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Abstract
The	closure	of	the	late	Neogene	interoceanic	seaways	between	the	Western	Atlantic	
(WA)	 and	 Tropical	 Eastern	 Pacific	 (TEP)—commonly	 referred	 to	 as	 the	 Central	
American	Seaway—significantly	decreased	nutrient	supply	 in	the	WA	compared	to	
the	TEP.	In	marine	invertebrates,	an	increase	in	parental	investment	is	expected	to	be	
selectively	favored	in	nutrient‐poor	marine	environments	as	prolonged	feeding	in	the	
plankton	becomes	less	reliable.	Here,	we	examine	turritelline	gastropods,	which	were	
abundant	and	diverse	across	this	region	during	the	Neogene	and	serve	as	important	
paleoenvironmental	proxies,	and	test	whether	species	exhibit	decreased	planktotro‐
phy	in	the	WA	postclosure	as	compared	to	preclosure	fossils	and	extant	TEP	species.	
We	also	test	for	differences	in	degree	of	planktotrophy	in	extant	sister	species	pairs.	
Degree	of	planktotrophy	was	inferred	by	measuring	the	size	of	protoconchs,	the	spe‐
cies’	 larval	 shell	 that	 represents	egg	size.	Protoconch	size	was	compared	between	
extant	postclosure	WA	and	TEP	species	and	preclosure	fossil	species.	To	compare	
extant	sister	species,	we	reconstructed	the	phylogeny	of	available	WA	and	TEP	spe‐
cies	 using	one	nuclear	 (H3)	 and	 three	mitochondrial	markers	 (12S,	 16S,	 and	COI).	
Compared	to	the	preclosure	fossils,	protoconch	size	increased	in	WA	species	but	re‐
mained	the	same	in	the	TEP	species.	In	the	two	extant	sister	species	pairs	recovered	
in	 the	phylogenetic	analysis,	 the	WA	species	are	 inferred	to	be	nonplanktotrophic	
while	the	TEP	species	are	planktotrophic.	This	suggests	that	decreased	nutrient	avail‐
ability	and	primary	productivity	in	the	WA	may	have	driven	this	change	in	develop‐
mental	mode,	and	was	the	primary	selective	force	resulting	in	postclosure	turritelline	
extinctions.
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1  | INTRODUC TION

The	closure	of	the	interoceanic	seaways	between	the	Tropical	Eastern	
Pacific	(TEP)	and	the	Western	Atlantic	(WA)—commonly	referred	to	
as	 the	Central	American	Seaway	 (O'Dea	et	al.,	2018,2016)—in	 the	
late	Neogene	resulted	in	significant	changes	to	the	abiotic	and	biotic	
oceanographic	conditions	 in	the	WA.	 Interoceanic	connections	for	
shallow‐water	organisms,	such	as	turritelline	gastropods,	persisted	
throughout	 the	 early	 stages	 of	 closure	 (Allmon,	 2001;	Beu,	 2001;	
Coppard	 &	 Lessios,	 2017;	 Hendy,	 2013;	 Jackson	 &	 O'Dea,	 2013;	
Lessios,	 2008;	 Marko	 &	 Moran,	 2002,2009;	 O'Dea	 et	 al.,	 2016),	
with	 communication	 of	 TEP	 upwelling	waters	 to	 the	WA	 through	
the	middle	Miocene	 (Anderson,	Hendy,	Johnson,	&	Allmon,	2017),	
shallowing	 around	8	Ma,	 but	 returning	 to	deeper	water	 communi‐
cation	by	6	Ma	 (Collins,	 1996;	Coates,	Aubry,	Berggren,	Collins,	&	
Kunk,	2003;	Coates,	Collins,	Aubry,	&	Berggren,	2004;	Leigh,	O'Dea,	
&	Vermeij,	2014;	O'Dea	et	al.,	2016).	Final	closure	occurred	between	
3.5	and	2.7	Ma	(Coppard	&	Lessios,	2017;	Cronin	&	Dowsett,	1996;	
Jackson	&	O'Dea,	2013;	Leigh	et	al.,	2014;	Molnar,	2008;	O'Dea	et	
al.,	2018,2016).

As	 the	 interoceanic	 seaways	 closed,	 the	WA	experienced	 sub‐
stantially	reduced	productivity	(Allmon,	2001;	Collins,	1996;	O'Dea	
&	 Collins,	 2013;	 Todd	 et	 al.,	 2002),	 due	 to	 some	 combination	 of	
reduced	 communication	 of	 Pacific	 upwelling	 waters	 (Anderson	
et	al.,	2017;	Leigh	et	al.,	2014;	O'Dea	et	al.,	2007),	changes	 in	cir‐
culation	 which	 may	 have	 reduced	 local	 upwelling	 (Allmon,	 2001;	
Allmon,	Emslie,	Jones,	&	Morgan,	1996;	Allmon,	Rosenberg,	Portell,	
&	Schindler,	1996;	Hays,	Pisias,	&	Roelofs,	1989;	 Jackson	&	Budd,	
1996;	 Jackson	 &	 O'Dea,	 2013;	 Leigh	 et	 al.,	 2014;	 Lessios,	 2008;	
Maier‐Reimer,	Mikolajewicz,	&	Crowley,	 1990;	O'Dea	 et	 al.,	 2016;	
Todd	 et	 al.,	 2002),	 and	 possible	 decreased	 riverine	 nutrient	 input	
~	2.5	Ma	(Aguilera	et	al.,	2013;	Pérez‐Consuegra	et	al.,	2018).	In	re‐
sponse	to	decreased	productivity,	 the	biological	community	 in	 the	
WA	changed	concurrently	with	this	environmental	change	through	
shifts	in	the	composition	of	benthic	communities	and	life	histories	of	
benthic	species	(Jackson	&	Johnson,	2000;	O'Dea	et	al.,	2007;	Todd	
et	al.,	2002),	demonstrating	the	dramatic	change	in	nutrient	regime	
(Allmon,	1992,2001;	 Jackson	&	Johnson,	2000;	Leigh	et	al.,	2014;	
O'Dea	et	al.,	2007,2016;	Smith	&	Jackson,	2009;	Todd	et	al.,	2002).	
These	ecological	shifts	were	later	(~1–2	Myr)	accompanied	by	pulses	
of	extinction,	possibly	due	to	declining	population	sizes	(O'Dea	et	al.,	
2007;	O'Dea	et	al.,	2016).

In	marine	 gastropods,	 larval	mode	 is	 a	 life‐history	 trait	 that	 is	
predicted	to	have	changed	in	response	to	declining	WA	nutrient	pro‐
ductivity.	Larval	mode	can	generally	be	divided	into	two	types	based	
on	 whether	 larvae	 feed	 in	 the	 plankton:	 planktotrophic	 (feeding)	
or	 nonplanktotrophic	 (nonfeeding)	 (Jablonski	 &	 Lutz,	 1980,1983;	
Thorson,	 1950).	 These	 reproductive	 strategies	 result	 from	 trade‐
offs	 between	 larval	 mortality	 and	 parental	 investment.	 Predation	
(Hickman,	2001)	and	starvation	result	in	high	larval	mortality	rates	
(as	 high	 as	 99%)	 (Mileikovsky,	 1971;	 Thorson,	 1950).	 Larger,	 yolk‐
rich	 eggs	 will	 reduce	 larval	 mortality,	 but	 higher	 parental	 invest‐
ment	results	in	fewer	eggs	being	produced	(Crisp	&	Spencer	Davies,	

1976;	Jablonski	&	Lutz,	1980;	Marshall,	McAlister,	&	Retizel,	2018;	
Scheltema,	1971;	Strathmann,	1978;	Vance,	1973).

The	closure	of	 the	Central	American	 interoceanic	seaways	and	
associated	changes	 in	nutrient	conditions	 in	 the	WA	allows	us	 the	
opportunity	 to	 directly	 test	 the	 relationship	 between	 decreased	
ambient	 nutrient	 supply	 and	nutrient	 apportionment	 in	 gastropod	
eggs.	A	decrease	in	marine	nutrient	supply	is	expected	to	result	 in	
decreased	planktotrophy	success	and	therefore	favor	increased	pa‐
rental	investment	(Fortunato,	2004;	Jablonski	&	Lutz,	1980;	Lessios,	
1990,2008;	Marshall	et	al.,	2018;	Miura,	Frankel,	&	Torchin,	2011;	
Vance,	 1973).	 Even	 if	 larvae	 still	 spend	 some	 time	 feeding	 in	 the	
plankton,	 larger	 offspring	 are	 better	 buffered	 against	 starvation	
and	may	need	to	spend	less	time	in	the	plankton	before	settlement	
(Marshall	&	Keough,	2007;	Marshall	et	al.,	2018).

We	chose	turritelline	gastropods	(Figure	1)	to	test	our	hypoth‐
esis	 that	 decreased	 nutrient	 availability	 selects	 for	 larger	 eggs.	
Turritelline	gastropods	are	a	highly	diverse	clade	with	as	many	as	
150	 valid	 Recent	 and	 ca.	 800	 valid	 fossil	 species	 and	 are	 often	
among	the	most	abundant	gastropods	where	they	occur	(Allmon,	
1988,2011).	 Their	 typical	 affinity	 for	 fully	marine	 environments	
coupled	with	 their	 low	 trophic	 level	has	also	 led	 them	 to	be	 im‐
portant	 paleoclimate	 and	 environmental	 proxies	 (Allmon,	 2011;	
Anderson	et	al.,	2017;	Jones	&	Allmon,	1995).	Prior	to	the	closure	
of	the	tropical	American	 interoceanic	seaways,	 turritellines	were	
common	 and	 diverse	 in	 the	WA	 (Allmon,	 1992,2001;	 Anderson	
et	al.,	2017;	Todd	et	al.,	2002).	Today,	turritellines	are	rare	in	the	
modern	WA	and	are	represented	by	only	three	species:	T. exoleta 
(Linnaeus,	 1758),	 T. variegata	 (Linnaeus,	 1758),	 and	 T. acropora 
(Dall,	1889).	In	contrast,	the	Late	Miocene	and	Pliocene	WA	each	
contained	over	25	species	(Allmon,	1992;	Allmon,	Rosenberg,	et	al.,	
1996)	and	the	Recent	TEP	is	home	to	at	least	eight	species:	T. anac-
tor	 (Berry,	1957),	T. banksii	 (Reeve,	1849),	T. clarionensis (Hertlein	
&	Strong,	2011),	T. gonostoma (Valenciennes,	1832),	T. leucostoma 
(Valenciennes,	1832),	T. nodulosa (King	&	Broderip,	1832),	T. radula 
(Kiener,	1838),	and	T. rubescens (Reeve,	1849).	These	surviving	WA	
lineages	represent	potential	sister	lineages	(sometimes	referred	to	
as	“geminate	species”;	Jordan,	1908;	Marko	&	Moran,	2009;	Miura	
et	al.,	2011)	evolving	separately	 for	3–5	Ma	and	under	strikingly	
different	 nutrient	 regimes	 for	 at	 least	 2	Ma	 (Todd	 et	 al.,	 2002;	
Todd	&	Johnson,	2013).	The	extinction	of	numerous	WA	turritel‐
line	species	postclosure	implies	strong	selective	pressures	on	the	
WA	species	(Allmon,	1992).

F I G U R E  1   Turritella banksii	(PRI	68087),	a	postclosure	
turritelline	from	the	Tropical	Eastern	Pacific.	Scale	bar	=	1	cm
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Inferences	 can	 be	made	 about	 the	 larval	 mode	 of	 fossil	 and	
extant	gastropods	based	on	observations	of	the	protoconch	(lar‐
val	 shell),	 which	 is	 sometimes	 retained	 at	 the	 apex	 of	 the	 adult	
shell	 (Fortunato,	 2002,2004;	 Jablonski	 &	 Lutz,	 1983;	 Jackson	&	
Fortunato,	1996;	Lima	&	Lutz,	1990;	Shuto,	1974;	Thorson,	1950;	

Vendetti,	2007).	Large,	paucispiral	protoconchs	are	presumed	to	
be	 formed	by	 larval	gastropods	 that	have	spent	 little	or	no	 time	
in	the	plankton,	and	narrow,	multispiral	protoconchs	are	thought	
to	indicate	prolonged	planktonic	phases.	Shuto	(1974)	used	living	
taxa	of	 known	 larval	mode	 to	describe	what	quantitative	 values	

TA B L E  1  Taxa	examined	in	this	study

Species Distribution 16S COI 12S H3

T. acropora Cuba,	Mexico	(Dall,	1889) MK368669 
MK368670 
M94001.1

MK368688 
MK368689

MK527210 
MK527211

MK513802 
MK513803

T. altiliraa  Panama,	Colombia,	Venezuela.	Miocene.	(Woodring,	1957) n/a n/a n/a n/a

T. anactor Gulf	of	CA	to	Puerto	Penasco,	Sonora,	Mexico	(Keen,	1971) M94002.1 – – –

T. bacillum South‐east	Asia	(Kiener,	1838) MK368671 
MK368672

– MK527212 
MK527213

MK513804 
MK513805

T. banksii Guaymas,	Mexico,	to	Ecuador	(Keen,	1971) MK368673 
MK368674

MK386466 
MK368699

MK527214 
MK527215

MK513816

T. bifastigataa  n/a n/a n/a n/a

T. broderipiana Peru	(d'Orbigny,	1835‐1847) – – – –

T. clarionensis Gulf	of	CA	to	Panama	(Keen,	1971) – – – –

T. exoleta Gulf	of	Mexico	(Linneaus,	1758) MK368679 
MK368680 
MK368681 
M94004.1

MK368693 
MK368694

MK527217 
MK527218

MK513808 
MK513809 
MK513810

T. gatunensisa  Panama,	Colombia,	Venezuela	(Conrad,	1857) n/a n/a n/a n/a

T. gonostoma Gulf	of	CA	to	Ecuador	(Keen,	1971) MK368682 
M94005.1

– MK527219 –

T. leucostoma Gulf	of	CA	to	Panama	(Keen,	1971) M94006.1 MK368695 MK527220 MK513811

T. mari-
ana = T. radula

Gulf	of	CA	to	southern	Colombia	(Keen,	1971) n/a n/a n/a n/a

T. matarucanaa  Panama,	Colombia,	Venezuela	(Hodson,	1926) n/a n/a n/a n/a

T. nodulosa Baja,	CA,	to	Southern	Gulf	of	CA,	to	south	of	Ecuador	(Keen,	
1971)

MK368684 
MK368685 
M94007.1

MK368696 
MK368700

MK527221 
MK527222

MK513812 
MK513813

T. radula Pacific,	Gulf	of	CA	to	Colombia	(Keen,	1971) MK368677 
MK368678

MK368690 
MK368691

– MK513806 
MK513807

T. rubescens San	Francisco	Island,	Gulf	of	CA,	to	Gorgos	Island,	Colombia	
(Keen,	1971)

MK368686 MK368697 MK527223 MK513814

T. terebra Taiwan,	China	(Linneaus,	1758) M94008.1 
MK368687

MK368698 MK527224 –

T. variegata Cuba,	Puerto	Rico,	Jamaica,	Colombia,	Venezuela	(Mioslavich	
et	al.	2010)

– – – –

T. venezuelanaa  Venezuela	(Hodson,	1926) n/a n/a n/a n/a

T. willetti Pacific	(McLean,	1970) – – – –

Vermicularia 
knorrii

Gulf	Coast,	Antigua,	Barbuda,	Cuba,	Jamaica,	Florida	to	North	
Carolina,	Bermuda	(Deshayes,	&	Milne‐Edwards,	1843)

n/a n/a n/a n/a

Vermicularia 
woodringia 

Florida,	North	Carolina,	South	Carolina,	c.f.	Jamaica	(Olsson	
and	Harbison,	1953)

n/a n/a n/a n/a

Batillaria zonalis Japan,	Korea,	China	(Bruguière,	1792;	Miura	et	al.	2005) HQ833976.1 AB211356.1 HQ833856.1 HQ834127.1

Lampania 
cumingi

Japan,	Korea,	China,	invasive	to	Pacific	Northwest	of	the	US	
(Miura	et	al.	2005)

HQ833975.1 HQ709375.1 HQ833855.1 HQ834126.1

Note.	GenBank	accession	numbers	for	sequence	data	listed	for	each	marker	examined.
aDenotes	extinct	taxa.	

info:ddbj-embl-genbank/MK368669
info:ddbj-embl-genbank/MK368670
info:ddbj-embl-genbank/M94001.1
info:ddbj-embl-genbank/MK368688
info:ddbj-embl-genbank/MK368689
info:ddbj-embl-genbank/MK527210
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info:ddbj-embl-genbank/MK513803
info:ddbj-embl-genbank/M94002.1
info:ddbj-embl-genbank/MK368671
info:ddbj-embl-genbank/MK368672
info:ddbj-embl-genbank/MK527212
info:ddbj-embl-genbank/MK527213
info:ddbj-embl-genbank/MK513804
info:ddbj-embl-genbank/MK513805
info:ddbj-embl-genbank/MK368673
info:ddbj-embl-genbank/MK368674
info:ddbj-embl-genbank/MK386466
info:ddbj-embl-genbank/MK368699
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in	 protoconch	 maximum	 diameter	 and	 number	 of	 volutions	 are	
associated	with	 each	mode.	 Although	 egg	 size,	 as	 inferred	 from	
protoconch	size,	is	not	the	sole	form	of	increased	parental	invest‐
ment	 (e.g.,	 it	does	not	capture	different	nutritional	content	 in	an	
egg),	 it	 is	a	useful	approximation	 (Marshall	et	al.,	2018;	Moran	&	
McAlister,	2009).

It	is	expected	that	decreased	nutrient	availability	in	the	plankton	
would	result	in	selection	for	greater	nutrient	apportionment	(larger	
eggs)	which	should	be	reflected	in	increased	sizes	for	protoconchs	in	
postclosure	WA	species.	We	test	these	hypotheses	by	comparing	(a)	
turritelline	protoconch	size	in	the	postclosure	WA	with	both	modern	
TEP	protoconch	sizes	and	preclosure	fossil	protoconch	sizes,	and	(b)	
comparing	protoconch	size	changes	in	extant	sister	species	pairs	by	
generating	a	robust	molecular	phylogeny	of	TEP	and	WA	turritellines	
based	on	H3,	COI,	16S,	and	12S	sequence	data.

2  | MATERIAL S AND METHODS

2.1 | Taxon sampling

We	sampled	seven	of	the	eight	species	of	Turritella	 in	the	TEP	and	
two	of	the	four	species	in	the	WA	(Table	1).	Protoconch	preservation	
can	be	rare,	even	in	live‐collected	individuals	from	modern	species.	
Preclosure	WA	 fossil	 species	 examined	 are	 those	 described	 from	
the	 late	Miocene	of	Panama	and	 the	 late	Oligocene	of	Venezuela.	
Although	 the	 only	 protoconch	 sampled	 for	 the	 extant	 species	
Vermicularia knorrii	(Deshayes,	1843)	was	from	a	Pleistocene	speci‐
men,	the	specimen	is	considered	part	of	the	postclosure	WA	fauna.	
Batillaria zonalis	(Bruguière,	1792)	and	Lampania cumingi	(Gray,	1847)	
(Batillariidae)	 were	 selected	 as	 out‐groups	 due	 to	 the	 consistent	
placement	of	Batillaridae	as	sister	to	Turritellidae	(Strong	et	al.	2011).

Wet	specimens	were	obtained	from	the	collections	of	the	Florida	
Museum	of	Natural	History	(FLMNH)	and	Paleontological	Research	
Institution	 (PRI).	 Specimens	 of	 T. banksii	 were	 collected	 at	 Bique,	
Panama.	 Protoconch	 data	 were	 obtained	 from	 specimens	 in	 the	
collections	 of	 the	FLMNH,	PRI,	 and	Academy	of	Natural	 Sciences	
(ANSP),	as	well	as	 from	material	collected	 in	April	2014	at	various	
localities	 in	 Colón,	 Panama.	 Specimens	 newly	 collected	 for	 this	
analysis	are	stored	at	the	PRI,	and	DNA	elutions	are	archived	at	the	

Cornell	Lab	of	Ornithology.	In	molecular	analyses,	data	sources	are	
identified	as	UF	=	University	of	Florida,	FLMNH	collection,	S	=	this	
study	 collected,	 and	 L	=	Lieberman,	 Allmon,	 and	 Eldredge	 (1993)	
from	GenBank	data.

2.2 | DNA extraction, sequencing, and alignment

Genomic	 DNA	was	 extracted	 using	 the	 Qiagen	 DNeasy	 Kit	 from	
about	100	mg	of	tissue,	following	the	manufacturer's	protocol.	We	
chose	the	mitochondrial	16S,	12S,	cytochrome	c	oxidase	subunit	 I	
(COI),	and	nuclear	histone	H3	regions	for	sequencing	because	16S	
fragments	are	available	from	a	subset	of	our	species	(Lieberman	et	
al.,	 1993),	 and	 because	 there	 exist	 gastropod‐specific	 primers	 for	
these	genes	(Miura,	Torchin,	Kuris,	Hechinger,	&	Chiba,	2006;	Simon,	
Franke,	&	Martin,		1991;	Zou,	Li,	&	Kong,	2011)	(Table	2).	The	PCR	
mixture	included	0.002	μg/μl	bovine	serum	albumen	to	improve	PCR	
yields	(Farell	&	Alexandre,	2012;	Woide,	Zink,	&	Thalhammer,	2010).	
Each	reaction	ran	for	35	cycles	of	95°C	for	4.5	min,	95°C	for	1	min,	
between	54	and	64°C	for	1	min	(the	optimal	annealing	temperature	
varied),	72°C	for	1:20	min,	and	72°C	for	4.5	min.	In	preparation	for	
sequencing,	all	PCR	products	were	treated	with	exonuclease	(10	U/
μl)	and	shrimp	alkaline	phosphatase	(1	U/μl)	at	37°C	for	30	min	and	
then	at	90°C	for	10	min.	Sanger	sequencing	took	place	at	the	Cornell	
Biotechnology	Resource	Center.	Newly	 sequenced	molecular	data	
were	then	aligned	with	previously	published	GenBank	data	(Table	1).	
Sequences	were	aligned	using	MAFFT‐L‐INS‐i	v.	7	(Katoh	&	Standley,	
2013)	and	checked	with	Mesquite	v.	3.0.3	(Maddison	&	Maddison,	
2015)	 by	 eye.	 Genes	 were	 concatenated	 with	 SequenceMatrix	 v.	
1.7.8	(Vaidya,	Lohman,	&	Meier,	2011).	Mesquite	was	then	used	to	
annotate	codon	positions.

2.3 | Phylogenetic analysis

Phylogenetic	analysis	of	molecular	characters	was	performed	with	
parsimony,	maximum‐likelihood,	and	Bayesian	methods.	Parsimony	
analysis	was	 run	using	PAUP*	v.	4.0a141	 (Swofford,	2002).	Out	of	
2,328	 total	 characters,	 558	 were	 parsimony‐informative.	 Overall	
base	pair	frequencies	were	calculated	as	A	=	0.28,	T	=	0.30,	C	=	0.21,	
G	=	0.21.	A	heuristic	search	was	set	with	random	stepwise	addition	

TA B L E  2  Primer	pairs	for	each	gene	region

Gene region Forward primer Reverse primer Length

16S 16Sar:	5'	CGC	CTG	TTT	ATC	AAA	AAC	AT	3'	(Simon	et	al.	
1991)

16Sbr:	5'	CCG	GTC	TGA	ACT	CAG	ATC	ACG	T	3'	
(Simon	et	al.	1991)

527	bp

COI	(1st	half) COIbf:	5'	GGG	GCT	CCT	GAT	ATA	GCT	TTT	CC	3'	(Miura	et	
al.	2006)

COIbrINT:	5'	GCA	TAA	ATT	ATC	CCT	AAA	GTC	
CC	3'	(this	study)

969	bp

COI	(2nd	half) COIbfINT:	5'	TTC	TTC	CTG	GGT	TTG	GGA	TAA	TCT	C	
3'(this	study)

COIbr:	5'	TAA	TAT	AGA	AGT	GTG	CTT	TAG	T	3'	
(Miura	et	al.	2006)

12S 12SF:	5'	AAA	GCT	TCA	AAC	TGG	GAT	TAG	ATA	CCC	CAC	
TAT	3'	(Zou	et	al.	2011)

12SR:	5'	TGA	CTG	CAG	AGG	GTG	ACG	GGC	
GGT	GTG	T	3'	(Zou	et	al.	2011)

456	bp

H3 H3NF:	5'	ATG	GCT	CGT	ACC	AAG	CAG	AC	3'	(Colgan	et	al.	
1998)

H3NR:	5'	ATR	TCC	TTG	GGC	ATG	ATT	GTT	AC	3'	
(Colgan	et	al.	1998)

376	bp
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(10,000	 repetitions)	 and	 a	 TBR	 swapping	 algorithm.	All	 other	 set‐
tings	were	left	as	default.

For	 maximum‐likelihood	 analysis,	 sequences	 were	 partitioned	
by	codon	position	 in	each	gene	and	 run	under	a	GTRCAT	 (default	
setting)	model	with	 joint	branch	 length	optimization	using	RAxML	
8.0.9	on	the	Cyberinfrastructure	for	Phylogenetic	Research	(CIPRES)	
platform	(Miller,	Pfeiffer,	&	Schwartz,	2010)	to	calculate	the	ML	tree	
and	nonparametric	bootstrap	node	support.	The	resulting	tree	was	
visualized	on	FigTree	v.	1.4.2	(Rambaut,	2016).

For	 Bayesian	 analysis,	 sequences	were	 entered	 into	MrBayes	 v.	
3.4.2	 (Ronquist	&	Huelsenbeck,	 2003)	 on	 the	CIPRES	 system.	 Each	
gene	was	partitioned	by	codon	position.	The	partitions	were	assigned	
a	model	of	best‐fit	in	PartitionFinder	v.	1.1.1	(Lanfear,	Calcott,	Ho,	&	
Guindon,	2012)	according	 to	 the	Akaike	 information	criterion	 (Table	
S1).	In	MrBayes,	two	runs	were	conducted	with	four	chains	each	for	
10	million	generations.	The	first	25%	of	results	were	discarded	as	burn‐
in.	All	other	settings	were	left	as	default.	Log	files	were	combined	and	
checked	with	Tracer	 v.	 1.6	 (Rambaut	&	Suchard,	2014).	A	 statistical	
summary	of	the	ML	and	Bayesian	analyses	is	presented	in	Table	S2.

2.4 | Protoconch measurements

Specimens	 with	 intact	 protoconchs	 were	 almost	 entirely	 found	 on	
juveniles	 less	 than	 one	 centimeter	 in	 length.	 Protoconchs	 are	 often	
abraded	 away	 in	 turritellines,	 even	 during	 the	 life	 of	 the	 organism	
(Johnson,	Anderson,	&	Allmon,	2017).	The	protoconch	is	composed	of	
two	parts:	protoconch	I,	which	is	the	embryonic	shell,	formed	prior	to	
hatching	and	 is	unornamented,	and	protoconch	II	which	 is	produced	
prior	 to	metamorphosis,	 and	which	may	 be	 smooth	 or	 ornamented	
(Jablonski	&	 Lutz,	 1983;	Robertson,	 1971).	Whole	 shells	were	 sput‐
ter‐coated	with	a	thin	 layer	of	gold	then	 imaged	on	a	scanning	elec‐
tron	microscope	 (JCM‐6000	 NeoScope	 Benchtop	 SEM)	 at	 the	 PRI.	
Venezuelan	specimens	from	the	type	and	figured	collection	of	the	PRI	
were	imaged	without	sputter‐coating.	Side	and	top	view	images	were	

taken	to	identify	the	protoconch	I–protoconch	II	boundary,	which	was	
then	marked	on	the	top	view	 image.	We	used	this	boundary	to	find	
the	total	number	of	volutions	(full	360‐degree	spirals)	in	protoconch	I.	
The	diameter	of	protoconch	I	was	measured	at	its	widest	using	ImageJ	
v.1.45s	(Schneider,	Rasband,	&	Eliceiri,	2012).

2.5 | Analysis of protoconch character divergence

Statistical	comparisons	were	made	among	protoconch	data	obtained	
from	preclosure	fossil,	postclosure	Atlantic,	and	postclosure	Pacific	
specimens	 in	Past3	 (Hammer,	Harper,	&	Ryan,	 2001).	 Both	 proto‐
conch	maximum	diameter	and	diameter/volutions	 ratio	were	com‐
pared.	Tukey's	Q	was	calculated	to	make	comparisons	among	means	
for	 all	 three	 data	 sets	 simultaneously,	with	 significance	 estimated	
according	 to	 the	method	 of	 Copenhaver	 and	Holland	 (1988).	 The	
Mann–Whitney	U	test	was	applied	to	determine	whether	the	sam‐
ples	were	likely	to	be	drawn	from	the	same	distributions.

Continuous	character	mapping	of	protoconch	diameters	on	the	
molecular	phylogeny	was	achieved	using	the	“contMap”	function	in	
the	 “phytools”	 (Revell,	 2012)	 package	 for	 R.	 The	 “contMap”	 func‐
tion	estimates	character	states	at	internal	nodes	using	ML	methods	
(function	 “anc.ML”).	 From	 the	 Bayesian	 tree,	 multiple	 individuals	
for	each	species	were	collapsed	into	one	tip	using	the	“delete	sub‐
elements”	function	 in	TreeGraph2	(v.	2.14.0‐771)	 (Stöver	&	Müller,	
2010)	to	create	a	consolidated	backbone.	The	average	protoconch	
diameter	for	each	species	was	then	mapped	onto	each	tip.

3  | RESULTS

3.1 | Molecular phylogeny

Two	 extant	 sister	 species	 pairs	 are	 consistently	 identified	 in	 the	 
molecular	 trees	 (Figures	 2‒4).	 The	 first	 pair	 is	 T. exoleta	 (WA)	 and	
T. radula	(TEP),	which	was	discovered	in	all	three	methods	(parsimony,	

F I G U R E  2  Majority	rule	parsimony	
tree	(consensus	of	81	trees)	generated	
from	mitochondrial	and	nuclear	
sequences.	All	species	are	from	
genus	Turritella,	except	for	out‐groups	
Batillaria zonalis	and	Lampania cumingi. 
L1	=	sequence	from	Lieberman	et	al.	
(1993);	S1	or	S2	=	specimen	collected	for	
this	study;	UF1	or	UF2	=	specimen	from	
FLMNH

T. acropora L1
T. acropora UF1
T. acropora UF2
T. rubescens UF1
T. nodulosa L1
T. nodulosa UF1
T. nodulosa S1
T. anactor L1
T. gonostoma S1
T. gonostoma L1
T. banksii S1
T. banksii S2
T. leucostoma S1
T. leucostoma L1
T. bacillum S1
T. bacillum S2
T. terebra S1
T. terebra L1
T. radula UF1
T. radula UF2
T. exoleta L1
T. exoleta UF1
T. exoleta UF2
Lampania cumingi
Batillaria zonalis
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maximum‐likelihood,	and	Bayesian).	The	second	pair,	T. acropora	(WA)	
and	T. nodulosa (TEP),	is	identified	in	both	the	maximum‐likelihood	and	
Bayesian	results	(Figures	3	and	4),	but	exists	as	a	“sister	species	clus‐
ter”	with	T. rubescens	under	the	parsimony	method	(Figure	2).

All	methods	find	three	major	clades	within	these	turritellines:	(a)	
T. exoleta	and	T. radula	sister	to	all	other	taxa,	(b)	T. bacillum	and	T. tere-
bra	sister	to	the	remaining	taxa,	and	(c)	all	other	species.	Most	of	the	in‐
congruence	is	located	within	this	last	clade	due	to	unstable	placement	
of	T. banksii, T. leucostoma,	and	T. rubescens	among	methodologies.

3.2 | Protoconch size changes after closure of the 
Central American Seaway

Protoconch	 size	 data	 were	 obtained	 for	 the	 species	 identified	 in	
Table	 3.	 We	 found	 that	 postclosure	 WA	 turritelline	 species	 as	 a	
whole	experienced	significant	change	in	both	protoconch	diameter	
(Tables	4	 and	5)	 and	 in	diameter/volutions	 (D/Vol)	 compared	with	
preclosure	values	 (Figure	5;	Tables	4	and	6).	No	significant	change	

was	found	in	TEP	species	relative	to	the	preclosure	fossil	species	in	
maximum	diameter	 (Table	5)	 or	 diameter/volutions	 ratio	 (Table	6).	
Protoconch	diameters	(Tables	5)	and	D/Vol	(Table	6)	measurements	
differ	significantly	between	Recent	WA	and	Recent	TEP	species.

The	 distribution	 of	 these	measurements	 is	 shown	 in	 Figure	 6,	
where	all	observed	protoconch	diameters	are	plotted	against	D/Vol.	
Distributions	 of	 fossil	 and	WA	 protoconch	 characteristics	 occupy	
different	areas	in	component	space,	whereas	the	distribution	of	TEP	
protoconch	characteristics	is	an	expansion	of	the	fossil	distribution.

4  | DISCUSSION

4.1 | Evolution of developmental mode in Central 
American Isthmus turritellines

We	find	evidence	of	increased	nonplanktotrophy	in	WA	species	and	
conclude	that	this	was	likely	a	response	to	decreased	nutrient	avail‐
ability	in	the	WA	after	the	closure	of	the	interoceanic	seaways.	The	

F I G U R E  3  Maximum‐likelihood	tree	generated	from	mitochondrial	and	nuclear	sequences.	Unless	noted,	bootstrap	values	at	each	node	
are	100.	All	species	are	from	genus	Turritella,	except	for	out‐groups	Batillaria zonalis	and	Lampania cumingi.	L1	=	sequence	from	Lieberman	
et	al.	(1993);	S1	or	S2	=	specimen	collected	for	this	study;	UF1	or	UF2	=	specimen	from	FLMNH.	Scale	bar	represented	mean	number	of	
nucleotide	substitutions	per	site

85

97

88

43

88

96

76

76

32

30

14

0.3

T. nodulosa S1

T. nodulosa UF1
T. leucostoma L1

T. leucostoma S1

T. terebra L1
T. terebra S1

T. bacillum S1

T. bacillum S2

T. nodulosa L1

T. rubescens UF1

T. acropora UF2

T. acropora UF1

T. radula UF1

T. radula UF2

T. exoleta UF2

T. exoleta UF1
T. exoleta L1

T. banksii S1

T. banksii S2

T. anactor L1
T. gonostoma S1

T. gonostoma L1

T. acropora L1

Lampania cumingi
Batillaria zonalis



     |  5315SANG et Al.

similarity	 of	 preclosure	 protoconch	 diameters	 to	 postclosure	 TEP	
protoconch	 diameters	 affirms	 that	 the	 observed	 difference	 in	 the	
modern	populations	is	not	due	to	a	decline	in	mean	protoconch	size	
in	 the	 Pacific.	 The	minimum	 protoconch	 size	 observed	 (157.5	μm)	
was	from	a	TEP	species	and	is	nearly	half	of	the	minimum	observed	
size	for	WA	species	(316.2	μm).	Maximum	observed	protoconch	sizes	
were	similar	between	modern	WA	(475	μm)	and	TEP	(470	μm)	spe‐
cies.	This	indicates	that	selection	against	small	protoconch	size	was	
the	likely	driver	of	this	change.	Because	we	show	that	the	WA	spe‐
cies	examined	are	sister	to	EP	species	 in	our	molecular	phylogeny,	
we	regard	the	evolution	of	increased	nonplanktotrophy	as	separate,	
independent	occurrences	within	each	lineage.	The	observation	that	
these	surviving	 lineages	have	 independently	 increased	protoconch	
sizes	 relative	 to	 preclosure	 along	 with	 the	 observation	 of	 similar	
changes	in	other	taxa	(Fortunato,	2004;	Jackson,	Jung,	&	Fortunato,	
1996;	Lessios,	1990;	Miura	et	al.,	2011;	Moran,	2004;	Wehrtmann	&	

Albornoz,	2002)	strongly	supports	the	adaptive	significance	of	these	
changes.

This	phylogeny	updates	the	only	existing	molecular	phylogeny	
of	 turritellines	 that	was	based	only	on	partial	mitochondrial	16S	
sequences	(Lieberman	et	al.,	1993).	We	recover	a	different	topol‐
ogy	than	presented	in	Lieberman	et	al.	(1993)	due	to	the	additional	
genetic	data;	we	double	the	read	length	for	the	16S	sequences	and	
add	 in	 three	other	 genes	 to	our	dataset.	 In	 that	 previous	 study,	
which	included	many	of	the	same	species,	turritellines	were	used	
as	a	case	study	to	investigate	whether	there	were	signals	of	species	
selection	favoring	increased	diversification	of	nonplanktotrophic	
species.	 This	 hypothesis	was	motivated	by	 the	observation	 that	
nonplanktotrophic	turritelline	species	outnumber	planktotrophic	
species	approximately	3:1	in	the	Neogene	Gulf	Coastal	Plain,	and	
worldwide	today	nonplanktotrophic	species	are	twice	as	common	
as	planktotrophic	 species	 (Allmon,	1992).	 Larval	mode	has	been	

F I G U R E  4  Bayesian	tree	generated	from	nuclear	and	mitochondrial	sequence	data.	Posterior	probabilities	at	nodes	are	100	unless	noted.	
All	species	are	from	genus	Turritella,	except	for	out‐groups	Batillaria zonalis	and	Lampania cumingi.	L1	=	sequence	from	Lieberman	et	al.	
(1993);	S1	or	S2	=	specimen	collected	for	this	study;	UF1	or	UF2	=	specimen	from	FLMNH
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considered	to	be	a	particularly	important	factor	for	macroevolu‐
tion	and	speciation	rates	 in	gastropods	(Crampton,	Cooper,	Beu,	
Foote,	&	Marshall,	2010;	Hansen,	1978;	Jablonski,	1987;	Jablonski	
&	Valentine,	1990;	Krug	et	 al.,	 2015;	Parsons,	 1997;	 Scheltema,	
1971,1978).	Planktotrophic	larvae	tend	to	spend	more	time	in	the	
plankton	and	therefore	generally	have	higher	dispersal	potential,	
wider	geographic	ranges,	and	lower	rates	of	isolate	formation	and	
consequent	speciation.	Nonplanktotrophic	species,	which	spend	
little	 or	 no	 time	 in	 the	 plankton,	 generally	 have	 decreased	 dis‐
persal,	 narrower	 ranges,	 and	 consequently,	 higher	 theoretical	
potential	 for	 allopatric	 speciation	 and	 extinction	 (Bhaud,	 1993;	

Jablonski	&	Lutz,	1980,1983;	Jackson	et	al.,	1996;	Vermeij,	1982).	
While	the	Lieberman	et	al.	 (1993)	topology	is	markedly	different	
from	the	ones	shown	in	this	paper,	both	studies	indicate	that	the	
ancestral	turritelline	condition	was	planktotrophy.	This	conclusion	
is	further	strengthened	for	the	observed	taxa	by	our	finding	that	
all	preclosure	forms	 in	the	Central	American	Isthmus	region	had	
protoconch	 sizes	 indicative	 of	 planktotrophy.	 Additionally,	 both	
this	paper	and	Lieberman	et	al.	(1993)	find	that	nonplanktotrophy	
arose	 within	 single	 species	 instead	 of	 at	 the	 base	 of	 nonplank‐
totrophic	clades,	and	so	 likely	did	not	drive	 increased	speciation	
in	the	sampled	taxa.

TA B L E  3  Turritelline	protoconch	diameters	and	diameter/volutions	ratios	observed	in	this	study

Species Cohort Age Diameter (μm) Diameter/volutions

Turritella acropora Postclosure	Atlantic Recent 475 3.17

T. acropora Postclosure	Atlantic Recent 420 2.44

T. altilira Preclosure	fossil Miocene 276 2.40

T. altilira Preclosure	fossil Miocene 272 2.18

T. altilira Preclosure	fossil Miocene 300 1.23

T. anactor Postclosure	Pacific Recent 316.11 2.70

T. banksii Postclosure	Pacific Recent 285.57 2.72

T. broderipiana Postclosure	Pacific Recent 426.5 3.23

T. exoleta Postclosure	Atlantic Recent 350 3.50

T. exoleta Postclosure	Atlantic Recent 373.49 3.29

T. gatunensis Preclosure	fossil Miocene 282 1.97

T. gatunensis Preclosure	fossil Miocene 290.354 1.98

T. gonostoma Postclosure	Pacific Recent 407 2.04

T. gonostoma Postclosure	Pacific Recent 470 2.35

T. leucostoma Postclosure	Pacific Recent 274.19 2.49

T. leucostoma Postclosure	Pacific Recent 269.66 1.80

T. leucostoma Postclosure	Pacific Recent 230 1.50

T.radula (“mariana”) Postclosure	Pacific Recent 203.53 1.36

T. nodulosa Postclosure	Pacific Recent 228.15 1.95

T. nodulosa Postclosure	Pacific Recent 299.662 1.65

T. nodulosa Postclosure	Pacific Recent 294.197 1.56

T. nodulosa Postclosure	Pacific Recent 300 1.50

T. radula Postclosure	Pacific Recent 167.238 1.67

T. radula Postclosure	Pacific Recent 161.274 1.38

T. radula Postclosure	Pacific Recent 157.506 1.05

T. rubescens Postclosure	Pacific Recent 256.643 2.02

T. willetti Postclosure	Pacific Recent 348.211 3.48

T. willetti Postclosure	Pacific Recent 341 3.04

T. wiilletti Postclosure	Pacific Recent 346.6 2.84

T. exoleta Postclosure	Atlantic Recent 320.62 3.56

T. variegata Postclosure	Atlantic Recent 316.17 2.53

T. venezuelana Preclosure	fossil Late	Oligocene 230 1.73

T. gilbertharrisi Preclosure	fossil Late	Oligocene 240 1.92

Vermicularia knorrii Postclosure	Atlantic Pleistocene 320 2.09

V. woodringi Preclosure	fossil Miocene 280 1.87
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The	 pattern	 of	 increased	 protoconch	 size	 in	 postclosure	WA	
species	 is	 consistent	 with	 our	 hypothesis	 that	 decreased	 nutri‐
ent	 availability	 in	 the	 WA	 selected	 for	 nonplanktotrophy,	 and	

the	phylogeny	indicates	that	at	least	two	of	the	three	Recent	WA	
species	evolved	 larger	protoconch	sizes	 independently	 (Figure	7).	
Further	research	is,	however,	necessary	to	determine	the	underlying	

Preclosure fossil Postclosure Atlantic Postclosure Pacific

N	(protoconchs) 8 7 20

N	(species	
represented)

5 4 10

Min	(μm) 230 316.2 157.5

Max	(μm) 300 475 470

Mean	(μm) 271.3 367.9 289.2

SE 8.5 22.8 19.2

Variance 583.6 3623.8 7404.5

SD 24 60.2 86.0

Median 278 350 289.9

TA B L E  4  Comparison	of	turritelline	
protoconch	diameter	among	preclosure	
(late	Oligocene–middle	Miocene)	fossil,	
postclosure	(Pleistocene–Recent)	Atlantic,	
and	postclosure	Pacific	species

Protoconch diameter Tukey's Q Mann–Whitney U

Preclosure	fossil	versus	Postclosure	Atlantic 4.114;	p	=	0.01758 0; p	=	0.004

Preclosure	fossil	versus	Recent	Pacific 0.7605;	p	=	0.8534 69;	p	=	1

Pacific	versus	Postclosure	Atlantic 3.354;	p	=	0.06041 26;	p	=	0.048

Note.	Statistically	significant	p	values	in	bold.

TA B L E  5  Statistical	comparisons	of	
protoconch	diameter	among	preclosure	
fossil,	postclosure	Atlantic,	and	
postclosure	Pacific	turritellines

F I G U R E  5  Postclosure	Atlantic	species	are	nonplanktotrophic	compared	to	planktotrophic	postclosure	Pacific	and	preclosure	fossil	
species.	Quartile	plots	of	(a)	protoconch	diameter	and	(b)	diameter/volutions	(D/Vol)	ratio	for	postclosure	Atlantic,	postclosure	Pacific,	and	
preclosure	fossil	species
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macroevolutionary	mechanisms	responsible	for	these	changes.	As	
modern	 TEP	 turritellines	 exhibit	 a	 great	 diversity	 of	 protoconch	
sizes,	 it	 is	 possible	 that	 the	modern	differences	 are	 the	 result	 of	

either	 selective	 extinction	 of	 lineages	 which	 have	 small	 proto‐
conchs	(inferred	planktotrophs,	following	Shuto,	1974),	or	selection	
on	each	lineage	for	larger	protoconchs	through	time	in	the	WA,	with	

F I G U R E  6  Changes	in	character	
space	occupied	by	preclosure	fossil,	and	
postclosure	Atlantic	and	postclosure	
Pacific	turritelline	protoconchs.	90%	
confidence	ellipses	are	shown
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possible	unrelated	extinctions.	The	presumed	difficulty	of	re‐evolv‐
ing	planktotrophy	also	may	bias	the	long‐term	accumulation	of	non‐
planktotrophy	in	a	clade,	if	the	transition	to	nonplanktotrophy	has	
no	consequences	for	speciation	(Duda	&	Palumbi,	1999;	Krug	et	al.,	
2015).	There	are	two	chief	difficulties	in	assessing	which	of	these	
macroevolutionary	mechanisms	was	 involved	 in	 the	 transition	 to	
larger	protoconch	sizes	 in	WA	turritellines.	First,	 additional	 fossil	
protoconch	data	would	need	to	be	incorporated	into	a	phylogenetic	
framework	 to	 distinguish	 between	 these	 evolutionary	 histories.	
Data	from	additional	protoconchs,	with	both	high‐resolution	strati‐
graphic	data	and	confident	species	assignments,	are	obviously	vital	
to	assess	the	possibility	of	anagenetic	selection	for	protoconch	size	
increase.	Efforts	should	be	made	to	document	protoconch	sizes	in	
the	literature	where	possible,	even	maximum	diameters	from	frag‐
mented	 protoconchs,	 and	 collecting	 efforts	 should	 take	 special	
care	 not	 to	 neglect	 small	 apical	 fragments	which	may	 be	 rapidly	
screened	for	protoconchs	using	light	microscopy.	Second,	the	pres‐
ent	status	of	turritelline	systematics	presents	a	further	difficulty.	It	
has	been	the	operational	assumption	of	many	studies	that	long‐dis‐
tance	dispersal	events	among	turritellines	are	rare	(e.g.,	Marwick,	
1957).	Both	Lieberman	et	al.	(1993)	and	the	present	study	suggest	
that	this	assumption	should	be	treated	with	some	caution	as	there	
appear	to	be	two	clades	in	the	neotropics,	one	of	which	is	sister	to	
a	clade	of	species	from	South‐East	Asia.	A	global	molecular	phylog‐
eny	of	Recent	turritellines	 is	needed	to	assess	the	validity	of	 this	
assumption	in	regard	to	fossil	species	from	the	tropical	Americas,	
and	 to	 aid	 in	determining	what	morphological	 characters	may	be	
informative	in	assigning	species	to	these	clades.

Regardless	of	the	evolutionary	mechanisms	involved	in	achiev‐
ing	 nonplanktotrophy,	 decreased	 planktotrophy	 and	 diversity	 of	
turritellines	after	the	closure	of	tropical	American	interoceanic	sea‐
ways	will	 likely	have	 long‐term	consequences	 for	 the	evolution	of	
turritellines.	 Species‐poor	 clades	 are	more	 likely	 to	 be	 subject	 to	
stochastic	extinction,	and	 low‐dispersal	 larvae	may	result	 in	shifts	
in	 speciation	 rates,	 or,	 in	punctuational	 systems,	 shifts	 in	 rates	of	
morphospace	exploration	 (Jablonski,	2017;	Krug	et	al.,	2015).	Our	
phylogeny	 indicates	 that	 the	 two	 WA	 species	 examined	 are	 not	
closely	 related,	 and	 therefore,	 loss	 of	 either	 would	 substantially	
decrease	the	phylogenetic	diversity	(Faith,	1992)	present	in	the	re‐
gion.	The	loss	of	planktotrophy	has	also	been	considered	subject	to	
Dollo's	law,	with	limited	opportunities	for	reversal	due	to	the	com‐
plex	of	characters	necessary	 for	 larval	 feeding	 (Krug	et	al.,	2015).	
This	may	not	be	the	case	as	even	direct‐developing	gastropods	may	
pass	through	a	veliger	stage	within	the	egg,	without	loss	of	associ‐
ated	 characters	 (e.g.,	 larval	 velum;	 Collin,	 2004;	 Collin,	 Chaparro,	
Winkler,	&	Veliz,	2007;	Collin	&	Cipriani,	2003;	Collin	&	Miglietta,	
2008).	If	increased	nonplanktotrophy	decreases	net	diversification	
rates,	selection	toward	higher	parental	investment	in	WA	turritelline	
clades	may	have	contributed	to	the	overall	decline	in	WA	diversity	
as	well	(Krug	et	al.,	2015).	Investigating	the	evolution	of	WA	and	TEP	
turritelline	 protoconch	 size	 in	 a	 phylogenetic	 context	 may	 distin‐
guish	whether	nonplanktotrophy	has	led	to	decreased	net	diversifi‐
cation	rates	in	WA	turritellines.	If	such	a	decrease	is	observed,	then	

this	shift	in	protoconch	sizes	may	be	evidence	that	WA	turritellines	
represent	 two	“dead	clades	walking”	 (Jablonski,	2002;	Krug	et	al.,	
2015)	following	the	Pliocene	extinctions.
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