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Cardiac diseases compose a fatal disease category worldwide. Over the past decade, high-
throughput transcriptome sequencing of bulk heart tissues has widened our understanding
of the onset and progression of cardiac diseases. The recent rise of single-cell RNA
sequencing (scRNA-seq) technology further enables deep explorations of their molecular
mechanisms in a cell-type-specific manner. However, due to technical difficulties in
performing scRNA-seq on heart tissues, there are still few scRNA-seq studies on
cardiac diseases. In this study, we demonstrate that an effective alternative could be
cell-type-specific computational reconstruction of bulk transcriptomes. An integrative
bulk transcriptome dataset covering 110 samples from 12 studies was first constructed
by re-analysis of raw sequencing data derived from the heart tissues of four common cardiac
disease mouse models (myocardial infarction, dilated cardiomyopathy, hypertrophic
cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy). Based on the
single-cell reference covering four major cardiac component cell types and 22 immune
cell subtypes, for each sample, the bulk transcriptome was reconstructed into cellular
compositions and cell-type-specific expression profiles by CIBERSORTx. Variations in the
estimated cell composition revealed elevated abundances of fibroblast andmonocyte during
myocardial infarction, which were further verified by our flow cytometry experiment.
Moreover, through cell-type-specific differential gene expression and pathway enrichment
analysis, we observed a series of signaling pathways that mapped to specific cell type in
diseases, like MAPK and EGFR1 signaling pathways in fibroblasts in myocardial infarction.
We also found an increased expression of several secretory proteins in monocytes which
may serve as regulatory factors in cardiac fibrosis. Finally, a ligand–receptor analysis
identified key cell types which may serve as hubs in cellular communication in cardiac
diseases. Our results provide novel clues for the cell-type-specific signatures of cardiac
diseases that would promote better understanding of their pathophysiological mechanisms.
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INTRODUCTION

The onset and progression of complex cardiac diseases often
involve a variety of genes and features through systemic gene
expression alterations. With the popularity of sequencing
technologies, RNA sequencing of bulk tissues (bulk RNA-seq)
has generated a huge amount of data about transcriptomic
alterations in cardiac diseases in the last decade (Wang et al.,
2009). Such bulk RNA-seq data sketch the overall transcriptomic
landscape of cardiac disease at the whole tissue level, which has
provided useful clues for investigating cardiac disease genes and
pathways. Nevertheless, according to the recently published
comprehensive cell atlas of healthy hearts in human and
mouse, the heart tissue is typically composed of a variety of
cell types, including but not limited to cardiomyocyte, endothelial
cell, fibroblast, and smooth muscle cell (Litviňuková et al., 2020;
Tabula Muris, 2020). Besides this, it has also been observed that
multiple groups of immune cells would be recruited or activated
during some cardiac diseases like heart failure (Martini et al.,
2019). Therefore, in order to comprehensively understand the
molecular mechanism of cardiac diseases, it is necessary to dissect
the bulk transcriptome to the single cell or, at least, to the single
cell type level.

The recently emerged single-cell RNA sequencing (scRNA-
seq) technology should be an outstanding approach to explore
transcriptome dynamics at the resolution of a single cell (Shapiro
et al., 2013). Through scRNA-seq, many disease-associated
mechanisms could be ascribed to specific cell types, and cell-
type-specific therapeutic targets of cardiac diseases would be
screened thereby—for example, Li et al. (2019) have defined
endothelial heterogeneity in the healthy and injured heart
through characterization of the gene expression signature in
endothelial cells by scRNA-seq, and Farbehi et al. (2019)
performed scRNA-seq to investigate the total non-
cardiomyocyte fraction and fibroblast lineage cells from
murine heart after a myocardial infarction surgery. However,
most of these studies focused on one specific disease and only a
part of cell types, where several intrinsic characteristics of popular
scRNA-seq techniques like 10x Genomics have limited their
application in cardiac disease research. First, the cost per
sample of scRNA-seq is much higher than bulk RNA-seq;
therefore, the scRNA-seq data are often of a small sample size
(some even have no biological replicate) (Farbehi et al., 2019; Li
et al., 2019; Martini et al., 2019) and thus exhibit lack of
consideration of individual variations. Second, the single-cell
suspension preparation procedure in the scRNA-seq pipeline
is very challenging to cell survival, and it is known that some
important cell types, like cardiomyocytes and neurons, are fragile
to such procedure, especially in disease conditions when the cell
vitality is already weak (Tucker et al., 2020; Zhou et al., 2020).
Finally, the coverage of gene expression quantification in scRNA-
seq data (usually covering 103 genes) is also substantially
compromised in comparison with bulk RNA-seq data (usually
covering 104 genes), which limited its usage for depicting the
whole-transcriptome-level alterations during the disease
processes (Hou et al., 2020). Given the aforementioned
intrinsic limitation of scRNA-seq technology, an alternative

approach is to dissect bulk transcriptomes to specific cell
types. Indeed several methods have been established to
estimate cell type compositions from the bulk transcriptomes
of tissue samples, such as MuSiC (Wang et al., 2019), Bisque (Jew
et al., 2020), and SCDC (Dong et al., 2021), but only very recently,
the CIBERSORTx (Newman et al., 2019) method has been
enabled to not only enumerate cell type abundance but also
infer cell-type-specific gene expression profiles by integrating
bulk RNA-seq series and a scRNA-seq reference.
CIBERSORTx has shown promising results in cancer tissue
studies where they have imputed tumor-infiltrating immune
cell fraction and immune-cell-specific expression—for
example, Li et al. (2020) identified 755 differentially expressed
genes in CD4-GZMA T cell and further found a series of
pathways related to the tumor microenvironment and immune
response. In addition, Xu et al. (2021) have used CIBERSORTx to
impute multiple immune-cell-specific expressions and
systematically compared the expression difference of key genes
in different cell types between tumor and control samples. We
hereby employ CIBERSORTx as the proxy to deconvolute the
rich resource of bulk transcriptomes of cardiac diseases into cell-
type-specific gene expression profiles. More specifically, heart
tissue RNA-seq data across various mouse models of myocardial
infarction (MI), dilated cardiomyopathy (DCM), hypertrophic
cardiomyopathy (HCM), and arrhythmogenic right ventricular
cardiomyopathy (ARVC) were included as the input
transcriptomes and the comprehensive single cell atlas of four
non-immune heart cell types (cardiomyocyte, endothelial cell,
fibroblast, and smooth muscle cell) (Tabula Muris, 2018), and 22
immune cell subtypes (LM22) (Newman et al., 2015) were
considered as the reference. By this procedure, for each sample
of bulk transcriptome, CIBERSORTx could provide the relative
abundance of these 26 cell types and the specific expression
profile of each cell type. We used these reconstructed
expression data to explore the cell composition dynamics and
cell-type-specific pathways involved in the four cardiac diseases.
Moreover, flow cytometry was used to verify the number of
monocytes, macrophages, and fibroblast from healthy state to
MI state. Through the cell-type-specific biological analysis, we
found some novel pathways related to specific diseases, like
activated Wnt signaling pathway in DCM and EGFR1
signaling pathway in MI, and both of them could be ascribed
to fibroblasts. Several increased secretory protein genes in
monocytes in MI were identified to interact with the pathway-
related genes in fibroblasts, which suggest their roles in cardiac
fibrosis.

MATERIALS AND METHODS

Bulk RNA-Seq Input Data Collection,
Re-Quantification and Correction
The workflow of data processing and analysis is depicted in
Figure 1. We first retrieved the bulk RNA-seq data of the
heart tissue of a cardiac disease mouse model from NCBI
GEO database (http://ncbi.nlm.nih.gov/geo/). By using the
keyword combination [cardiac disease (All Fields) OR heart
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disease (All Fields)] AND [“Mus musculus” (Organism) AND
“Expression profiling by high throughput sequencing” (Filter)],
we have collected 17 bulk RNA-seq datasets that contain 184 bulk
RNA-seq samples in total. It is known that the quantification,
gene coverage, and file format of the author-provided processed
gene expression matrixes varied from dataset to dataset.
Therefore, to reduce laboratory bias and systematic errors, we
calculated and corrected the expression values of each sample by
starting from its raw sequencing data. First, the raw sequencing
data were downloaded from the SRA database and transformed
into FASTQ format by SRA-Toolkit (https://trace.ncbi.nlm.nih.
gov/ Traces/sra/sra.cgi?view = software). Adapters and low-
quality reads were automatically removed by fastp software
(Chen et al., 2018) to control the quality of reads. After
quality control, the clean reads were aligned to mouse genome
(GRCm38) using STAR (Dobin et al., 2013) (version 2.7.3a with
default parameter and GENCODE version M24 GTF gene
annotation), and the gene expression quantification of each
sample was performed by using the RSEM software (version 1.
3.1, with default parameter) (Li and Dewey, 2011). The gene
expression read counts from each sample were merged into the
gene expression matrix by the Perl script modified from RSEM
software.

An unexpected, prominent variation between samples from
the same disease condition group but different datasets was
observed (Supplementary Figure S1), derived by principal
component analysis (PCA), where the samples were more
likely to be clustered according to the datasets rather than to
the disease conditions. Therefore, the batch effect emerged as a
serious problem before any further analysis based on the gene

expression matrix. To correct these batch differences, the whole
gene expression matrix which contained all samples was first
processed by quantile normalization, and then the normalized
expression matrix was submitted to batch correction through the
popular ComBat tool (Johnson et al., 2007). To minimize the
batch effects and retain biological variations between samples, the
batch covariate and type covariate were both considered when
running the ComBat tool. Nevertheless, there were still some
outlier datasets that did not cluster according to disease condition
after correction. After removing these outlier samples, the
corrected bulk RNA-seq expression matrix covering 110
samples from 12 datasets (Supplementary Table S1) was
obtained, which included disease model samples in MI, DCM,
HCM, and ARVC and their corresponding healthy samples.

Preparation of Heart Single-Cell Expression
Reference Dataset
As for the reference scRNA-seq data, we first downloaded the
single-cell expression data of mouse hearts from Tabula Muris
Consortium (Tabula Muris, 2018). To accurately annotate the cell
types, we used the Seurat R package (v3.2.0) (Satija et al., 2015) to
perform unsupervised clustering of the single-cell read count
profiles. The read counts from each cell were divided by the total
read count of that cell and then were multiplied by a scaling factor
of 10,000 and log-transformed. To improve the clustering
stability, genes detected in less than 10 cells were excluded
from the downstream analysis. We performed PCA on the
normalized expression matrix using highly variable genes
identified by the FindVariableGenes function of Seurat.

FIGURE 1 | Workflow of the data processing and analysis pipeline.
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Following the result of the PCA, the top significant principal
components were selected for clustering, with a resolution
parameter equal to 0.5. The cell clusters were visualized using
t-distributed stochastic neighbor embedding method, and their
corresponding markers were listed using the FindAllMarkers
function of Seurat. Finally, the cell type or subtype of each
cluster was annotated based on the known cell type markers
from the CellMarker database (Zhang X. et al., 2019). For healthy
heart samples from Tabula Muris Consortium, six cell types were
annotated by this procedure, and four of them were used to
further build a signature matrix, including cardiomyocyte,
endothelial cell, fibroblast, and smooth muscle cell.

To better understand the disease-related cell abundance
alteration, cell-type-specific pathway alteration, and/or cell
subpopulation alteration, we also introduced disease-related
scRNA-seq datasets from the GEO database as the alternative
scRNA-seq references. These alternative disease-related GEO
references include the following:

(1) MI-related scRNA-seq dataset (GSE120064) of Ren et al.:
This reference datasets covered cardiomyocytes, endothelial
cells, fibroblasts, smooth muscle cells, and macrophages in
the MI mouse model’s heart tissues (Ren et al., 2020).

(2) HCM-related scRNA-seq dataset (GSE129175) of Zhang
et al.: This reference datasets covered cardiomyocytes,
endothelial cells, fibroblasts, smooth muscle cells, and
macrophages in the HCM mouse model’s heart tissues
(Zhang Y. et al., 2019).

(3) MI-related, fibroblast subpopulation-annotated scRNA-seq
dataset (GSE132144) of Ruiz-Villalba et al.: This reference
datasets contained six major subpopulations of fibroblasts
(sp1 to sp6; some minimal subpopulations were not
considered) in the MI mouse model’s heart tissues. This
reference was specifically used to analyze the alteration of
fibroblast subpopulations in different disease conditions
(Ruiz-Villalba et al., 2020).

Estimation of Cell Type Fraction and
Reconstruction of Cell-Type-Specific Gene
Expression Profiles
CIBERSORTx is a new machine-learning-based method for
estimating the relative abundance of cell types and cell-type-
specific expression from the bulk RNA-seq data. To achieve this,
the initial step is to construct a signature matrix featuring the gene
expression characteristics of each cell type. We here considered two
sources of cell type annotations. First, the aforementioned scRNA-
seq reference data processed from Tabula Muris reference or the
alternative disease-related GEO references were used for the four
major cell types of the heart, which was prepared and formatted as a
standard signature matrix by the Create Signature Matrix analysis
module of CIBERSORTx with suggested parameters. Second, to
further investigate the immune microenvironment of heart tissues
of different diseased states, the built-in LM22 immune cell signature
matrix was used to estimate the immune cell infiltration and
expression. To observe consistency with other mouse expression
matrixes, we converted the human gene symbols of LM22 into the

corresponding mouse homologous gene symbols before
calculation. Then, the two prepared signature matrix files along
with the batch-corrected bulk RNA-seq gene expression matrix
were submitted to the Impute Cell Fraction and Impute Cell
Expression analysis modules of CIBERSORTx to estimate the
relative abundance and expression for each of the 26 cell types
in the signaturematrixes, respectively.When imputing cell fraction,
the S-mode was applied to remove batch effect between signature
matrix andmixture samples. When imputing gene expression, high
resolution mode was used to further enable the estimation of cell-
type-specific gene expression profiles for each of the 110 bulk RNA-
seq samples. A gene subset file which covers a list of 18,584 genes
from the bulk expression file was used as input for analysis of as
many genes covered by the bulk transcriptomes as possible.

Differentially Expressed Gene Screening
and Functional Enrichment Analysis
The reconstructed cell-type-specific gene expression matrixes allow
the screening and analysis of genes differentially expressed for each
cell type between disease (MI, DCM,HCM, andARVC) and healthy
(or control) samples. Taking the cell-type-specific gene expression
matrix as the input, cell-type-specific DEGs were calculated by
DESeq2 (Love et al., 2014), and those with adjusted p-value <0.05
were considered as the significant DEGs. The g:Profiler (Raudvere
et al., 2019) is a web server for simultaneously performing multiple
functional enrichment analyses with timely updated reference gene
function annotations. To explore the potential biological functions
of these cell-type-specific DEGs, the DEG lists were submitted to g:
Profiler to investigate their associated significantly overrepresented
(adjusted p-value <0.05) Gene Ontology functional terms and
WikiPathways biological pathways. As for the disease gene
enrichment analysis, the disease gene annotations were firstly
retrieved from DisGeNET database (Piñero et al., 2017), and
only “heart disease” and its child diseases terms (e.g., myocardial
infarction) were retained. We adopted Fisher exact test to test the
cell-type-specific heart disease gene associations. More specifically,
genes related to each heart disease were treated as one gene set, and
the enrichment of these disease genes in each cell-type-specific DEG
set was compared to the background (i.e., all genes in the
transcriptome) by Fisher exact test. For each set of cell-type-
specific DEGs from MI, HCM, DCM, and ARVC, we separately
calculated their significance and retained the disease gene terms
satisfying the significance threshold of false discovery rate-adjusted
p-value <0.05.

Protein–Protein Interaction Network
Analysis and Cell–Cell Communication
Analysis
Protein–protein interaction network analysis was performed
using GeneMANIA (Warde-Farley et al., 2010). The input
genes contained the differentially expressed secretory protein
genes in monocytes and the overrepresented pathway-related
genes in fibroblasts. The prioritized interacting gene pairs related
to the input gene list were used to build a regulatory subnetwork,
which was further visualized by Cytoscape software (version
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3.8.0). CellChat (Jin et al., 2021), an R-based computational
analysis tool, was implemented for the analysis of cell–cell
communication. The expression profiles of 26 cell types were
used as the input of CellChat to construct the cell–cell
communication network. Briefly, we first calculated the
significant ligand–receptor pairs (LRs) between any two cell
types. CellChat covered several scenarios of LRs, and only the
typical Secreted Signaling LR sets in CellChatDB were considered.
Afterwards, the LR count matrix between any two cells was
constructed, and the healthy LR count matrix subtracted from
the diseased LR count matrix was used to reflect changes in
cell–cell communication between healthy and disease samples.
The changing of cell–cell communication network was also
visualized by Cytoscape.

Myocardial Infarction Mouse Model
Ten-week-old C57BL6/J mice were used in our experiments. The
mice were first anesthetized by isoflurane inhalation and
intubated with an endotracheal cannula. As for the myocardial
infarction group, intercostal thoracotomy was performed to
expose the heart, followed by ligation of the left anterior
descending coronary artery. As for the sham-operated mice,
they underwent the same surgical incision without ligation. All
mice were then assessed by ultrasound imaging to ensure the
success of disease modeling. All animal experiment protocols
complied with the Animal Management Rules of the Ministry of
Health of the People’s Republic of China and the Guide for the
Care and Use of the Laboratory Animals of Peking University and
were approved by the Laboratory Animal Ethics Office of Peking
University Biomedical Ethics Committee (LA2020337).

Flow Cytometry Assay
At 1 or 4 weeks after ligation or sham surgery, hearts were
harvested from the euthanized mice and perfused with 20 ml

of cold phosphate-buffered saline (PBS). The hearts were then
minced and digested with shaking for 30 min at 37°C in RPMI
1640 medium containing collagenase I (450 U/ml, Sigma, St.
Louis, USA), collagenase XI (125 U/ml, Sigma, St. Louis,
USA), DNase I (60 U/ml, Roche, Basel, Switzerland), and
hyaluronidase (60 U/ml, Harveybio, Beijing, China) enzymes.
The digested tissues were passed through a 40-μm filter,
centrifuged at 1,600 rpm for 6 min, and resuspended in PBS
containing 2% fetal bovine serum, followed with antibody
staining. The antibodies used in the experiment are presented
in Supplementary Table S2.

Single-cell suspensions were labeled with antibodies for
30 min at 4°C and washed in FACS buffer. Flow cytometry
analysis was performed on LSRFortessa (BD Biosciences), and
the results were analyzed with FlowJo software. Analysis of
significant differences on cell counts in flow cytometry
between healthy and MI samples was performed using
Student’s t-test. The differences on calculative composition
were analyzed using Mann–Whitney test.

RESULTS

Overview of the Bulk and Reconstructed
Cell-Type-Specific Expression Profiles of
Mouse Hearts From Cardiac Disease
Models
Multiple bulk RNA-Seq data could be retrieved by searching the
GEO database (Barrett et al., 2013) with cardiac disease-related
keywords. However, the author-provided gene expression
matrixes which are readily downloadable on GEO are not
suitable for our integrative analysis purpose because of several
pronounced problems, like inappropriate sample source (e.g.,
blood samples), discrepancy of expression quantification

FIGURE 2 | Clustering of bulk RNA-seq expression profiles and reconstructed cardiomyocyte expression profiles. The principal component analysis clustering
results using (A) bulk expression profile and (B) reconstructed cardiomyocyte expression profiles are labeled according to the disease condition of each sample. ARVC,
arrhythmogenic right ventricular cardiomyopathy; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; MI, myocardial infarction.
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methods, and prominent batch effects. Therefore, we instead
started from the raw sequencing data and applied an extensive
and carefully standardized pipeline for data collection and
processing (see “Materials and Methods”). As a result, we
assembled a batch-corrected bulk RNA-seq expression matrix
covering 110 samples from 12 independent datasets. Four types of
cardiac disease samples, including MI, DCM, HCM, and ARVC,
and their corresponding healthy controls were included in this
matrix.We noted that a reasonable PCA clustering result could be
observed based on this corrected expression matrix, where
samples that belong to the same disease group were clustered
together well even with the variations in source datasets and
disease modeling approaches (Figure 2A). This PCA result

indicates a successful reduction of technical bias and retention
of biological signatures in the bulk expression matrix produced
from our standardized data processing pipeline.

To reconstruct cell-type-specific gene expression profiles, the
gene expression characteristics should be first extracted from a
comprehensive scRNA-seq reference data. To this end, the
scRNA-seq reference data of mouse heart was obtained from
Tabula Muris Consortium (Tabula Muris, 2018). By cell
clustering and marker gene annotation, we identified four
major cell types (Supplementary Figure S2) of heart from this
data, including cardiomyocyte (with Actc1 and Actn2 markers),
fibroblast (Col1a2 and Col3a1markers), endothelial cell (Egfl7
and Emcn markers), and smooth muscle cell (Rgs5 and Acta2

FIGURE 3 |Cell abundance analysis of four major cell types of reconstructed heart transcriptomes across various cardiac disease conditions. (A)Bar plots showing
the variation in the proportions of the four major cell types across different cardiac diseases. Each color represents a specific cell type. (B) Flow cytometry assay verifying
that fibroblasts are increased inmouse heart tissues of myocardial infarction at the f4th week after model preparation. The top panel shows a representative sample of the
flow cytometry, and the lower panel is the statistical chart (n = 5, p = 1.185 × 10–3, Student’s t-test). Gating strategy: CD45.2- lineage (TER119 + CD31)- Sca-1+.
(C) Heat map showing the overall differentially expressed gene expression pattern of fibroblasts across different disease conditions.
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markers). Previous studies have also confirmed these four types as
the main cell types in heart tissue (Litviňuková et al., 2020; Wang
et al., 2020), while the macrophages and erythrocytes were not
consistently detected in other heart scRNA-seq datasets and
arouse concern of blood contamination and thus were not
considered in the subsequent analyses. Therefore, the scRNA-
seq expression matrix for the four major cell types was used as the
representative reference for further analysis. Based on this
reference, the input bulk RNA-seq expression matrix can be
dissected in a cell-type-specific manner via the recently
established CIBERSORTx computational approach (Steen
et al., 2020). More specifically, for each bulk RNA-seq sample,
the relative fraction and the gene expression profile of each cell
type was calculated by CIBERSORTx. To preliminarily assess the
reliability of the reconstructed cell-type-specific expression
matrix, we performed PCA based on the expression matrix of
cardiomyocytes (Figure 2B). The clustering result revealed that
the cardiomyocyte expression profiles were clearly clustered
according to the disease condition, demonstrating the

recapitulation of bona fide biological characteristics of
cardiomyocytes in cardiac diseases by the reconstructed
expression matrix.

Fibroblast Fraction Was Significantly
Increased in Mouse Heart in Myocardial
Infarction and Dilated Cardiomyopathy
We first investigate the alteration of cell composition in cardiac
disease condition based on the estimated cell abundance of
CIBERSORTx. The average abundances of the four major cell
types in different sample groups are shown in Figure 3A.
According to the results, cardiomyocytes which constitute over
80% of these four main cell types exhibit the highest abundance in
all sample groups. Following cardiomyocytes, the next abundant
cell types are endothelial cells and fibroblasts in healthy samples.
Interestingly, a recent study (Pinto et al., 2016) based on new
genetic tracers and enhanced flow cytometry techniques has
confirmed endothelial cells as the most abundant cell

FIGURE 4 | Cell type-specific overrepresented pathways associated with various cardiac disease conditions. Relations among cell types, signaling pathways from
the WikiPathways database, and disease conditions are summarized in the Sankey plot. Only the pathways significantly enriched at least among one of the cell-specific
differentially expressed gene (DEG) sets in one disease condition are considered. Besides this, pathways actually describing disease gene sets are excluded to avoid
confusion. The width of a link correlates with the strength of the relation (i.e., the relative counts of pathway genes in the DEGs of a specific cell type or a specific
disease condition).
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population other than myocytes, while other studies considered
that fibroblasts are more abundant than endothelial cells
(Banerjee et al., 2007; Bergmann et al., 2015). On the one
hand, our results also support the considerable proportions of
endothelial cells and fibroblasts in heart tissues, where their
abundances are largely comparable in healthy heart tissues. On
the other hand and more importantly, by comparing the
estimated abundances between the disease and healthy sample
groups, a substantial alteration of the relative abundances of these
two cell types can be observed.

As noted above, the comparison also indicates alteration of cell
composition in pathological conditions. In MI samples, the
abundances of cardiomyocytes are significantly decreased
compared to the healthy samples (p < 0.01, Mann–Whitney
test). One straightforward explanation of this observation
would be the hypoxia-induced cell death of a vast number of
cardiomyocytes in proximity to the damaged area in MI
(Frangogiannis, 2015; Martín-Fernández and Gredilla, 2016).
On the contrary, a significant elevation of fibroblast
abundance can be observed not only in MI samples (p < 0.01,
Mann–Whitney test) but also in DCM samples (p < 0.01,
Mann–Whitney test), indicating the cardiac fibrosis
progression in these disease conditions. To verify these results,
we adopted two other scRNA-seq-based transcriptome
reconstruction methods, namely, MuSiC (Wang et al., 2019)
and Bisque (Jew et al., 2020), to estimate the cell type
abundance using the same single-cell reference. It is
noteworthy that, unlike CIBERSORTx, MuSiC and Bisque can
only calculate the cell type relative abundance (i.e., cell
proportions that sum up to 100%). The estimated cell type
abundance scores from MuSiC and Bisque are summarized in
Supplementary Figure S3. Despite the distinguishing cellular
abundance scores between the different methods, the variations
of cell type abundance scores across different disease conditions
are highly similar to those from CIBERSORTx—for example, the
relative score of cardiomyocytes is decreasing in MI and of
fibroblast is increasing in MI and DCM compared with the
healthy samples (p < 0.01, Mann–Whitney test). Such trend is
the same as that observed in the CIBERSORTx results.

To further verify this observation, we applied flow cytometric
assay to compare the fibroblast abundances in healthy and MI
mouse hearts. Indeed a significantly increased fibroblast fraction
is observed in MI condition in comparison with the sham
condition, which also confirmed our result (Figure 3B).
Cardiac fibrosis is a prevalent pathophysiological process in
many myocardial diseases and considered to be the end state
of heart injury along with increasing fibroblasts (Kong et al.,
2014). Our analysis implies that cell proliferation may not be the
sole source of the increased fibroblasts—for example, in DCM
samples, the average abundance of endothelial cells is decreased
(p < 0.01, Mann–Whitney test) along with the increased
fibroblasts, indicating that endothelial-to-mesenchymal
transition (EndMT) would be a common event during heart
fibrosis in DCM. EndMT is an intricate cellular differentiation
process in which endothelial cells lose their properties and
acquire mesenchymal features, and this process would give rise
to the transition from endothelial cells to fibroblasts (Cheng et al.,

2021). Indeed Xie et al. have demonstrated that EndMT might
contribute to myofibroblast recruitment in human DCM,
characterized by decreased endothelial markers and increased
mesenchymal markers in the immunofluorescence co-
localization analysis (Xie et al., 2018). They also found that
several cells expressed both mesenchymal and endothelial
markers, which occurred exclusively in the cardiac sections of
DCM patients but not in normal cardiac samples. Moreover,
Zhang et al. has observed a significantly elevated EndMT in DCM
rats, and this process can be suppressed through inhibition of
TGF-β/ERK signaling (Zhang C. et al., 2019). In a mouse model
of cardiac fibrosis, transforming growth factor-beta 1 (TGF-
beta1) can induce the endothelial cells to undergo EndMT,
whereas bone morphogenetic protein 7 can preserve the
endothelial phenotype (Hong et al., 2018; Piera-Velazquez and
Jimenez, 2019).

Fibroblast-Related Signaling Pathways Are
Activated Under Various Cardiac Diseases
Varied gene expression patterns of fibroblasts can be observed
between different disease conditions (Figure 3C), suggesting the
plausible functional heterogeneity of fibroblasts in different
cardiac diseases. To further explore the related biological
functions in each individual cell type, the cell-type-specific
DEGs were determined following the method described above
(“Materials and Methods”). Among the four major cell types,
fibroblasts indeed show the largest amount of DEGs, followed by
cardiomyocytes and endothelial cells, while DEGs can hardly be
detected in smooth muscle cells (Supplementary Figure S4 and
Supplementary Table S3). Based on these identified DEGs,
WikiPathways and Gene Ontology (GO) enrichment analyses
were performed for each cell type in each specific disease
condition. The results of the WikiPathways enrichment
analysis are summarized in Figure 4 and Supplementary
Table S4. Few significant pathways are obtained from ARVC
DEGs for any cell types and smooth muscle cell DEGs for any
disease conditions (which is also resulting from the limited DEGs
identified in these cases, as shown in Supplementary Table S3),
so the functional enrichment analysis results for these DEGs are
not presented. In summary, the pathways enriched in
cardiomyocytes are largely shared across disease conditions
(Figure 4), where the pathways related to mitochondrial
energy metabolism are most prominent, such as electron
transport chain, oxidative phosphorylation, fatty acid beta
oxidation, and tricarboxylic acid cycle. Moreover, the GO
enrichment term analysis also provides signatures associated
with mitochondrial dysfunction, like mitochondrion
organization and electron transfer activity (Supplementary
Figure S5). The mammalian heart must contract incessantly
to sustain life, which is heavily dependent on adenosine
triphosphate (ATP) production and consumption (Doenst
et al., 2013). The cardiomyocytes had consumed more than
90% ATP generated by the mitochondria, and thus the
cardiomyocyte function requires proper mitochondrial energy
metabolism. However, our analysis suggests mitochondrial
dysfunction in cardiomyocytes accompanied with the
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development of cardiac diseases like MI, HCM, and DCM, which
could be also confirmed by previous experimental researches
(Peoples et al., 2019). In addition to cardiomyocytes, endothelial
cells also have many enriched pathways related to energy
production, suggesting its similarity with cardiomyocytes in
cellular response to disease state.

Unlike cardiomyocytes and endothelial cells, the associations
with energy metabolism are much less prevalent for fibroblasts.
Instead we find that Wnt signaling pathway is specifically
enriched in fibroblasts under DCM condition. Wnt signaling is

a complex collection of signal transduction pathways, and the
aberrant regulation of the Wnt signaling pathway is associated
with many diseases, such as cancer, degenerative diseases, and
also cardiovascular diseases (Nusse and Clevers, 2017; Foulquier
et al., 2018; Lietman et al., 2018). The significant enrichment of
the Wnt pathway in fibroblasts suggests its important role in the
occurrence and development of DCM, and indeed one recent
study has described that canonical WNT/β-catenin signaling
activity is impaired in DCM, and reactivation of its activity
can improve cardiac contractility and ameliorate

FIGURE 5 | Overview of transcriptome reconstruction results using disease-related scRNA-seq datasets from myocardial infarction (MI) and hypertrophic
cardiomyopathy (HCM) heart samples as the alternative references. (A) Bar plot showing the cell type compositions estimated from the HCM scRNA-seq references
(GSE129175). (B) Bar plot showing the cell type compositions estimated from the MI scRNA-seq references (GSE120064). (C) The top enriched pathways of
differentially expressed genes (DEGs) in cardiomyocytes and fibroblasts using the HCM scRNA-seq references. The corrected p-values are shown on the colored
boxes. Pathways actually describing disease gene sets are excluded to avoid confusion. (D) The top enriched pathways of DEGs in cardiomyocytes and fibroblasts using
the MI scRNA-seq references. The corrected p-values are shown on the colored boxes. Pathways actually describing disease gene sets are excluded to avoid confusion.
(E) The abundance of fibroblast subpopulations (FB_sp1 to FB_sp6) estimated from the fibroblast subgroup-annotated MI-related scRNA-seq reference (GSE132144)
across different cardiac disease conditions.
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intraventricular conduction defects (Lu et al., 2016). The MAPK
signaling pathway is another specifically enriched pathway in
fibroblasts in MI, which is also recently proven to modulate the
apoptosis of myocardial cells in acute MI heart (Zhang et al.,
2020). The GO term enrichment analysis in fibroblasts is also
related with MAPK cascade, actin cytoskeleton organization, and
cell adhesion molecular binding (Supplementary Figure S5),
which also supports the pathway enrichment result. Notably,
several pathways mapped to fibroblasts have not been reported,
including the EGFR1 signaling pathway, the insulin signaling
pathway, and the alpha6-beta4 integrin signaling pathway. The
involvement and mechanisms of these pathways in cardiac
fibrosis and cardiac pathogenic process would be an
interesting topic for further investigation according to our cell-
type-specific pathway analysis.

Furthermore, to establish a relationship between cell types and
the known disease genes of cardiac diseases, we performed a
disease gene enrichment analysis for each cell-type-specific DEG
set (see “Materials and Methods”). The results (Supplementary
Figure S6) demonstrate the diversity of cell-type-specific
associations with disease terms between different disease
conditions—for example, in MI, the fibroblasts and endothelial
cells are associated with the myocardial infarction term. As for
HCM and DCM, the HCM-associated cell types include
cardiomyocyte and endothelial cells, while the DCM-associated
cell types include cardiomyocytes, fibroblasts, and endothelial
cells. This observation indicates their essential role in the
occurrence of corresponding diseases and would be helpful for
further cell-type-specific disease mechanism investigations.

Transcriptome Reconstruction Using
Alternative Disease-Related scRNA-Seq
References Reveals the Upregulation of a
Specific Fibroblast Subpopulation in
Myocardial Infarction and Dilated
Cardiomyopathy
The above-mentioned analyses were based on the single-cell
references derived from healthy samples. However, scRNA-seq
data derived from the corresponding heart diseases could provide
additional valuable information. To this end, we introduced two
other public scRNA-seq datasets derived from MI (Ren et al.,
2020) and HCM (Zhang Y. et al., 2019) samples as the alternative,
disease-related scRNA-seq references. By reconstruction of bulk
transcriptome profiles using these two reference datasets, we have
re-estimated the cell type’s abundances and cell-type-specific
pathways across different disease conditions (Figures 5A,B).
Generally, the overall cell abundances and the overrepresented
pathways in DEGs are similar between the results based on
healthy single-cell reference and those based on the alternative
disease-related single-cell references—for example, the
abundance of cardiomyocytes decreases in MI and that of
fibroblasts increases in MI and DCM along with a decrease of
endothelial cells (p < 0.01, Mann–Whitney test). Furthermore,
the disease-reference-based results from a cell-type-specific
pathway analysis also recapitulate energy metabolism-related
pathways of cardiomyocytes and several overrepresented

pathways (EGFR1 signaling pathway, MAPK signaling
pathway, focal adhesion, alpha6-beta4 integrin signaling
pathway, and regulation of actin cytoskeleton) in fibroblasts in
MI (Figures 5C,D). On the other hand, we also found several
pathways which are not represented in our previous healthy
reference-based analysis, like IL-6 signaling pathway and
oxidative damage in fibroblasts. It is well accepted that IL-6 is
mainly secreted by fibroblasts in the heart and can promote CF
proliferation by promoting EndMT in ECs (Zhang et al., 2021).
This observation indicates that combining those different datasets
is helpful for a more comprehensive knowledge associated with
cardiac diseases.

As shown above (Figure 3A and Figures 4A,B), fibroblasts
were suggested to be an important participant of the
transcriptome alterations of heart tissue in multiple disease
conditions like MI and DCM. It is interesting to investigate if
particular subpopulation(s) of fibroblasts contribute more to such
alterations. To further identify which subpopulation of fibroblasts
is activated in the disease conditions, we further introduced a
fibroblast subpopulation-annotated scRNA-seq data (Ruiz-
Villalba et al., 2020) as the alternative reference. Six major
fibroblast subpopulations (i.e., FB_sp1 to FB_sp6) were
annotated in this MI-related, fibroblast subpopulation-
annotated scRNA-seq reference. As shown in Figure 5E,
FB_sp2 that is featured in the high expression of Cthrc1 is
observed to be increased in MI, DCM, and HCM (p < 0.01,
Mann–Whitney test). Remarkably, FB_sp2 has been
experimentally verified to be increased in the infarcted
myocardium (Ruiz-Villalba et al., 2020). FB_sp3 (Efhd1 and
Cd248 highly expressed) is another fibroblast subpopulation
showing an elevated abundance in MI, DCM, and HCM (p <
0.01, Mann–Whitney test). Other subpopulations, like FB_sp1
(Hsd11b1 highly expressed), is the main subtype in ARVC where
the amount of FB_sp2 is very few. Taken together, our results
suggest that FB_sp2 may serve a crucial role in other cardiac
diseases besides MI, and other subpopulations like FB_sp1 and
FB_sp3 may also be associated with some specific cardiac
diseases.

Analysis of the Cardiac Immune
Microenvironment Suggests the
Involvement of Monocytes in the
Development of Myocardial Infarction
Immune cells play crucial roles in the occurrence and
development of cardiovascular diseases, and many studies have
demonstrated that inflammatory response is prevalent under
cardiac pathophysiological conditions (Bartekova et al., 2018).
Though some inflammation processes are required for tissue
repair during injury and are therefore protective (Liao et al.,
2018), prolonged inflammation leads to myocardial remodeling
and apoptosis of cardiomyocytes (Frangogiannis, 2014). To
further compare the differences in immune cell infiltration
among different disease types, we used the built-in LM22
immune cell reference of CIBERSORTx to calculate the
abundance and cell-type-specific expression profile of various
immune cell subtypes in mouse hearts. We find that alteration of
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FIGURE 6 | Immune cell infiltration analysis of reconstructed heart transcriptomes across various cardiac disease conditions. (A) Bar plots showing the variation in
the proportions of the 22 immune cell subtypes (LM22 reference) across different cardiac diseases. Each color represents a specific immune cell subtype. (B)
Comparison of macrophage abundances estimated by using the alternative scRNA-seq references. (C) Flow cytometry assay verifying that macrophages and
monocytes are increased in mouse heart tissues of myocardial infarction (MI) at the 1st week after model preparation. The result shows a representative sample of
flow cytometry. Gating strategy for macrophage: CD45.2+ Ly6G− CD11b+ F4/80+; gating strategy for monocyte: CD45.2+ Ly6G− CD11b+ F4/80−. (D) Statistical chart
(n = 5, p = 2.368 × 10–3, Student’s t-test) showing the macrophage increasing in MI. (E) Statistical chart (n = 4, p = 3.598 × 10–2, Student’s t-test) showing the monocyte
increasing in MI. (F) Heat map showing the expression pattern of secretory protein genes in monocytes across different disease conditions.
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immune cell subtype abundance is a common phenomenon
across different cardiac diseases (Figure 6A)—for example, the
number of macrophages increases in DCM along with reduction
of monocytes (p < 0.01, Mann–Whitney test). It is widely
accepted that monocytes are the precursor cells of
macrophages and are recruited to the inflammatory site by
inflammatory factors (Peet et al., 2020), and such increased
number of macrophages and decreased number of monocytes
would suggest that the monocytes are more likely to differentiate
into macrophages in DCM.

When using the LM22 built-in immune cell reference of
CIBERSORTx, the result suggests that the abundance of
monocytes increases, but the abundance of macrophages
remains almost unchanged. However, several previous studies
have reported upregulated macrophages in MI (King et al., 2017;
Farbehi et al., 2019). In order to explore the reason of this
discrepancy, we used three other scRNA-seq data (GSE129175
from HCM, GSE120064 from MI, and GSE109744 from healthy
samples) as the alternative references to estimate macrophage
abundance in MI (Figure 6B). We found that two out of the three
results indicate an elevated macrophage abundance in MI.
Furthermore, our result of the flow cytometry assay confirms
the significantly elevated macrophage abundance in mouse hearts
in the MI group compared with the sham group (Figures 6C,D).
This result indicates that the external scRNA-seq data is a better
choice for analyzing macrophage transcriptomes than the built-in
LM22 references. However, most other immune cell (sub) types
are not covered by external scRNA-seq data, and an analysis
based on the LM22 reference is able to provide useful
information, as exemplified below. A previous study has
speculated that monocytes can serve as critical mediators of
the inflammatory response and also mediate cardiac repair in
the development of MI (Heidt et al., 2014). Therefore, we assume
that not just differentiated macrophages but also monocytes can
serve as primarymyeloid cells that contribute toMI. Although the
GEO scRNA-seq datasets did not cover reference single-cell
expression profiles for monocytes, the LM22-based analysis
indicates the increased monocyte fraction in MI (Figure 6A).
A further flow cytometry assay also confirmed the significantly
elevated monocyte abundance in mouse hearts in the MI group
compared with the sham group using the gating strategy that
could distinguish monocytes from macrophages (Figures 6C,E).
Since monocytes usually play a biological role through secretory
proteins (Liu et al., 2018; McKiernan et al., 2020), we further
explored the expression pattern of secretory proteins in
monocytes (Figure 6F). Indeed the heat map shows that the
expression characteristics of the secreted proteins in MI are
different from those of the healthy and other diseased states.

Certainly the above-mentioned analysis is not merely limited
to monocytes but covers 22 representative immune cell subtypes.
Results about other immune cell subtypes would also provide
helpful clues to investigate the immune involvement in cardiac
diseases. An example is ARVC, where the abundance of T cells
and eosinophils increases while the abundance of macrophages
decreases (p < 0.01, Mann–Whitney test). A clinical investigation
has shown that inflammatory infiltration in the ventricular
myocardium of ARVC samples is associated with severe

structural heart changes, and T-lymphocytes are the main
infiltrated immune cell type (Campuzano et al., 2012),
indicating that T cells may exacerbate the progress of ARVC.

Cell–Cell Communication Analysis
Identified the Plausible Regulatory Network
Between Monocytes and Fibroblasts
As monocytes are elevated in myocardial infarction along with
proliferation of fibroblasts, we speculate that monocytes may
regulate cardiac fibrosis through secretory-protein-mediated
cell–cell communication. To explore this possibility, we first
analyzed the possible protein–protein interaction (PPI) between
the differentially expressed secreted proteins from monocytes and
the overrepresented pathway-related proteins. The GeneMANIA
PPI network analysis confirms the wide interactions between these
two groups of proteins (Supplementary Figure S7), supporting the
hypothesis that several proteins can be secreted by monocytes to
regulate the function pathways in fibroblasts during the
pathological cardiac fibrosis process.

We further extended the cell-to-cell communication analysis to
all of the 26 cell types (4major cell types + 22 immune cell subtypes)
covered in this study.We used CellChat to calculate changes in cell-
to-cell communication patterns for each disease type (Figure 7). In
line with the cell abundance and functional pathway analyses, for
most cases, fibroblasts are at the center of the cell communication
network, especially in MI and ARVC, suggesting its central role in
the development of cardiac diseases. In addition, immune cells,
such as activated NK cells, show strong connections with many
other cell types in HCM, DCM, and MI. A recent study found that
NK cells play a significant role in repairing injured tissue and
maintaining tissue homeostasis (Ong et al., 2017). NK cells may
function in a cardiac immune environment directly through
receptor–ligand interactions or indirectly through cytokine
secretion. One recent study has demonstrated that NK cells can
not only protect against the development of cardiac fibrosis by
limiting collagen formation in cardiac fibroblasts and by preventing
the accumulation of specific inflammatory populations in the heart
but also prevent monocrotaline-induced endothelial damage
(Notas et al., 2009). In our result, activated NK cells enhance
the interaction with macrophage in DCM and ARVC and show
strong interactions with dendritic cells inMI andHCM. IndeedNK
cells have been reported to accelerate the maturation of
macrophages and dendritic cells, indicating its role in altering
the cardiac immune microenvironment, which again suggests
that the cell–cell communication analysis would be a reasonable
proxy for future research of cardiac disease-associated immune
microenvironment shifts.

DISCUSSION

In order to comprehensively analyze and compare the differences
of cell-type-specific expression profiles in different kinds of cardiac
diseases, we used the CIBERSORTx algorithm to impute cell type
abundance and reconstruct the cell-type-specific expression profile
from the integrative set of bulk tissue transcriptome data of the
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mouse models of four common cardiac diseases. Knowledge of the
cellular composition of the heart is one of the primary information
needed for researchers to understand the pathogenesis of a disease.
Although researchers have visited the cardiac cellular composition
in physiological conditions and described a comprehensive atlas of
cellular composition (Pinto et al., 2016), the accurate knowledge of
cellular composition under various cardiac disease conditions is
still lacking. Based on our computational results, the composition
changes in major component cell types of heart tissue are first
analyzed by different methods or single-cell data references.
Through comparison with literature, we note that our
estimation of cell abundance alteration is largely reasonable,
especially for cardiomyocytes. This result has also highlighted a
significantly elevated fraction of fibroblasts, macrophages, and
monocytes as a cell-type-specific signature of MI. To validate
this observation, flow cytometry experiment was used to detect
the abundance of monocytes, macrophages, and fibroblasts in
mouse heart undergoing MI surgery.

Reconstruction of bulk transcriptomes also enables the
investigations of cell-type-specific differential gene expression.
Functional enrichment analysis on cell-type-specific DEGs has
revealed not only shared and distinct pathways among different
disease states for each cell type. Based on our results, the pathways

enriched in endothelial cells and cardiomyocytes are similar across
various disease conditions, which are often related to
mitochondrial energy metabolism. On the contrary, fibroblasts
show a distinct pathway association between different disease
conditions—for example, Wnt signaling pathways are enriched
in DCM samples. Previous studies have demonstrated that the
protein levels of Wnt signaling were significantly increased in
DCM samples, which can promote EndMT during the
development of DCM (Xie et al., 2018). Focal adhesion is a
type of adhesive contact between the cell and the extracellular
matrix (Paluch et al., 2016), and alteration of this biological
function in fibroblasts may participate in the occurrence and
development of HCM. Carolina et al. have demonstrated that
focal adhesion kinase can serve as a mediator of hypertrophy
induced by an increased load (Clemente et al., 2007), while in MI,
there are more signaling pathways activated in fibroblasts, such as
MAPK signaling pathway, EGFR1 signaling pathway, and Alpha6-
Beta4 integrin signaling pathway (Nikolopoulos et al., 2004). Some
previous studies have reported that the MAPK signaling pathway
was involved with the apoptosis of cardiomyocytes, and a specific
inhibitor of the MAPK signaling pathway can relieve
cardiomyocyte apoptosis (Zhang et al., 2017; Sun et al., 2021).
Furthermore, a cell–cell communication network analysis has also

FIGURE 7 |Differential cell–cell communication network based on ligand receptor analysis. For each disease condition, the differential cell–cell communication network
in comparison with the healthy controls is shown. Each cell type is shown as a node in the network. The red links between nodes represent enhanced interactions between
two cell types in the disease condition, while the blue links represent reduced interactions. The abbreviations of cell types are denoted as follows: cm, cardiomyocyte; mca,
mast cell activated; pc, plasma cell; neu, neutrophil; treg, T cell regulatory; tmr, T cell memory resting; bn, B cell naïve; fb, fibroblast; m0,macrophageM0; dca, dendritic
cell activated; tn, T cell naïve; endo, endothelial cell; tma, T cell activated; smc, smoothmuscle cell; mono, monocyte; tfh, T cell follicular helper; dcr, dendritic cell resting;mcr,
mast cell resting; eos, eosinophil; nkr, NK cell resting; nka, NK cell activated; nkr, NK cell resting; m2, macrophage M2; bm, B cell memory.
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highlighted fibroblasts as the dynamic communication hub for the
cellular crosstalk in cardiac diseases. Therefore, a more detailed
investigation on fibroblast-specific DEGs can be helpful to
understand the distinctions in the molecular mechanisms of
various cardiac diseases.

To explore the potential mechanism of monocyte–fibroblast
communication in MI, we analyzed the PPI network between the
monocyte-specific and fibroblast-specific DEGs in MI. Several
secretory protein genes, like Cfh, Qsox1, Olfml3, Mmp2, Itgb1,
Ccdc80, Prss23, and Plod3 are up in monocytes in the
reconstructed transcriptomes. Those proteins can directly or
indirectly interact with overrepresented pathway-related genes
in fibroblasts, like Ywhap, Prkcd, Col4a2, and Cbl, which provides
the direction for further research on the role of intercellular
communication in cardiac diseases. However, it is noteworthy
that these interactions mainly derived from high-throughput
in vitro screening, and their in vivo communication in a
diseased heart still needs to be verified.

On the other hand, the current analysis also has several
limitations. First, due to the high heterogeneity of human heart
transcriptomes among different datasets, we failed to correct the
batch effects and therefore did not consider the human samples in
this study. Moreover, improvement of the sensitivity of single-cell
gene detection and completion of single cell research on different
disease types are necessary to accurately elucidate the pathogenesis
of cardiac diseases (Ziegenhain et al., 2017). As the case of
macrophages and monocytes shown above, the LM22 built-in
reference covered more cell types, and the results based on this
reference correctly predicted the abundance alteration of
monocytes in MI. However, the prediction result about the
abundance alteration of macrophages was not correct. By
contrast, mouse in vivo scRNA-seq datasets were more likely to
correctly predict the abundance alteration of macrophages, but
such datasets did not cover other immune cell types. Therefore,
comparison and integration of results using different scRNA-seq
references should be helpful to obtainmore reasonable and accurate
results. Finally, the molecular signaling pathways mentioned in the
study and their relationship with cardiac diseases still need to be
experimentally elucidated and verified in the future.
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