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Dichotomy of cellular inhibition by small-molecule
inhibitors revealed by single-cell analysis
Robert M. Vogel1, Amir Erez1,w & Grégoire Altan-Bonnet1,w

Despite progress in drug development, a quantitative and physiological understanding of

how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and

proliferative response of individual primary T-lymphocytes to a combination of antigen,

cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition

(the activated fraction of cells diminishes upon drug treatment, but active cells appear

unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas

activation response is diminished). We introduce a computational model of the signalling

cascade that accounts for such inhibition dichotomy, and test the model predictions for the

phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue

dichotomy of cellular response as revealed on short (signal transduction) timescales,

translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis

of drug action illustrates the strength of quantitative approaches to translate in vitro

pharmacology into functionally relevant cellular settings.
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I
ndividual cells rely on biochemical signalling pathways to
translate environmental cues into physiological responses.
Spurious activation of these pathways results in a cell’s

mischaracterization of environmental conditions and aberrant
cellular behaviour. This behaviour can, in some cases, be
detrimental to the health of the organism—causing ailments
such as inflammatory diseases (for example, ulcerative colitis1),
auto-immune disorders2,3 and cancer4. Inhibiting specific
dysfunctional components with small-molecule chemical
inhibitors has been successful in reducing aberrant signals and
ultimately ailments5. Examples include Imatinib in treating
chronic myelogenous leukaemia6 and Gefitnib for patients with
EGFR mutant non-small-cell lung cancer7,8. However, despite
these successes, inhibitory drug development remains slow and
can benefit from new techniques to aid screening of candidate
compounds9,10.

Fundamentally, an effective chemical inhibitor acts on a
signalling pathway by binding to the targeted enzyme and
shutting down its enzymatic activity. In this context, optimizing a
drug inhibitor abounds to optimizing its specific binding to the
enzyme target of choice. Recent technological advances have
focused efforts to development of pipelines that characterize drug
specificity with respect to all human kinases in vitro11–13 and in
cell lines as models for physiological settings14. The emphasis on
protein kinases is due to their prominence in signal transduction
pathways, where they serve as information relays by transferring a
phosphate from ATP to their target substrate. The technological
advances in drug screening often fall short of anticipating the
downstream consequences of drug inhibition: whereas kinase
inhibition is optimized at the local (molecular) level, the response
at the level of the entire pathway often remains sub-optimal.
Consequently, it is difficult to predict cellular response to
chemical inhibition. To gain some understanding of this
response, emphasis has been placed on high-throughput
characterization of the response of cell lines15,16.

Despite these advances in drug screening, many poorly
performing compounds proceed to, and often fail at, the
organismal stage of drug discovery. This suggests that we may
need to re-evaluate the relevance of bulk measurements on cell
line models to drug development, emphasizing instead a more
mechanistic understanding of individual primary cell responses to
inhibition (‘What’s wrong with drug screening today’17). This
need has been partially addressed by pioneering studies that
characterized biochemical networks of primary cells18,19 and
canonical cell-type responses to inhibition20–22. Yet, while these
studies have been illuminating, mechanistic principles of cellular
responses to small-molecule chemical inhibition have remained
elusive. It is precisely this gap in knowledge that this communi-
cation attempts to address.

We conjecture that one needs to resolve diverse enzymatic
states (for example, phospho-status) at the single-cell level to
identify the complex nonlinear responses of signalling networks
to inhibition. Nonlinear responses are often dominated by a
subset of enzymes that determine the behaviour of the pathway.
Identifying these key enzymes uncovers novel vulnerabilities of
the signalling network to inhibition23. Examples of nonlinear
responses uncovered by single-cell measurements are numerous:
flow cytometry measurements of double-phosphorylated ERK
(ppERK) accumulation in stimulated T-lymphocytes exhibit a
highly nonlinear bimodal response to antigen24; by imaging ERK
in live cells, individual cell response to growth factors was shown
to be pulsatile25 or oscillatory26; administration of either
the tyrosine kinase inhibitor Gefitnib or the MEK inhibitor
PD325901 yielded either a frequency or a mean reduction in
ppERK signalling, respectively27. These are but few examples of
the dynamic complexities of biochemical signalling networks

under stimulation, as revealed by single-cell measurements. In all
these examples, inaccessible by ‘high-throughput’ population level
measurements, single-cell measurements added crucial under-
standing to the structure of a signalling pathway.

In this study, we integrate single-cell multi-parametric
phospho-flow cytometry measurements, cell-to-cell variability
analysis (CCVA28,29), and mechanistic modelling into a single
framework for dissecting the response of primary T-lymphocytes
to kinase inhibitors. By applying our integrated framework,
we find that protein variability creates diverse sensitivities
of individual cells to inhibition in two unique signalling
systems, namely JAK–STAT and T-cell receptor (TCR)-
mediated mitogen-activated protein kinase (MAPK) pathway.
These observations provide the necessary, and rarely utilized,
constraints required for mechanistic insights of kinase inhibition
in a physiological setting. We formally incorporate these insights
into mechanistic mathematical models, of which are available in
Supplementary Notes 1 and 2. We find that (i) JAK inhibitor
AZD1480 functions as a noncompetitive inhibitor with STAT5,
(ii) SRC (sarcoma kinase) and MEK (MAPK/ERK kinase)
inhibitors exhibit two qualitatively different modes of
inhibition. Specifically, targeting SRC manifests into either
maximal or unmeasurable quantities of phosphorylated ERK
(digital); conversely, inhibiting MEK produces a graded response
(analogue). With these constraints we developed a coarse-grained
model of TCR signalling containing exclusively measurable
quantities and the targets of the respective inhibitors. Using this
model we determined that the disparate response of cells to these
inhibitors originates in the unique embeddings of SRC and MEK
in biological networks. Following these insights we demonstrate
the functional relevance of our model of inhibition to cell
proliferation, thereby bridging the short molecular timescale with
the longer functional one. Taken together, in this communication
we demonstrate how, by combining mechanistic models and
single-cell measurements of primary cells, it is possible to predict
markedly different cellular behaviour in response to targeted
molecular inhibition.

Results
Single-cell diversity originates from protein variability. A
reductionist approach posits that the properties of a signal
transduction pathway in living cells should be deductible
from the biochemistry of its components working in concert.
However, traditional methods such as in vitro assays of enzyme
extracts and ensemble average measurements (for example,
western blot) do not incorporate the inherent biological
complexity of cells or the required resolution, and therefore fall
short of a detailed biochemical characterization of chemical
inhibitors. To illustrate this issue, we investigated the
biochemistry of JAK-induced STAT5 phosphorylation in
individual T lymphocytes stimulated with the cytokine
interleukin 2 (IL-2, Fig. 1a). We focus on this pathway for three
reasons: (i) its biological function is important, corresponding
to anti-apoptotic and proliferative signals30; (ii) its clinical
relevance in inflammatory diseases2,3 and cancer31; (iii) its the
molecular components are well documented32.

To monitor the JAK/STAT signalling response to JAK
inhibition—we prepared ex vivo mouse primary T-cell blasts
and exposed them to saturating amounts of the cytokine IL-2
(2 nM), followed by two-fold serial dilutions of AZD1480 (IJAK),
and measured at steady state (Supplementary Note 1.1). We
found that the average response follows an inhibitory hill
function with an estimated half effective inhibition concentration
(IC50) of 8.2±0.5 nM (Fig. 1b). In this preliminary characteriza-
tion we assumed that the hill coefficient is exactly one. A hill
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coefficient of one indicates that the inhibition of STAT5
phosphorylation can be described by the drug simultaneously
binding and deactivating the kinase.

The phospho-STAT5 (pSTAT5) response of individual cells to
JAK inhibition decreases smoothly and unimodally with increas-
ing doses of drug (Fig. 1b). We characterized the variability of cell
responses by the coefficient of variation (CV), a measure of the
standard deviation with respect to the mean pSTAT5 response. In
the absence of drug the CV is 0.77±0.004, and depreciates with
increasing doses of inhibitor (Fig. 1b inset). The concomitant
decrease in the mean response and CVpSTAT5 contradicts the
stochastic properties of chemical reactions. Indeed, diversity in
the abundance of pSTAT5 originating from physico-chemical
mechanisms is expected to exhibit Poisson statistics, meaning
that the CVpSTAT5 should behave as the inverse square root of
the mean33,34. Therefore, in contrast to our observations, if the
origin of the noise were Poissonian, CVpSTAT5 originating from
these simple Poisson properties would increase, rather than
decrease, with increasing inhibitor dosage. Consequently,
we conclude that individual clones generate diverse levels of
pSTAT5 from biological sources of diversity, that is, protein
variability, as opposed to the intrinsic stochasticity of chemical
reactions.

Next we asked whether the variable abundance of STAT5
can explain pSTAT5 variability in response to JAK inhibition.
We simultaneously monitored both STAT5 and pSTAT5 in

individual cells, and measured the average pSTAT5 abundance in
subpopulations of cells with similar STAT5 abundances, a
technique referred to as CCVA28,29. We found that the
geometric mean of pSTAT5 correlates with STAT5 abundance
in the absence of JAK inhibitor (Fig. 1c). We then investigated
how varying abundances of STAT5 influence both the JAK
inhibitor dose response amplitude and the half effective inhibitor
concentration (IC50). We found that the amplitude of pSTAT5
response increased with STAT5 expression, while the IC50

reduced exponentially with a scale of approximately � 2.0
(STAT5 a.u., Fig. 1d). Hence, by monitoring the extent of drug
inhibition at the single-cell level, we establish new experimental
observations regarding signal inhibition.

CCVA established the dependence of pSTAT5 on the
endogenous (variable) STAT5 abundance. We leveraged this
observation to develop a biochemical model of inhibition in live
cells. Specifically, we tested three simple biochemical models that
may account for the transmission of STAT5 variability to
pSTAT5 levels per cell, and the biochemical mechanism of JAK
inhibition by AZD1480 (Fig. 2a, see Supplementary Notes 1.2–1.4
for derivations). Each mechanism represents unique interactions
between the JAK, STAT5 and IJAK—the noncompetitive
inhibitor binds to JAK independent to the presence of STAT5,
the uncompetitive inhibitor only binds to the JAK–STAT5
complex, and the competitive inhibitor binds to JAK
which prevents STAT5 from binding (Fig. 2a). We found
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Figure 1 | Variability of endogenous protein abundance correlates with single-cell response to chemical inhibition. (a) IL-2 stimulation of the JAK–STAT

pathway. (b) Single-cell pSTAT5 abundance in response to JAK inhibitor AZD1480. Inset, the coefficient of variation (CV) response to inhibition. (c) Single-

cell contour plot of total STAT5 abundance and pSTAT5 in cells not treated with inhibitor, [IJAK]¼0. Curve shows the resulting geometric mean of the

pSTAT5 abundance conditioned on STAT5 abundance per cell. (d) Cell-to-Cell variability analysis reveals that the pSTAT5 response amplitude is correlated

with STAT5 abundance. In addition, the sensitivity of cells to inhibition (IC50) exhibits a small negative correlation with STAT5 abundance (errorbars are

standard deviation of experimental duplicates).
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that a noncompetitive inhibition model for AZD1480 action
best described our experimental observations (Fig. 2b, see
Supplementary Note 1.5 for details). This observation is
supported by the fact that AZD1480 acts by competing with
ATP for occupancy of the ATP binding pocket of JAK, and does
not compete with STAT5 (ref. 35). Furthermore, it was necessary
to account for the physiological variability in STAT5 substrate
availability to account for the cell-to-cell variability in pSTAT5
inhibition (Fig. 2c,d). Lastly, we validated that our model could
account for the small dependence of the IC50 on STAT5
expression. We found agreement between our IC50 measurements
in Fig. 1d with the estimated IC50 from our model (Fig. 2e).

To summarize, in this section we demonstrated how CCVA
parses single-cell phospho-profiling data to validate models of
drug inhibition. We employed CCVA here on the JAK–STAT
pathway, and found an optimal model of noncompetitive binding
of inhibitor to kinase, as supported by the literature.

Single-cell measurements reveal diverse modes of inhibition.
We proceed by investigating inhibition of a more complex
signalling cascade, namely antigen-driven MAP kinase activation
in primary T cells. Upon exposure with activating ligands
(for example, complex of a peptide with major histocompatibility
complex, peptide-MHC presented on the surface of antigen-
presenting cells (APCs)), T cells activate their receptors through
activation of a SRC Family kinase (Lck). This then triggers a
cascade of kinase activation leading to ERK phosphorylation. We
chose this model system because its complex network topology
and its functional relevance: aberrant activation in the ERK
pathway is often involved with oncogenesis4, making it a key

pathway to be targeted with drug inhibitors in multiple tumour
settings.

It is possible to decompose T-cell receptor mediated ERK
signalling into two smaller sub-networks: (i) a receptor proximal
signalling cascade with positive and negative feedback regulation,
and (ii) the unidirectional MAP kinase (MAPK) cascade. We now
demonstrate that inhibiting enzymes specific to each signalling
sub-network produces a unique response in terms of ERK
phosphorylation. To show this, we subjected activated T-lym-
phocytes to inhibitors targeting the two signalling sub-networks
separately: a SRC inhibitor (Dasatinib) for the receptor proximal
component, and a MEK inhibitor (PD325901) for the MAPK
component (Fig. 3a). Importantly, the population-mean response
of the cells to each inhibitor resulted in amplitude reduction and a
trivial inhibition model (see Fig. 3d,e insets). However, going
down to the single-cell resolution, the ppERK response to SRC
inhibition (Dasatinib) resulted in an all-or-nothing response
(‘digital’ inhibition, Fig. 3b,d). Conversely, application of a MEK
inhibitor (PD325901) resulted in graded responses (‘analogue’
inhibition, Fig. 3c,e). SRC and MEK inhibitors exhibit markedly
different modes of inhibition which do not rely on the exact
chemical identity of the administered inhibitor but rather its role
in the signalling cascade (Supplementary Notes 3.1 and 3.2).

We characterized the two modes of inhibition by fitting the
distribution of ppERK amount per cell to a mixture of two
Gaussians. The relevant statistics can be summarized by two
parameters—aþwhich represents the fraction of activated cells
(Fig. 3f) and mþ representing the mean ppERK levels among
activated cells. We carried out this analysis for each dose of
inhibitor. In Fig. 3g, we report that the MEK inhibitor operates
solely upon the mean, mþ , of ppERK abundance among activated
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Figure 2 | CCVA reveals the most likely mechanism of AZD1480 in live single cells. (a) Model diagrams that represent three possible mechanisms of

inhibition. (b) Each model was tested against our data by measuring the sum of squared residuals (total residuals) between our model predictions and the data

points—a lower value means better agreement between model and data. The model was fit to all the data point presented in c. (c) Overlay of data (circles) with
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corresponding parameters reveal agreement between model (line) and the data (open circles). (e) Overlay of measured IC50 with respect to STAT5 abundance

as measured from CCVA analysis of data (triangles; errorbars standard deviation experimental duplicates) and predicted by our optimal model (line).
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cells, which we define as analogue inhibition of ERK activation. In
contrast, the SRC inhibitor operates solely upon the fraction of
active cells, aþ , which we define as digital inhibition. To
summarize, by utilizing single-cell measurements, we were able to
demonstrate that there exist two modes of inhibition in the
MAPK signalling cascade, digital and analogue, each of which are
associated with the sub-network the targeted kinase belongs. Each
mode of inhibition can be associated with the unique inhibition of
proximal and distal kinases respectively within the ERK cascade.
We proceed to examine if this effect can be captured by the
properties of the respective sub-networks and whether it maps to
a functional output.

Sub-network of targeted enzyme determines mode of inhibition.
We explored whether the two distinct modes of inhibition
observed in Fig. 3 originate in the context of the targeted
enzymes, that is, by the position of the enzyme undergoing

inhibition within the transduction cascade. For this, we developed
a coarse-grained model which accounts for ERK phosphorylation
downstream of SRC activation24,36. Our model explicitly
incorporates measurable quantities (for example, abundance of
CD8), control parameters (for example, antigen concentration),
and the inhibitor targeted species37, while incorporating
uncontrollable or unmeasurable quantities into the
phenomenological species ‘activated SRC’. The graphical
representation of our model (Fig. 4a) emphasizes the two sub-
networks acting here. First, SRC* is controlled by competing
positive and negative feedbacks that are abstractions of negative
feedback of active SHP-1 phosphatase24 and positive feedback
associated with immune receptor signalling36,38. Second, MEK
and ERK are activated upon formation of SRC* in an
unidirectional manner, without feedback (see Supplementary
Note 3.3 for experimental evidence for our unidirectional MAPK
signalling assumption). These modelling components encompass
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Figure 3 | Specific modes of inhibition. (a) The implicit model of inhibitor action. (b) Histograms of single-cell response to TCR stimulation and SRC
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key features of ERK activation in the context of antigen activation
in T lymphocytes.

To assess the properties of our competing feedback model we
constructed phase diagrams of active SRC that demonstrate how
varied quantities of active SRC map to ERK phosphorylation.
Active SRC accumulates upon engagement of the activating
ligand with its kinase-bearing receptor. This subsequently
activates both positive and negative feedbacks driving further
accumulation or extinction of SRC*. The dynamics of accumula-
tion of SRC* (Supplementary Eq. 26) can be summarized in a
phase diagram (Fig. 4b), that illustrates the influence of both
feedbacks. The model parameters (Supplementary Table 2) are set
so that the negative flux (that is, the change in time of SRC*
levels) rises and saturates at lower levels of SRC* than the positive
flux. This staggering of the positive and negative fluxes as a
function of SRC* causes them be equal at three points in the
phase diagram, that is, there are three ‘steady states’ or fixed
points in our model. By plotting the net flux as a function of the
active complex SRC*, we assessed the stability of the fixed points.
The dynamics are such that SRC* always converges to the

extreme points SRC�low and SRC�high (stable fixed points), while
diverging from the centre point SRC�med (unstable fixed point).
Hence, our coarse-grained model encapsulates the bistability in
SRC* formation.

We model ERK activation by assuming that the active complex
SRC* triggers the enzymatic phosphorylation of MEK, which then
phosphorylates ERK (Fig. 4c, Supplementary Equations 28 and
29, respectively). In Fig. 4d, we represent the dynamic trajectory
of this signalling pathway for varied initial conditions: such a flow
diagram illustrates the stability of the low and high states in the
(SRC*, ppERK) plane and the instability of the intermediate
point. Overall, our coarse-grained model of ERK activation upon
ligand engagement generates two stable fixed points correspond-
ing to either low or maximum ppERK, consistent with our
experimental results.

Next, we tested whether our coarse-grained model can predict
ppERK response to drug inhibition. Application of the MEK
inhibitor to our model (Fig. 4e) supports our experimental
observations, as MEK inhibition does not influence the bistability
of the activated kinases SRC* (Fig. 4f). Increasing the MEK
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inhibitor dose shows continuous reduction in the amplitude of
ppERK response (Fig. 4g), without affecting the bistability in
ppERK. The dynamic properties supporting the bistability in
ppERK are preserved in the presence of the MEK inhibitor
(Fig. 4h). Our model is validated with the experimental
observation in that the MEK inhibitor only reduces the mean
quantity of ppERK over the population of activated cells, that is, it
inhibits the ERK pathway in an analogue manner.

Our model highlights that SRC is the kinase crucial for the
bistability of the active complex SRC*, resulting in a signalling
context fundamentally distinct to that of MEK. Inhibition of SRC
reduces the positive flux which generates SRC* (Fig. 4i), and
consequently reduces SRC* at the high fixed point. We find that
increasing the dose of the SRC inhibitor decreases SRC* until, at a
critical dose, the high fixed point and the unstable fixed point
annihilate one another (Fig. 4j). Therefore, a dose of SRC
inhibitor greater than the critical dose leaves the system with only
a single fixed point, SRC�¼ SRC�low (Fig. 4j). Interestingly, despite
the continuous reduction of the SRC�high stable fixed point with
increased dosage of SRC inhibitor, the quantity of ppERK
remains essentially unchanged until the inhibitor is greater than
the critical dose (Fig. 4k). For doses of SRC inhibitor beyond the
critical dose the signalling network only supports a single low
quantity ppERK (Fig. 4l). Hence, SRC inhibition results in a
binary output that is identical to that observed in the data: our
model is consistent with the digital nature of Dasatinib as a SRC
inhibitor.

Our model assumes that interactions of molecular inhibitors
with their target enzyme all act as noncompetitive inhibitors
(consistent with in vitro characterization of these small
molecules). Yet, despite these locally identical mechanisms of
inhibition, the model successfully accounts for the two distinct
modes of inhibition of ERK in our experimental findings. Thus,
taken together, the experimental results and theoretical model
demonstrate that enzymatic context is essential to understand
and parameterize inhibitor function.

Protein variability causes resilience to inhibition. Using our
coarse-grained model, we sought to explore how the endogenous
variability of SRC abundance would diversify the response of
individual cells to inhibition. Our model predicts that the effective
quantity of SRC determines whether the (SRC, ppERK) phase
diagram has a single or three fixed points—as a result it repre-
sents a bifurcation parameter (Supplementary Equation 32). By
analogy, endogenous variation of SRC positions cells either above
or below the critical threshold of SRC required for bistable sig-
nalling (Fig. 5a). We tested this hypothesis by correlating CD8
and ppERK of activated T-lymphocytes. In T lymphocytes,
Lck—a SRC family kinase, is recruited together with CD8 to
trigger response to antigen, therefore we treat CD8 abundance as
a proxy for the effective abundance of SRC in individual cells.
Indeed, measuring CD8 for a single dose of SRC inhibitor shows
that cells with elevated quantities of CD8 are more likely to have
ppERK signal (Fig. 5b), a result that is consistent with previous
experimental and theoretical observations37.

Extending this observation, our model suggests an interesting
possibility: that variability of CD8 expression in single cells is
sufficient to generate disparate sensitivities to drug inhibition.
The bifurcation diagram for each drug dose, Fig. 5c, shows that
the minimum quantity of SRC sufficient for the bistability, SRCc,
increases with increasing drug dose. Consequently, a cell with a
higher abundance of SRC will be more tolerant to inhibition
because of simple dosing of the effective abundance of available
SRC (Fig. 5d)—requiring higher inhibitor dosage to experience
any reduction in signalling. We confirmed this qualitative
prediction by correlating the critical amount of CD8, labelled

CD8c, with drug dose; the MEK inhibitor reduced ERK activation
independently of the abundance of CD8 whereas higher
concentrations of SRC inhibitor were required to inhibit
(Fig. 5e,f).

Mode of inhibition translates to proliferative response. Having
established the existence of distinct modes of inhibition of the
ERK pathway, we conclude the results section of this commu-
nication by posing an important challenge to our finding: do
these distinct modes of inhibition entail a functional ramification?
Upon phosphorylation, ppERK migrates from the cytosol to the
cell nucleus where it induces the expression of the immediate and
early genes (IEGs, for example, cFOS). IEGs constitute a set of
genes that facilitate cell cycle entry and cell division39. Hence it is
reasonable to expect that inhibiting the ERK pathway will impact
cell proliferation. But will cell proliferation, which happens on the
scale of days, be sensitive to the different modes of inhibition,
which happen on the scale of minutes? Our signalling results
(Fig. 3) suggest the following hypothesis: that MEK inhibition,
which produces intermediate levels of ppERK, will slow down
induction of IEGs, and as a result would increase the time to cell
division. In contrast, SRC inhibition, which reduces the fraction
of cells getting activated, will reduce the number of cells entering
cell cycle, without affecting the overall cell division in activated
cells (cf Fig. 3).

We tested this hypothesis by quantifying the proliferation of T
cells after 48 h of in vitro culture under concomitant antigen
stimulation and drug exposure. We used flow cytometry to
monitor cell activation and division by measuring cell size
(FCS-A), the levels of the CD8 co-receptor on the surface of cells
(proportional to fluorescence intensity), and the fluorescence of T
cells that were tagged before activation with an amine-reactive
fluorescent dye (CTV or CFSE, the dye gets diluted by two-fold at
each cell division). Upon activation, T cells increase both their
size and CD8 expression, providing a clear criterion (Fig. 6a) that
separates inactive and active cell populations, whose numbers can
be quantified as N� and Nþ , respectively. Among the active
fraction of cells we analyse the number of cells (Nþi for i¼ {0, 1,
2, 3, y}) undergoing i divisions as measured by CTV or CFSE
dilution (Fig. 6b). By computing both the mean number of
divisions and the fraction of activated cells for each dose of each
drug, we could plot the two hypothesized modes of long timescale
inhibition.

Representing the data as fraction activated versus mean
divisions, demonstrates that the disparate modes of inhibition
for signal transduction map to the proliferative timescale
(Fig. 6c). To be more explicit, we found that dosing of MEK
inhibitor reduces the average number of divisions among
activated cells, while the dominant feature of the SRC inhibition
is the distinct reduction of the number of activated cells. This is
not the exclusive feature observed in our data, since intermediate
doses of SRC inhibitor do also reduce the mean divisions
(possibly because of the unaccounted signalling transduction
pathways dependent on TCR activation, for example, PI3K and
AKT40). Crucially, application of MEK and SRC inhibitors shows
grouping of the proliferation data when represented as fraction
activated versus mean division number. We then found these
results to be a general property of MEK and SRC inhibitors in our
system by including the following: Bosutinib, PD325901, PP2,
Trametinib and AZD6244; most these drugs are either presently
clinically used or in various stages of clinical trials. Indeed, Fig. 6c
shows an astonishing degree of agreement in-between the SRC
inhibitors, in-between the MEK inhibitors, and at the same time,
a very clear divergent behaviour of the two families. We conclude
that our measurements support the hypothesis that the impact of
MEK/SRC inhibition on cell proliferation recapitulate the two
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modes of inhibition that we documented with short-term
signalling response in Fig. 3.

Discussion
In this study we combined theoretical and experimental
approaches to probe mechanisms of inhibition in signal
transduction. We used single-cell phospho-profiling and CCVA28

to characterize the biochemical details of small-molecule chemical
inhibitors within living cells; such detail was so far limited to
in vitro enzymatic assays. We uncovered a generic mechanism in
which targeted enzyme inhibition manifests in two distinct
patterns of inhibition, which we label ‘digital’ versus ‘analogue’.
Lastly, we probed the biological significance of these results by
correlating short timescale signalling behaviour with unique
modes of inhibition of cellular proliferation.

Using single-cell phospho-profiling and CCVA we were able to
perform detailed and mechanistic characterization of cellular
responses to targeted inhibition in primary cells. Specifically, we
showed how to utilize CCVA to mechanistically characterize the
biochemical interaction between the enzyme target and the
inhibitor. We confirmed that AZD1480 is a potent noncompe-
titive, with respect to STAT5, inhibitor of JAK–STAT signalling
in IL-2 stimulated primary T-lymphocytes (Fig. 2) and that
pSTAT5 levels and drug efficacy depend on varied levels of
endogenous STAT5. In addition, we demonstrated how the
organization of reactions in biochemical networks in a more
complex signalling cascade can determine markedly different
cellular responses to inhibition (Figs 3 and 4).

Albeck et al.27 already uncovered that inhibition of different
enzymes manifest to digital or analogue signalling responses. Our
contribution here is to propose a mechanistic model which
attributes these disparate responses to the context of the targeted
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enzyme. Essentially, the overall network response to inhibition is
determined by the dynamic properties associated with the
targeted enzymes’ location in the larger biochemical network
(Fig. 4). Furthermore, we show how our short timescale signalling
behaviour translates to novel long timescale proliferative response
to inhibition (Fig. 6). As a result, our method extends the
characterization of inhibitors from the current state-of-the-art
in vitro assays to primary single cells, and sheds light on the
nonlinear signalling responses of the biochemical network
structure being perturbed.

Building upon our initial findings, we extended our mechan-
istic models and used CCVA to demonstrate how cells utilize the
endogenous variability of protein abundance to generate disparate
responses to singular perturbations. In context to inhibition, we
found that variation in enzyme substrate (STAT5) abundance
established diverse signalling amplitudes and varied the sensitiv-
ity of single cells to inhibition (Figs 1 and 2). We then extended
our mechanistic model of SRC inhibition and found that the
variability of SRC expression operates on cells as a bifurcation
parameter, which controls the number of possible steady states of
the signalling network. As a result, cells that had elevated
abundance of SRC were more tolerant to inhibition (Fig. 5).
The extent in which these mechanisms of diversity provide
resilience of populations to inhibition at longer timescales
remains an open question. However, our findings are of practical
importance: there are numerous examples of biological systems
that utilize protein abundance to generate phenotypic variability,
as noted in refs 41–45. Similarly, there exist abundant single-cell
observations showing heterogeneous responses to
inhibition16,21,22.

Our method facilitates the extension of in vitro kinase assays to
cellular systems and motivates a transition from phenomenolo-
gical characterization of drug response at the single-cell level, into
mechanistic and functional understanding. By using our
combined approach of CCVA and development of mechanistic
models to characterize drugs in primary cells, we were able to
unravel fundamental chemical and biological processes. In
particular, our method is especially useful when probing the
functional consequences (on long timescales) of molecular
perturbations (as experienced by cells on short timescales). When
applied, we successfully showed how the SRC and MEK inhibitors
cluster on two distinct curves, which are easy to interpret as
distinct modes of inhibition. Since it is unlikely that the ERK
pathway is the only cellular pathway exhibiting distinctly different
modes, we expect that our method will prove useful in
characterizing other inhibitor-pathway combinations, hopefully
teasing out more novel modes of inhibition46.

Methods
Mice and cells. Primary splenocytes and lymphocytes were harvested from
C57BL/6N (B6; Taconic Farms), B10A wild type (B10A; Taconic Farms),
OT-1 TCR transgenic RAG2� /� (Taconic Farms), and 5C.C7 TCR transgenic
RAG2� /� (Taconic Farms) mice and cultured up to 10 days. Mice were bred,
maintained, and euthanized at Memorial Sloan Kettering Cancer Center (MSKCC)
in compliance with our animal protocol. The animal protocol was reviewed and
approved by the Institutional Animal Care and Use Committee (IACUC) of the
Memorial Sloan Kettering Cancer Center (New York NY). The protocol number is
05-12-031 (last renewal data: 23rd December 2013). RMA-S TAP-deficient T-cell
lymphoma cell line was used as APCs for signalling experiments24.

Antibodies and cell stains. Cells were labelled with primary antibodies against
doubly phosphorylated ERK 1/2 (pT202, pY204; clone E10; used at 1:300 dilution),
phosphorylated MEK 1/2 (p-S221; clone 166F8; used at 1:100 dilution), phos-
phorylated STAT5 (p-Y694; clone C11C5; used at 1:200 dilution)—purchased
from Cell Signaling Technology (Beverly, Massachusetts)—and polyclonal goat
anti-STAT5 (catalogue number sc-835-G; used at 1:200 dilution) purchased from
Santa Cruz Biotechnology (Santa Cruz, California). Secondary antibodies tagged
with fluorescent molecules include PE conjugated donkey anti-mouse (catalogue
number 715-116-151), APC conjugated donkey anti-mouse (catalogue number

715-136-151), FITC conjugated donkey anti-rabbit (catalogue number 711-097-
003), and Alexa Fluor 647 conjugated donkey anti-goat (catalogue number
705-605-147) were all purchased from Jackson ImmunoResearch (West Grove,
Pennsylvania; used at 1:200 dilution). In addition, Brilliant Violet 421 donkey
anti-rabbit polyclonal antibody was purcahsed from BioLegend (San Diego,
California; catalogue number 406410; used at 1:200 dilution). Surface markers
CD8a (clone 53–6.7; used at 1:200 dilution) and CD4 (clone RM4-5; used at 1:300
dilution) tagged to fluorescent molecules were purchased from Tonbo biosciences
(San Diego, California). Cell proliferation was measured by dilution of either
CellTrace Violet (CTV) or Carboxyfluorescein N-succinimidyl ester (CFSE)
proliferation kits purchased from Molecular Probes. Cell viability was assessed
with Live/Dead Near-IR kit purchased from Molecular Probes.

Small-molecule chemical inhibitors. The SRC inhibitors PP2 and Bosutinib as
well as the MEK inhibitor PD0325901 (PD325901) were purchased from Sigma-
Aldrich. The MEK inhibitors Trametinib and AZD6244 were generous gifts from
Neal Rosen (MSKCC). The JAK inhibitor AZD1480 and SRC inhibitor Dasatinib
were purchased from Selleckchem.

Additional reagents. Supplemented RPMI-1640 media was prepared by MSKCC
core media preparation facility and was used for all cell cultures and experiments.
Media was supplemented with 10% fetal bovine serum, 10 mg ml� 1 penicillin and
streptomycin, 2 mM glutamine, 10 mM HEPES (pH 7.0), 1 mM sodium pyruvate,
0.1 mM non-essential amino acids, and 50 mM b-mercaptoethanol. Cell were
stimulated with with interleukin 2 (IL-2; eBioscience). TCR activating ligands K5
MCC peptide (K5): ANERADLIAYFKAATKF (T lymphocyte 5C.C7 agonist) and
ovalbumin peptide SIINFEKL (T lymphocyte OT-1 agonist) were purchased from
GenScript. Cells were chemical fixed and permeabilized following signalling
experiments with 2% paraformaldehyde (PFA; Affymetrix) and 90% methanol
(MeOH). Cells were stained with antibodies and suspended in FACS buffer for
flow cytometry measurements. FACS buffer consists of 10% fetal bovine serum
(MSKCC core media preparation facility) and 0.1% sodium azide in PBS.
Ficoll-Paque PLUS (GE) was used to purify live cells in culture.

Primary cell culture. 5C.C7 and OT-1 primary cells were cultured ex vivo with
peptide pulsed APCs from irradiated (3,000 RAD) B10A and B6 mice, respectively.
APCs were pulsed overnight with 1 mM K5 peptide for 5C.C7 activation and 1 mM
SIINFEKL for OT-1 activation prior to irradiation. Cells were purified by Ficoll-
Paque gradient centrifugation and given exogenous IL-2 (1 nM) every other day.
All cells were cultured at 37 �C and 5% CO2 in supplemented RPMI and used for
experiments within 7 days of activation.

Single-cell inhibition of signal transduction assay. The pSTAT5 response to
JAK inhibition was measured using primary 5C.C7 derived T lymphocytes. Cells
were aliquoted in 96-well v-bottom plates with exogenous IL-2 (working dilution
2 nM) for 10 min and kept at 37 �C. The cells were then treated the JAK inhibitor
AZD1480 for 15 min at 37 �C. Followed by 15 min of fixing in 2% PFA on ice. The
cells were then permeabilized in 90% MeOH and stored at � 20 �C until staining
for flow cytometry.

The ppERK response to SRC and MEK inhibition was measured using primary
OT-1 T-lymphocytes activated with RMA-S APCs. RMA-S cells were suspended in
culture with 1 nM SIINFEKL peptide for 2 h at 37 �C, 5% CO2, and on a rotator to
guarantee mixing. During this time we labelled OT-1 cells with an amine-reactive
dye, CTV, according to the manufacture’s protocol (Molecular Probes). This
fluorescent tag was used to identify OT-1 cells in silico. We rested the OT-1 cells
one hour after CTV staining, and then distributed them in a 96-well v-bottom
plate. Each well was given various doses of SRC inhibitor and MEK inhibitor and
kept at 37 �C for 5 min. Following the 5 min exposure to the inhibitors, we added
the peptide pulsed RMA-S (10 RMA-S to 1 OT-1 T cell) and pelleted by
centrifugation for 10 s at 460 rcf at room temperature. This step guaranteed that
both cell types, OT-1 and RMA-S, came into contact. The cells were allowed to
activate for 10 min, followed by fixing on ice in 2% PFA, and then permeabilized
and stored in 90% MeOH at � 20 �C.

Proliferation assay. The proliferative response of OT-1 T-lymphocytes to SRC
and MEK inhibitors was measured by the dilution of the amine-reactive dyes CTV
or CFSE. Splenocytes from B6 mice were used as APCs. Once harvested, the APCs,
were given exogenous SIINFEKL peptide (1 nM) for 2 h and kept at 37 �C, in 5%
CO2, and placed on a rotator to guarantee mixing. During this time, lymphocytes
and splenocytes were harvested from an OT-1 mouse, and labelled with either CTV
or CFSE according to the manufacture’s protocol (Molecular Probes). After the 2 h
of incubation, the B6 splenocytes were irradiated with 3,000 rad. Irradiated B6
splenocytes and CTV or CFSE stained OT-1 lymphocytes and splenocytes were
mixed, 10 B6 derived cells per OT-1 derived cell, in sterile 96-well v-bottom plates.
The inhibitors were then administrated and the plates were kept at 37 �C and in 5%
CO2 for 48 h. After the 48 h, cells were labelled with a fixable Live/Dead stain
according to manufacture’s protocol (Molecular Probes), fixed in 2% PFA, and
suspended in 90% MeOH at � 20 �C until staining for flow cytometry.
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Data analysis. Flow cytometry measurements were compensated and gated using
FlowJo software. All other data analysis was performed using the scientific python
software suite (SciPy), figures were produced in matplotlib47, and Gaussian mixture
modelling performed using scikit-learn48.

Data availability. The data that supports the findings of this study are available
upon request from the corresponding author.
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