haze (115–150 µg/m3), to heavy haze
(>150 µg/m3). With consideration of the diversity of samples, the recorded data from January and
November was sorted to discuss the relationship of haze and the negative emotion of the public at
different haze levels (see Figure 7).
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Figure 7. The distribution histogram of sample days and microblog messages expressing negative
emotion in January and November.

Judging from the statistics and correlation analysis results of the sample data (see Table 6), the
relation strength of haze and negative emotion of the public was variable under different conditions.
Generally, the higher the PM2.5 density was, the closer the relationship of them could be. However, it
was not a linear process. On one hand, comparing to the situation under excellent air and good air
conditions, the relationship was particularly strong under light haze and heavy haze. For example,
when the average PM2.5 density was approximately 95.95 and 226.54, the correlation coefficient
reached as high as 0.750 and 0.829, respectively. But on the other hand, the negative emotion was not
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highly expressed under moderate haze. When the average PM2.5 density was ~124.67, the correlation
coefficient of PM2.5 density and negative emotion index was only 0.281, even less than that under
good air conditions.

Table 6. Statistics and correlation analysis results of the sample data at different haze levels in January
and November.

Weather
Conditions

Average PM2.5
Density

Average Negative
Emotion Index

Correlation
Coefficient

Significance
Index

Excellent air 23.63 17.75 −0.432 0.615
Good air 55.6 16.00 0.285 0.531

Light haze 95.95 90.95 0.750 0.030
Moderate haze 124.67 28.00 0.281 0.518

Heavy haze 226.54 106.75 0.829 0.023

3.1.2. Discussions on the Relationship at Different Haze Levels

For a deeper exploration of the relationship between haze and negative emotion of the public,
discussions were then directed at their temporal sequence association. With reference to the variations
of air quality and public emotion, four short periods were selected out from November, which was a
typical span of time with frequent haze weather and fluctuating emotion of the public (see Figure 8).
Each of the periods contained six sample days.
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By comparing the statistics and correlation analysis results of the four periods (see Table 7), it was
found that the mental influence of haze could hardly be assessed just with the physical parameters
of air quality. For example, the air quality of the first and second periods were almost at the same
level, but more negative emotion was in fact expressed in the former period. Meanwhile, the values of
negative emotion indexes of the third and fourth periods were very close, yet the PM2.5 density of the
third was obviously higher than the fourth one.

Table 7. Statistics and correlation analysis results of the four periods in November.

Periods Average PM2.5
Density

Average
Negative

Emotion Index

Correlation
Coefficient

Significance
Index

02 November–07 November 49.67 23.17 0.614 0.195
12 November–17 November 51.50 9.50 0.229 0.662
18 November–23 November 181 57.33 0.887 0.018
25 November–30 November 155.33 59.00 0.735 0.096
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Thus, attention should also be given to other factors, especially the weather context, when
discussing the mental effects of haze in practice. As indicated by the results of the first two sample
periods in November, people reacted badly to light haze at the beginning, but when the air pollution
was not so serious and the influence was limited, the negative emotion tended to reduce with the
continuation of haze weather. On the contrary, when the heavy haze continued for quite a few days,
just like the situation in the last two periods, the negative emotion was more likely to get enhanced.

3.2. Seasonal Variation of Haze and Negative Emotion of the Public

Similar to the case of November, there were also several times of heavy and continuous haze
weather in January. With the fluctuation of air quality, the negative emotion was expressed to different
degrees during the month (see Figure 9). When the PM2.5 density was over 200 µg/m3 (e.g., the
periods from the date of 11st to 13th and from 15th to 17th), the response of people was immediate and
emotional. However, for the days with light haze (e.g., the periods from the date of 1st to 5th and from
5th to 9th) and moderate haze (e.g., the period from the date of 23st to 25th), the response was lagged
and depressed.
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By contrast, much less haze had appeared in the spring and summer time, and accordingly, the
amount of negative emotion expressed through the microblog declined obviously.

• In April, there was actually no heavy haze in Tianjin. Although sometimes the air quality was bad
(e.g., the dates of 8th and 13th), for most of the time, the PM2.5 density stayed between 50 µg/m3

and 100 µg/m3. Under these weather conditions, the relationship between haze and negative
emotion of the public was also detectable, but the fluctuation trends of air quality and public
emotion was not as consistent as those in January and November any more (see Figure 10).
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• In August, over 80% of the time Tianjin were under good and excellent air condition. Only in
very few days (e.g., the dates of 16th and 21th), the PM2.5 density reached up to 100 µg/m3.
Meanwhile, there was hardly any negative emotion expressed in the whole month. The correlation
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4. Conclusions and Recommendations

Due to natural and human causes, haze has become a commonly seen climate phenomenon in a
lot of cities. Aside from the threat to people’s physical health, the impact of haze on mental health
should never be ignored. Taking Tianjin City as a study case, we examined the negative emotion of
the public under haze with historical weather records and microblog data. Based on the emotional
thesaurus generated with an actual microblog corpus, the public emotion under haze was statistically
described. Furthermore, through correlation analysis and comparative study, the relation and seasonal
variation of haze and negative emotion of the public were well discussed.

According to the study results, there was indeed a correlation between haze and negative emotion
of the public. However, the strength of this relationship varied under different conditions. We found
that the level of air pollution and local weather context were both important factors that influence the
mental effects of haze in practice. At the same time, due to variation in frequency and intensity of haze
weather, diverse patterns of negative emotion expression could be observed in different seasons of a
year. As for Tianjin, specifically, (1) while negative emotion of the public was easy to be brought about
by haze in late autumn and winter, the influence of haze was not so prominent in spring and summer;
(2) both light haze and heavy haze had obvious negative impacts on public emotions, and comparing



Int. J. Environ. Res. Public Health 2019, 16, 86 12 of 15

to the effect of the former, the latter was always stronger; (3) the negative emotion of the public was
prone to get reduced with the duration of light or moderate haze weather, but when facing severe air
pollution, negative emotion was more likely to get enhanced with time.

Thus, for the benefit of the people’s mental health, it would be necessary for the government to
take the negative emotion of the public into consideration in the whole work of haze control.

First, based on the microblog or some other social media platforms, a long-term monitoring and
alert system needs to be established to master the dynamic change of the public emotion under haze.
As the mental effects of haze could vary in different seasons, at different periods, and under different
weather conditions, to respond to the various degrees of severity of threat to mental health; control
measures ought to be taken according to the real-time status of public moods under haze, aside from
the actual levels of air pollution.

Second, in view of the combined effects of haze on body and mind and the timing and strength of
public intervention (e.g., emission restriction, air purification, and outdoor activity reduction) haze
control measures need to be reconsidered. People might feel very bad under light haze, but at other
points in time, hold lesser negative emotions under even heavy haze. The adoption of intervention
measures should be based on the comprehensive assessment of the physical and psychological
influence of haze, rather than just from one perspective.

Third, with reference to the rules of emotion change and psychotherapy theories, some new sorts
of measures could be introduced to reduce the mental harm of haze. For example, through the guidance
of public opinion, the focus of the people could be transferred from haze to other positive topics,
especially when the negative emotion of the public is about to reach its peak. Extensive developments
of indoor activities would always help to ease the frustration and impatience of the people in their
spare time. In addition, the virtual reality and online community also show great potential to enrich
the mental life of the people under haze.
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