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Abstract: Aging of human testis and associated cellular changes is difficult to assess. Therefore,
we used a translational, non-human primate model to get insights into underlying cellular and
biochemical processes. Using proteomics and immunohistochemistry, we analyzed testicular tissue
of young (age 2 to 3) and old (age 10 to 12) common marmosets (Callithrix jacchus). Using a mass
spectrometry-based proteomics approach, we identified 63,124 peptides, which could be assigned
to 5924 proteins. Among them, we found proteins specific for germ cells and somatic cells, such as
Leydig and Sertoli cells. Quantitative analysis showed 31 differentially abundant proteins, of which
29 proteins were more abundant in older animals. An increased abundance of anti-proliferative
proteins, among them CDKN2A, indicate reduced cell proliferation in old testes. Additionally, an
increased abundance of several small leucine rich repeat proteoglycans and other extracellular matrix
proteins was observed, which may be related to impaired cell migration and fibrotic events. Further-
more, an increased abundance of proteins with inhibitory roles in smooth muscle cell contraction
like CNN1 indicates functional alterations in testicular peritubular cells and may mirror a reduced
capacity of these cells to contract in old testes.

Keywords: ageing; testis; proteome; marmoset monkey; non-human primate; testicular aging

1. Introduction

In many organs, aging is associated with structural alterations and reduced functional-
ity [1,2]. There is increasing evidence that aging of the human testis results in impairment of
the two testicular main functions: steroidogenesis and spermatogenesis. More specifically,
it has been observed that testicular aging leads to reduced levels of testosterone, a hormone
essential for spermatogenesis [3], to an increase of de novo mutations in germ cells [4],
alterations in sperm DNA methylation [5] and to lower gamete quality [6,7]. Additionally,
there is evidence for structural alterations such as enlargement and sclerosis of the per-
itubular wall [8–10]. However, this was disputed by a recent study, which did not find any
alterations in the peritubular wall [11]. This study rather reported a reduced spermatogenic
efficiency, increased number of proliferating Adark spermatogonia and increased size of
Sertoli cell nucleus and nucleolus. Another recent study reported a decline of both Sertoli
and Leydig cells in older men and an unchanged steroidogenic capacity of Leydig cells [10].

Although the described age-related alterations do not always negatively influence
fertility, gradual changes of testicular morphology and a decline in fertility starting in the
thirties are well documented [12–15]. However, despite evidence of functional and morpho-
logical changes in the aged testis, the topic remains controversial and underlying molecular
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mechanisms are not yet completely understood. This is in part due to the difficulty to
distinguish the sole contribution of age (healthy aging) to the reported morphological and
molecular alterations from other parameters, namely medical history and lifestyle.

These limitations are considerably reduced by studying testicular aging in an adequate
model. The non-human primate C. jacchus qualifies as a model organism because these
animals can be kept under a well-defined environment, and testicular tissue of young
healthy individuals is available. Two recent studies [16,17] examined testicular peritubular
cells (TPCs) from C. jacchus (MKTPCs). TPCs transport sperm, secrete factors and are
closely associated with the basal lamina of the germinal epithelium, thereby contributing to
the spermatogonial stem cell niche and to the testicular paracrine signaling network [18–25].
It became evident that MKTPCs are very closely related to human TPCs (HTPCs), indicated
by the vast similarities in proteomes and expression of markers [16].

TPCs from men and C. jacchus were also employed to study aspects of cellular ag-
ing [17,23]. In both studies, cells were repeatedly passaged until a state of replicative
senescence was reached. Replicative senescence is considered a hallmark of aging [1,26]
and is characterized by a stable growth cycle arrest, increased cell size, expression of
senescence-associated beta galactosidase secretion and the development of senescence-
associated secretory phenotype (SASP) [2,27]. The proteomes of repeatedly passaged
MKTPCs were analyzed and compared with the results of MKTPCs isolated from young
animals and older animals [17]. Repeated passaging led to alterations indicating cellular
senescence of TPCs, impaired protein secretion and a decrease of proteins associated with
peritubular wall contractility. The alterations between MKTPCs isolated directly from
young and older individuals were, in general, of similar nature but changes in abundance
were far more subtle [17].

Besides TPCs, other testicular cell types may age and contribute to age-related alter-
ations of testicular function. To investigate this in a comprehensive manner and to explore
healthy aging, we performed a holistic proteome analysis to compare testicular tissues
from young and old individuals. We chose a mass spectrometry-based proteomics ap-
proach, because of its capability to identify and quantify thousands of individual proteins,
facilitating a comprehensive overview of proteome alterations between the testis of young
and older individuals. The study was complemented by immunohistochemical studies.

2. Materials and Methods
2.1. Animals

Testicular tissue from common marmoset monkeys (Callithrix jacchus) was examined
in this study. The tissue was collected from animals from a self-sustaining colony at
the German Primate Center (Deutsches Primatenzentrum–Leibniz-Institute for Primate
Research, DPZ, Göttingen, Germany) as described previously [16,17].

The legal and the institutional guidelines of the DPZ for the care and use of mar-
moset monkeys were followed. Health and well-being of the animals were controlled
daily by experienced animal care attendants and regularly, at least twice per week, by
veterinarians. Marmoset monkeys are social tree-living New World monkeys originating
from the tropical north-east of Brazil. Accordingly, the animals were pair-housed in a
temperature- (25 ± 1 ◦C) and humidity-controlled (65 ± 5%) facility. These parameters
were controlled daily. Room air was changed several times per hour and filtered ade-
quately. Illumination was provided by daylight and additional artificial lighting on a
12 h/12 h light/dark cycle. Each cage consisting of stainless steel had a vertical orienta-
tion (165 cm (height) × 65 cm (width) × 80 cm (depth)) and was furnished with wooden
branches and shelves for environmental enrichment and contained a wooden sleeping box
simulating the monkeys’ natural habitats. The housing room and the cages were cleaned
with water at weekly intervals. The animals were fed ad libitum with a pelleted marmoset
diet (ssniff Spezialdiäten, Soest, Germany). In addition, 20 g mash per animal was served
in the morning and 30 g fruits or vegetables mixed with noodles or rice were supplied in
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the afternoon. Furthermore, once per week mealworms or locusts were served. Drinking
water was always available. All materials were changed regularly, cleaned, and sterilized.

The “young” group within this study included 6 adult, healthy, sexually mature [28]
animals aged on average 2.8 ± 0.6 (SD) years (median = 2.7 years) (2 years (yrs) 2 month
(mo), 2 yrs 3 mo, 2 yrs 8 mo, 2 yrs 9 mo, 3 yrs, 3 yrs 10 mo). The “old” group comprised
4 healthy animals aged on average 11.2 ± 0.7 (SD) years (median = 11.5 years) (10 yrs 2 mo,
11 yrs 4 mo, 11 yrs 7 mo, 11 yrs 8 mo). At the age of 8 years, animals can be regarded as
old [29]. Three of the animals in the “young” group were euthanized in February, one
in April and two in June. Three of the animals in the “old” group were euthanized also
in February and one animal in October. The old animals were proven fathers and kept
with a female. The young animals were never used for breeding purposes, but showed,
like the old ones, qualitatively full (histologically normal) spermatogenesis. The young
animals were mostly kept in male-male pairs. All organs were obtained after euthanasia.
Euthanasia and testicular tissue removal were carried out by experienced veterinaries
according to the institutional guidelines of the DPZ for the care and use of marmoset
monkeys according to the applicable law (German Animal Protection Act). One part of
each testis was snap frozen in liquid nitrogen immediately upon isolation and used for
mass spectrometry analysis and the other part was fixed in Bouin’s Solution and embedded
in paraffin for further sectioning and immunohistochemistry.

2.2. Immunohistochemistry

Immunohistochemistry was carried out as described earlier [30]. In brief, sections
(6 µm) were dewaxed and incubated with the following antibodies: calponin-1 (C-term)
(CNN1) monoclonal (1:250; #1806-1, Epitomics, Cambridge, UK), collagen type I (COL1A1)
polyclonal (1:1000; OriGene, Rockville, MD, USA), osteoglycin (G-1) (OGN) monoclonal
(1:200; sc-374463, Santa Cruz Biotechnology, Inc., Dallas, TX, USA). The nuclei were coun-
terstained with haematoxylin (Carl Roth, Karlsruhe, Germany). Images were taken with a
Zeiss Axioplan microscope (Carl Zeiss, Oberkochen, Germany) and digitalized (Jenoptik,
Jena, Germany). Per age group sections of at least four monkeys were stained. Controls
consisted of omission of the primary antibody.

2.3. Measurement of Tubular Diameter

Small testicular sections from the same testes, which were also analyzed by mass
spectrometry, were stained with haematoxylin and eosin (HE) (Carl Roth, Karlsruhe,
Germany), images were taken with a Zeiss Axioplan microscope (Carl Zeiss, Oberkochen,
Germany) and digitalized (Jenopitk, Jena, Germany). Only those tubules, which were cross
sectioned and showed a roundish appearance, were analyzed. The smallest and the largest
diameters were determined using Fiji software. The means of the largest and smallest, as
well as only the smallest diameter, were then used for statistical analysis. Per animal, the
diameter of at least ten randomly selected tubuli were determined, in total 50 per group
(young group: n = 5; old group: n = 4). For statistical analysis, an unpaired t-test was
performed using Prism 6 (GraphPad, San Diego, CA, USA). In addition, we analyzed
sections from HE stained samples used in a previous publication [16]. They stem from two
young (2 and 3 years) and two old (9 and 12 years) C. jacchus. Tubular diameters (young:
n = 138, old: n = 153) were evaluated as described above. For statistical analysis, a one-way
ANOVA following a Tukey´s multiple comparisons test was used.

2.4. Sample Preparation for LC-MS/MS

Testicular proteomes of young (n = 6) and old (n = 4) animals were analyzed. Then,
100 µL of lysis buffer (8 M of urea in 50 mM ammonium bicarbonate) was added to
approximately 1 mg of testicular tissue. For lysis and homogenization, samples were
sonicated using a cup resonator (Bandelin, Berlin, Germany) and further processed with
QIAshredder (QIAGEN, Hilden, Germany) centrifugation devices (4 ◦C, 2500× g, 1 min).
Protein concentration was determined with a Pierce 660 nm assay (Thermo Scientific,
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Waltham, MA, USA). Then, 20 µg of protein were reduced in 4 mM dithiothreitol/2 mM
tris(2-carboxyethyl)phosphine and subsequently alkylated in 8 mM iodoacetamide. Proteins
were digested in two steps: (i) Lys-C (1/100, enzyme/protein, FUJIFILM Wako, Neuss,
Germany) for 4 h and (ii) trypsin (1/50 enzyme/protein, Promega) overnight at 37 ◦C.

2.5. LC-MS/MS Analysis

LC-MS/MS analysis was carried out on an Ultimate 3000 RSLC coupled with a Q
Exactive HF-X (both Thermo Scientific, Waltham, MA, USA). Aliquots of 1.5 µg peptides
were injected onto a trap column (PepMap 100 C18, 100 µm × 2 cm, 5 µM particles, Thermo
Scientific, Waltham, MA, USA) at a flow rate of 5 µL/min mobile phase A (0.1% formic
acid and 1% acetonitrile in water). Peptide separation was performed with an EASY-Spray
column (PepMap RSLC C18, 75 µm × 50 cm, 2 µm particles, Thermo Scientific, Waltham,
MA, USA) and a flow rate of 250 nL/min. A two-step gradient was used: first from
3% mobile phase B (0.1% formic acid in acetonitrile) to 25% B in 160 min and second
a 10 min ramp to 40% B (A: 0.1% formic acid in water). Peptides were analyzed in the
data-dependent acquisition mode with up to 15 MS/MS scans per cycle.

2.6. Data Analysis

Acquired MS spectra were searched using MaxQuant (1.6.5.0) with the match between
runs feature activated and quantified using the label-free quantification approach [31].
Amino acid sequences were retrieved from UniProt using all available entries for C. jacchus
from both Swiss-Prot and TrEMBL (retrieval: 09/2020). Data analysis was done with
Perseus (1.6.5.0) and R (4.0.1) [32]. Volcano plot analysis, principal component analysis
(PCA) as well the heatmap were performed with the built-in features of Perseus. For multi-
ple testing correction, a significance cut-off curve was generated (s0 = 0.1, FDR < 0.05) [33].
Differentially abundant proteins were annotated with the PANTHER online tool using Gene
Ontology (GO) biological process as a database [34]. Proteins significantly altered in abun-
dance were further analyzed and annotated using DAVID and STRING [35–37]. For the
DAVID analysis, the functional annotation clustering tool was used with the following cat-
egories: GO biological process, GO cellular component, GO molecular function, Reactome,
UniProt keyword entries. Classification stringency was set to high and resulting clusters
were labeled according to the term with the smallest p-value. For the STRING analysis, all
interactions but neighborhood and gene fusion were included, and nodes without signifi-
cant interaction were removed. The mass spectrometry proteomics data were deposited
to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org, ac-
cessed on 23 May 2021) via the Proteomics Identification Database (PRIDE) partner reposi-
tory with the dataset identifier PXD024844 [38].

3. Results
3.1. Histology Reveals Ongoing Spermatogenesis in All Samples and Slightly Increased Tubular
Diameters in Old Animals

Histological evaluation of testis sections from six young (2 to 3 years) and four old
(10 to 12 years) monkeys indicated ongoing spermatogenesis in all specimens (Figure 1).
Due to the handling of the testes, germ cells were occasionally detached and were observed
in the lumen. However, measurements of tubular diameters were possible and revealed
slightly increased diameters in the older individuals (p < 0.05) (Figure 1A). The increase was
significant, irrespective of whether only the smallest diameter (Figure 1B) or the mean of
smallest and largest diameters (not shown) were taken into consideration. Similar increases
were found in additional sections from young and old monkeys (Figure A1).

http://proteomecentral.proteomexchange.org


Cells 2021, 10, 1306 5 of 17

Cells 2021, 10, 1306 5 of 17 
 

 

increase was significant, irrespective of whether only the smallest diameter (Figure 1B) or 
the mean of smallest and largest diameters (not shown) were taken into consideration. 
Similar increases were found in additional sections from young and old monkeys (Figure 
A1). 

 
Figure 1. Light micrograph of HE stained sections of testes from young (3 years, left) and old C. jacchus (11 years, right). 
(A) Scale bar indicates 100 µm. Tubular diameters of young (2–3 years, n = 5) and old (10–12 years, n = 4) C. jacchus. (B) 
Tubular diameter was slightly increased in the old C. jacchus (**** p < 0.0001; unpaired t-test); individual diameters are 
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cific for Leydig cells [41,42]. Furthermore, cyclin-dependent kinase inhibitor 1B 
(CDKN1B) and aortic smooth muscle actin (ACTA2, also referred to as alpha-smooth mus-
cle actin) are common markers for adult Sertoli cells and peritubular cells, respectively 
[19,43]. Additionally, vimentin (VIM) is common in somatic testicular cell types such as 
peritubular cells, Sertoli cells and interstitial cells [44]. 
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Figure 1. Light micrograph of HE stained sections of testes from young (3 years, left) and old C. jacchus (11 years, right). (A)
Scale bar indicates 100 µm. Tubular diameters of young (2–3 years, n = 5) and old (10–12 years, n = 4) C. jacchus. (B) Tubular
diameter was slightly increased in the old C. jacchus (**** p < 0.0001; unpaired t-test); individual diameters are shown, and
bars indicate the mean and SD.

3.2. Comprehensive Proteome Analysis of Testes of Young and Old Individual Donors

The proteomes of testicular tissue derived from six young (age: on average 2.8 years
old) and four old (age: on average 11.2 years old) C. jacchus individuals were analyzed by
LC MS/MS leading to the identification of 63,510 peptides and 5924 proteins (Table S1).
Several of the identified proteins are characteristic of specific testicular cell types (Table 1).
For instance, ATP-dependent RNA helicase DDX4 (DDX4) and melanoma-associated
antigen 4 (MAGEA4) are in the testis specific for germ cells [39,40], cholesterol side-chain
cleavage enzyme, mitochondrial (CYP11A1) and insulin-like 3 (INSL3) are markers specific
for Leydig cells [41,42]. Furthermore, cyclin-dependent kinase inhibitor 1B (CDKN1B)
and aortic smooth muscle actin (ACTA2, also referred to as alpha-smooth muscle actin)
are common markers for adult Sertoli cells and peritubular cells, respectively [19,43].
Additionally, vimentin (VIM) is common in somatic testicular cell types such as peritubular
cells, Sertoli cells and interstitial cells [44].

Table 1. Overview of identified markers for different testicular cell types.

Cell Type Markers

Leydig cells CYP11A1, CYP17A1, INSL3
Sertoli cells VIM, CDKN1B

Peritubular cells VIM, ACTA2
Germ cells DDX4, MAGEA4, UTF1

Proteins were quantified using a label-free quantification approach and filtered with
the criteria: having at least 90% valid values among either old or young samples. This
resulted in 3217 sufficiently quantified proteins. The quantitative data were analyzed
using unsupervised hierarchical clustering and principal component analysis (PCA)
(Figures 2A and A2). PCA shows a separation of testes proteome profiles from old
and young donors (Figure 2A). In contrast, the heatmap shows three main clusters
(Figure A1). While proteome profiles from two old individuals are separated from those
of the other eight, one cluster contains three young and two old individuals and a third
cluster three samples from young individuals.
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curve are considered significant; red color indicates higher abundance in old donors; blue color indicates lower abundance 
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3.3. Volcano Plot Analysis Reveals Significant Alterations in the Testis Proteome of
Older Individuals

A volcano plot analysis revealed 31 differentially abundant proteins in the testicu-
lar proteomes of the older individuals compared to the proteomes of the young testes
(Figure 2B, Table S2) (FDR < 0.05). All these proteins were clustered in a z-score normal-
ized heatmap, illustrating the strong differences in abundance (Figure 3A). Furthermore, a
higher variance in the abundance of these proteins within the samples from old individuals
compared to samples from the young individuals became apparent. Conspicuously, only
two of the differentially abundant proteins were less abundant in the testis samples of aged
animals: (i) cytosolic 10-formyltetrahydrofolate dehydrogenase (ALDH1L1) and (ii) acyl-
CoA-binding domain-containing protein 5 (ACBD5). The 29 more abundant proteins could
predominantly be assigned to three protein families: four proteins from the actin-binding
calponin repeat family, three tropomyosins and several members of the small leucine-rich
proteoglycans (SLRPs) A Gene Ontology analysis using the PANTHER online tool was
used to classify the differentially abundant proteins (Figure 3B).

3.4. DAVID Analysis Reveals Clusters of Enriched Functional Terms

The data were annotated and analyzed with DAVID resulting in functionally enriched
terms which were subsequently clustered (Figure 4, Table S2). Six clusters were found
to be significantly enriched, and the most significant term was used to label the cluster.
Out of the 31 differentially abundant proteins, 21 are represented in at least one of these
clusters. The cluster named “muscle filament sliding” showed the highest enrichment score
and comprises desmin (DES), actins and three tropomyosins. These three tropomyosins
were also found in the cluster “muscle thin filament tropomyosin”. In the second most
enriched cluster “extracellular matrix”, all above mentioned SLRPs, collagen alpha-1(XII)
chain (COL12A1), dermatopontin (DPT) and fibrinogen beta chain (FGB) were found. The
cluster “keratan sulfate catabolic process” contained four differentially abundant SLRPs:
lumican (LUM), fibromodulin (FMOD), mimecan (OGN) and prolargin (PRELP). However,
in our dataset, no enzyme of this pathway was identified. The cluster “cell-cell adhesion”
comprises actin-binding proteins like calponins and caldesmon (CALD1). The cluster
“secreted” includes enzymes like tripeptidyl-peptidase 1 (TPP1) and acid ceramidase
(ASAH1) in addition to the proteins of the cluster “extracellular matrix”.
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3.5. STRING Analysis Results in a Rich Interaction Network

The 31 differentially abundant proteins were analyzed with STRING (Figure 5). This
resulted in significantly more interactions than expected by chance (PPI enrichment p-value:
1.0 × 10−16, expected number of edges: 5, number of edges found: 73). From 31 proteins,
23 had at least one interaction with another differentially abundant protein. Strikingly, two
distinct networks can be observed, of which the smaller contained all the differentially
abundant SLRPs together with DPT and COL12A1. All of them are annotated to be secreted,
and some are known to be involved in “supramolecular fiber organization”, while others
are part of “glycosaminoglycan catabolic process”. LUM and FMOD are part of both
gene sets. The other network comprises various cytoskeletal proteins, of which around
half are also known to be involved in “supramolecular fiber organization”. Cysteine and
glycine-rich protein 1 (CSRP1) is not annotated in the four chosen categories but is, e.g.,
involved in actin cytoskeleton organization.
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3.6. Immunostaining Illustrates the Increased Abundance of Extracellular Matrix Proteins

Immunohistochemistry revealed expression of CNN1 in testicular peritubular cells
of young and old C. jacchus (Figure 6A,a,B,b). Smooth muscle cells of testicular blood
vessels were also immunopositive for CNN1 and served as internal staining control. In the
young individuals, not all peritubular cells were immunopositive. In contrast, in the old
individuals all peritubular cells were stained.

OGN was detected mainly within the interstitial space of both, young and old individ-
uals (Figure 6C,c,D,d). More intensive staining of larger interstitial areas indicates higher
abundance of OGN. Both findings nicely corroborate our proteome analysis, where CNN1
(log2 fold change: 1.61; p-value: 0.013) and OGN (log2 fold change: 3.05; p-value: 0.0060)
were found to be more abundant in the old testes.

Collagen alpha-1(I) chain (COL1A1) was localized in the peritubular wall compart-
ment and the interstitial space, with higher abundance in old individuals (Figure 6E,e,F,f,).
In the proteome analysis, a trend (p-value: 0.14; log2 fold change: 0.72) towards an increased
COL1A1 abundance was found.
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Figure 6. Representative light micrographs of immunohistochemistry. Testicular sections from young (2–3 years) and old
(10–12 years) C. jacchus were stained with specific antibodies against CNN1, OGN and COL1A1. CNN1 staining was found
in most peritubular cells from young C. jacchus (A,a, (higher magnification)). In old C. jacchus, CNN1 was expressed in all
peritubular cells (B,b (higher magnification)). OGN was detected mainly within the interstitial space of testes of young C.
jacchus (C,c (higher magnification)). The level increased in the testes of old C. jacchus (D,d (higher magnification)). COL1A1
was detected in peritubular cells from young (E,e (higher magnification)) and old (F,f (higher magnification)) C. jacchus.
In old individuals, COL1A1 expression increased in the interstitial space. Nuclei were slightly stained with hematoxylin.
Inserts: negative controls. Scale bars = 100 µm.
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4. Discussion
4.1. General Remarks

This study was performed to examine age-related changes in testicular proteins.
We analyzed the testicular proteomes of six young (2 to 3 years) and four old (10 to
12 years) C. jacchus individuals. Captive marmosets show the first signs of aging around
the age of 8 years, and therefore, the older animals can be regarded as old, healthily aged
individuals [29,45,46]. We were able to directly compare testicular tissues from young and
old individuals grown up under well-characterized conditions in the same colony and
thereby minimizing influences of lifestyle. Using a bottom-up mass spectrometry approach,
we identified 5924 proteins, among them several specific for germ cells and somatic cells,
like Leydig and Sertoli cells, in the testis. This indicates a profound analytical depth, shows
that all major testicular cell types are captured by our analysis and thus demonstrates the
relevance of our dataset. Principal component analysis (PCA) of LFQ intensity values led
to a clear separation between old and young testicular proteomes, indicating significant
alterations between the testis proteomes of young and old donors (Figure 2A). Further
statistical evaluation revealed 31 differentially abundant proteins. The large majority
(29 proteins) was more abundant in the testes of old animals (Figure 2B). Strikingly, most
of these proteins belong to just a few enriched protein families and categories (Figures 3B,
4 and 5). The abundance of common Sertoli and Leydig cell markers [10], as well as of
germ cell-specific proteins, was not altered in older animals. This result is in line with the
observed ongoing spermatogenesis in both age-groups.

4.2. Levels of Anti-Proliferative Proteins Are Increased in Testes from Older Individuals

Among proteins more abundant in old testes are various proteins known to inhibit
cell proliferation. The most prominent one is CDKN2A (log2 fold change: 1.92; p-value:
0.0029), also called p16INK4a, which is a strong interactor of cyclin dependent kinase 4
and 6 [47]. This interaction directly regulates the transition of a cell from G1 phase into
S1 phase [47]. Therefore, an increase of this protein is typically associated with a growth
cycle arrest, a characteristic attribute of cellular senescence [48,49]. Additionally, in skin,
CDKN2A has been described as an in vivo biomarker for cellular senescence since its
expression in dermis and epidermis cells positively correlates with chronological aging [50].
We attempted to localize this protein in sections of testes by immunohistochemistry, yet
the findings did not yield specific results. Hence the nature of cells, in which CDKN2A
increases, remains to be defined.

Furthermore, three extracellular proteins increased in old testes, show anti-proliferative
activity, namely, the two SLRPs PRELP and OGN as well as DPT. PRELP is known to be
typically located near basement membranes and is supposed to act as an anchor to con-
nective tissue [51]. The inhibitory effect of PRELP on proliferation was recently shown for
hepatocellular carcinoma cells but otherwise its biological function is not well known [52].
Another extracellular protein known to play a role in inhibition of proliferation is DPT,
which is involved in the organization of collagen fibrils in the extracellular matrix [53,54].
Additionally, it was demonstrated that an increased abundance of DPT is associated with
testicular dysfunction [54–56]. OGN was shown to inhibit proliferation in cardiac smooth
muscle tissue and influences apoptosis and cell migration [57,58]. A strong increase of
OGN in old testes was also shown by immunostaining. OGN was predominantly found in
the interstitial compartment, which contains extracellular matrix and fibroblasts, next to
Leydig cells, macrophages and blood vessels. Taken together, the alterations in proteins
regulating cell proliferation indicate that mitotic events in old testes are slowed down or
even arrested.

Associated with testicular dysfunction is the enzyme ASAH1, which was increased
in old testes. ASAH1 is a regulator of steroidogenic capacity by controlling the turnover
of ceramide and sphingosine. It may also influence steroidogenesis directly by binding
to NR5A1 [59,60]. Its substrate, ceramide, is a bioactive lipid which regulates apoptosis,
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differentiation but also proliferation [61,62]. In human ovarian granulosa cells, it induced
cell death [63].

4.3. Testis Proteomes of Aged Individuals Show a Broad Increase of Actin-Binding Proteins

The proteomics analysis showed an increase of actin-binding proteins in the old
testes, including all three calponin isoforms. One of them, calponin-1 (CNN1) is specific
for smooth muscle cells, a fact reflected by the immunostaining of testicular peritubular
cells and typical smooth muscle cells of blood vessels (Figure 6A,a,B,b). Previously, a
decline of peritubular cell CNN1 was shown in infertile patients, which went hand in hand
with a partial loss of other contractility proteins of peritubular cells and indicated loss
of the smooth muscle phenotype, in general [64]. In the present study, stronger staining
of CNN1 in peritubular cells of old testes was observed, whereas in young testes not all
peritubular cells were positive for CNN1. This implies that CNN1 expression increases with
advanced age. For ACTA2, another contractility protein [65,66], expression was reported
upon onset of puberty in nonhuman primates, but other age-depending changes are not
well known. By binding actins, CNN1 plays an important role in the cytoskeleton [67].
Specifically, it has an inhibitory role in smooth muscle contraction and responsiveness
regulation [68]. An increase of CNN1 thus may suggest reduced contractile abilities.
Calponin-2 (CNN2) also binds actin but has a different functional profile and is involved
in cell proliferation, cell motility and immune modulation (reviewed in [68]). Calponin-3
(CNN3) is the least explored. It regulates the actin cytoskeleton and is involved in cell
fusion and myogenesis [68]. The functions of CNN2/3 in the testis are not known.

Another more abundant protein in aged testes and a member of the calponin repeat
family is transgelin (TAGLN). TAGLN is an actin-binding cytoskeletal protein involved
in differentiation, apoptosis and proliferation [69–71]. The three isoforms of the actin-
binding tropomyosin family, tropomyosin alpha-1 chain (TPM1), tropomyosin beta chain
(TPM2) and tropomyosin alpha-4 chain (TPM4), were also more abundant in old testes.
Tropomyosins are known to be involved in regulating cell migration and apoptosis (re-
viewed in [72,73]). Together with the also increased CALD1, they regulate smooth muscle
contraction and contribute to the stabilization of the cytoskeleton [74]. By interacting with
tropomyosins, CALD1 inhibits the contraction of smooth muscle cells, and an increase of
CALD1 is associated with a higher inhibitory effect [75–77].

Several actin-binding cytoskeletal proteins, including CNN2, TAGLN, CALD1 and TPM1,
which were more abundant in old testes, also have anti-proliferative functions. CNN2 and
CALD1 are linked to inhibition of proliferation in smooth muscle cells [78–80]. For CNN2, this
effect was also shown in fibroblasts and prostate cancer cells [81]. Furthermore, the potential
involvement of TPM1 in the inhibition of cancer and vascular smooth muscle cell proliferation
has been demonstrated [82–84].

Taken together, the increase of several actin-binding proteins, specifically CNN1,
CALD1, tropomyosins, which can inhibit smooth muscle cell proliferation and contraction,
may indicate a reduced capacity of cells, presumably peritubular cells and typical smooth
muscle cells of blood vessels, to contract in aged testes.

4.4. Proteomic Alterations in Old Testes Point to Specific Age-Related Changes of Peritubular Cells

TPCs are smooth muscle-like cells, which form a small compartment, the peritubular
wall of the seminiferous tubules. They are able to contract and thereby crucial for sperm
transport [25]. They also secrete extracellular matrix components and various signaling
factors [19,20]. Importantly, they express several of the above discussed proteins, namely,
CNN1, CNN2, TPM1, TAGLN and CALD1.

Replicative senescence of isolated TPCs from C. jacchus has recently been studied
at the proteome level and furthermore we compared TPCs isolated from old and young
animals. The results revealed alterations of proteins related to impairments of protein
secretion and, of note, reduced levels of proteins related to contractility [17]. The proteins
identified include CNN1, MYH11, ACTA2 and DES. Hence, both studies, addressing either
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whole testes or isolated TPCs, evidence a reduction in contractility-associated proteins.
This points to reduced contractile abilities of TPCs in old animals.

In this context, the slight but significantly increased diameter of the seminiferous
tubules in old animals is of note (Figure 1). It may indicate a reduced contractile state or
tone of peritubular cells but could be due to other reasons as well, including alterations in
the composition of the tubular wall. The immunostaining showed an increase of COL1A1
in the peritubular wall in older testes. Increased abundance of collagen is associated
with fibrosis, [85], which is typically observed in the testes of infertile men [86–88]. Such
changes could potentially impair the ability to contract in the old testes, as well. Fibrosis,
including the interstitial areas, is indicated by higher levels of SLRPs, namely, decorin
(DCN), biglycan (BGN), fibromodulin (FMOD) and lumican (LUM), which are involved in
the maintenance of collagen I fibrils [89–92] and might play a role in the observed alterations
of the peritubular wall. The function of FMOD and LUM in the testis is unknown, but DCN
and BGN are known products of TPCs [93,94]. They serve structural roles but can also
interfere with signaling factors and receptors, as shown in HTPCs [95]. Increased amounts
thus imply that the local signaling in the testis and functions of TPCs, in particular, may
be impaired.

Whether and to what degree smooth muscle cells of blood vessels, present in whole
testes, may contribute to the proteomic changes remains to be studied. This warrants addi-
tional studies to address the question, whether aging of the testes may include alterations
of blood vessels and hence blood flow.

5. Conclusions

To investigate the mechanisms which underly healthy testicular aging in a transla-
tional non-human primate model we performed a proteome analysis complemented by
immunohistochemistry. Our data demonstrate that testicular aging is associated with
proteome alterations, including increased levels of a variety of anti-proliferative proteins.
Furthermore, several proteins which can impair smooth muscle cell contraction and extra-
cellular matrix proteins were more abundant in old testes. They point to age-associated
changes specifically in smooth muscle cells and smooth-muscle-like cells of the peritubular
wall. While proteomics is a powerful tool to gain new insights into complex biochemical
networks, additional studies are now necessary to obtain mechanistic insights.
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