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ABSTRACT
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is an ongoing global health emergency. Repurposing of approved pharmaceutical drugs
for COVID-19 treatment represents an attractive approach to quickly identify promising drug candi-
dates. SARS-CoV-2 main protease (Mpro) is responsible for the maturation of viral functional proteins
making it a key antiviral target. Based on the recently revealed crystal structures of SARS-CoV-2 Mpro,
we herein describe a multi-stage virtual screening protocol including pharmacophore screening,
molecular docking and protein-ligand interaction fingerprints (PLIF) post-docking filtration for efficient
enrichment of potent SARS-CoV-2 Mpro inhibitors. Potential hits, along with a cocrystallized control
were further studied via molecular dynamics. A 150-ns production trajectory was followed by RMSD,
free energy calculation, and H-bond analysis for each compound. The applied virtual screening proto-
col led to identification of five FDA-approved drugs with promising binding modes to key subsites of
the substrate-binding pocket of SARS-CoV-2 Mpro. The identified compounds belong to different
pharmaceutical classes, including several protease inhibitors, antineoplastic agents and a natural fla-
vonoid. The drug candidates discovered in this study present a potential extension of the recently
reported SARS-CoV-2 Mpro inhibitors that have been identified using other virtual screening protocols
and may be repurposed for COVID-19 treatment.
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1. Introduction

Coronaviruses (CoV) have been described for more than five
decades since the isolation of the prototype murine strain,
JHM, which was reported in 1947 (Bailey et al., 1949).
Although numerous studies of their replication mechanism
and pathogenesis have been reported since the 1970s, the
family of CoVs received much attention when a new human
CoV was recognized to be responsible for the highly conta-
gious and fatal disease, severe acute respiratory syndrome
(SARS) (Drosten et al., 2003; Rota et al., 2003).

Coronaviruses belong to the family Coronaviridae, and are
composed of an enveloped single-stranded, positive-sense
RNA with a genome ranging from 26 to 32 kb in length
(Payne, 2017). They can be classified into four genera: alpha,
beta, delta, and gamma, out of which alpha and beta CoVs
are known to infect humans (Payne, 2017). The recent pan-
demic COVID-19 is caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) which belongs to beta
CoVs.(Li et al., 2020; Xu et al., 2020). The genomic sequence
of SARS-CoV-2 shows 76.5% identity to that of SARS-CoV (Y.
Z. Zhang & Holmes, 2020). COVID-19 is a highly contagious
disease resulting in an unprecedented number of infected

people. World Health Organization has declared COVID-19 as
a public health emergency of international concern (WHO,
2020). Despite the efforts to discover potential therapeutics,
there are currently no approved COVID-19 drugs or vaccines.
The only exception is remdesvir, an RNA dependent RNA
polymerase inhibitor, for which Gilead Science was granted
Emergency Use Authorization by the FDA on May, 1st, 2020
(FDA, 2020). Repurposing of approved drugs for COVID-19
treatment is an attractive approach to quickly identify prom-
ising drug candidates that have been already optimized in
terms of pharmacokinetics and limited toxic side effects.
Indeed, a recent study demonstrated that each drug from
the DrugBank database has on average three different drug
targets (J. Wang et al., 2019).

The COVID-19 virus main protease (Mpro) is a cysteine pro-
tease responsible for proteolysis of replicase polyproteins
resulting in the formation of various functional proteins
which play a pivotal role in mediating viral replication and
transcription (Anand et al., 2003; Hilgenfeld, 2014).The func-
tional importance of Mpro in the viral life cycle, together with
the absence of closely related homologues in humans identi-
fied Mpro as an attractive target for antiviral drugs (Bartlam
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et al., 2007). Although numerous reports had been published
on SARS-CoV Mpro, no protease inhibitor has yet successfully
completed a preclinical development program (Anand et al.,
2003; Bartlam et al., 2007; Hilgenfeld, 2014). Recently, several
X-ray crystal structures of SARS-CoV-2 Mpro in complex with
covalent inhibitors were determined showing high structural
similarity to that of SARS-CoV Mpro, as expected from the
96% sequence identity (Jin et al., 2020; L. Zhang et al., 2020).
These crystal structures have been recently used in several
computational drug repurposing studies (Ancy et al., 2020;
Aouidate et al., 2020; Arun et al., 2020; Chatterjee et al.,
2020; Elmezayen et al., 2020; Khan et al., 2020; Kumar et al.,
2020; J. Wang, 2020). Additional X-ray structure of SARS-CoV-
2 Mpro in complex with reversible dipeptide inhibitor X77
has been recently published (Mesecar, 2020). However, to
the best of our knowledge, this latter crystal structure has
not been used for virtual screening of drug databases.

The present study describes an alternative drug repurpos-
ing approach to identify promising inhibitors of SARS-CoV-2
Mpro. Based on the crystal structures of SARS-CoV-2 Mpro, a
highly selective pharmacophore model was built and used
along with docking and PLIF post-docking filtration to screen
the currently FDA approved drugs. The binding mode of
potential inhibitors was determined and examined for the
proper orientation of the pharmacophores in the binding
site. Binding modes were further analyzed and compared to
a cocrystallized non-covalent ligand by molecular dynamics
and molecular mechanics Poisson-Boltzmann surface area
(MM-PBSA) free energy calculations. The identified molecules
provide new chemotypes for the development of SARS-CoV-
2 Mpro inhibitors and/or may be considered for COVID-
19 treatment.

2. Methodology

2.1. Compounds preparation

All molecules were prepared in Molecular Operating
Environment (MOE) (MOE, 2019) version 2019.01 by washing,
partial charges calculation and energy minimization using
the MMFF94x force field and a gradient of 0.0001 kcal/
(mol.Å). Multi-conformations of compounds were generated
by the stochastic conformational search algorithm imple-
mented in MOE (MOE, 2019) using the following settings:
energy window (7 kcal/mol), elimination of duplicate con-
former threshold (RMSD, 0.25 Å), total number of iterations
(10000 steps), rejection limit (100 steps), MM iteration limit
(10000 steps) and maximum conformation limit
(10000 conformers).

2.2. Pharmacophore model generation

A structure-based pharmacophore model was constructed
based on the two X-ray crystallographic structures of the
SARS-CoV-2 Mpro complexed with N3 (PDB code: 6LU7) (Jin
et al., 2020) and X77 (PDB code: 6W63) (Mesecar, 2020). In
order to get more information about the active site hotspots,
the most favorable energetic properties for ligand binding

were determined using the interaction potential map in MOE
(MOE, 2019). Interaction energies were calculated using the
following chemical probes: aromatic CH group, amide NH
group (hydrogen bond donor), carbonyl oxygen atom
(hydrogen bond acceptor) and dry (hydrophobic) probe.
Regions of favorable interactions were used to define the
pharmacophore features. The coordinates of the cocrystal-
lized ligands were used to define the grid box subjected to
energy calculation and for pharmacophore feature place-
ment. The generated pharmacophore model was validated
by retrospective screening of a test set database composed
of 166 molecules. The test set included 12 SARS-CoV Mpro

inhibitors collected from literature (Barretto et al., 2005;
Jacobs et al., 2013; Jain et al., 2004; Shie et al., 2005;
Shimamoto et al., 2015; Thanigaimalai, Konno, Yamamoto,
Koiwai, Taguchi, Takayama, Yakushiji, Akaji, Chen, et al., 2013;
Thanigaimalai, Konno, Yamamoto, Koiwai, Taguchi,
Takayama, Yakushiji, Akaji, Kiso, et al., 2013; Turlington et al.,
2013; Xue et al., 2008; H. Z. Zhang et al., 2006; Zhu et al.,
2011) which were labelled as actives (Table S1 in Supporting
Information). The remaining 154 molecules were labelled as
inactives, comprising 10 weak inhibitors of SARS-CoV Mpro

(B�egu�e & Bonnet-Delpon, 1991; Gelb et al., 1985; Jain et al.,
2004; Shao et al., 2008; Shie et al., 2005) and 144 DUD-E
(Mysinger et al., 2012) generated decoys. All molecules were
prepared as described in the ligand preparation Section 2.1.
The test set compounds were mapped to the pharmaco-
phore model using the pharmacophore search protocol avail-
able in MOE. The following metrics were used to evaluate
the model performance: sensitivity (Se), specificity (Sp) and
enrichment factor (EF).

2.3. Molecular docking

A genetic algorithm based on Cambridge Crystallographic
Data Center (CCDC) Genetic Optimization for Ligand Docking
(GOLD version 5.8) (Jones et al., 1995; 1997) was employed
for molecular docking based on the crystal structure of
SARS-CoV-2 Mpro complexed with the reversible inhibitor
“X77” (PDB code: 6W63) (Mesecar, 2020). Binding site resi-
dues were defined by specifying the crystal structure ligand
coordinates and using the default cutoff radius of 6 Å, with
the “detect cavity” option enabled. The docking experiments
were performed using the goldscore scoring function. The
search efficiency of the genetic algorithm was at 200% set-
ting with the receptor kept rigid. Water molecules were kept
in the pocket while allowing the ligand to displace them
during the docking experiment. For each compound, 50
complexes were generated and clustered based on their
RMSD with the threshold set at 1.5 Å using the complete
linkage method. The quality of pose prediction was assessed
by calculating the heavy atom RMSD between the docked
poses and the original PDB coordinates of X77. The resultant
docked poses were rescored using DrugScore (DSX) (version
0.9) (Neudert & Klebe, 2011) utilizing the DrugScorePDB

potential. All the docked poses were imported into MOE
database for calculating their Protein-Ligand Interaction
Fingerprints (PLIF) rows which were utilized for generating
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amino acids interaction fingerprints using eight types of
interactions (sidechain hydrogen bonds (donor or acceptor),
backbone hydrogen bonds (donor or acceptor), solvent
hydrogen bonds (donor or acceptor), ionic interactions, and
p interactions). The cavity used for the PLIF analysis con-
sisted of the same set of residues used in the docking
experiments. Finally, the resultant docked poses were filtered
using a set of reference PLIFs and the docking protocol vali-
dated by retrospective screening of the same test set used
in pharmacophore validation. Figures were prepared using
Pymol (Schrodinger, LLC, 2015).

2.4. Virtual screening

The validated pharmacophore model was utilized as a 3D
query for screening the FDA approved drug dataset retrieved
from Selleckchem Inc. (WA, USA, http://www.selleckchem.
com). The dataset comprised 2684 compounds which were
prepared as described in the ligand preparation section and
mapped to the pharmacophore model such that hit mole-
cules match all the query features. Using GOLD, the identi-
fied hit compounds were docked into the active site of
SARS-CoV-2 Mpro (PDB code: 6W63) (Mesecar, 2020) using
goldscore scoring function. The search efficiency of the gen-
etic algorithm was at 200% setting with the receptor kept
rigid. Finally, the docked poses were filtered using the prede-
fined PLIF and their binding modes were visually examined
to check their similarity to those of SARS-CoV-2 Mpro cocrys-
tallized ligands. The selected protein-drug complexes were
further subjected to MD simulations for understanding the
structural stability of protein-drug complexes at the
long-interval.

2.5. Molecular dynamics

2.5.1. Preparation of initial box for MD simulations
Molecular dynamics were performed on 5 of the six most
promising hits from our virtual screening in complex with
the SARS-CoV-2 Mpro; namely: boceprevir, epirubicin, nelfina-
vir, rutin and thymopentin. Bortezomib was not considered
due to the inherent difficulty of deriving parameters for the
boron atom. Topology and coordinate files were prepared
via Ambertools 14 (D.A. Case, 2020). One extra dynamics tra-
jectory was run for the SARS-CoV-2 Mpro in complex with the
co-crystallized ligand named X77 (PDB code: 6W63) (Mesecar,
2020), which serves as a control reference. In all trajectories,
the dry MOE-prepared protein was used as initial protein
coordinates. The starting coordinates for all ligands were pro-
vided from the best docked poses. The pdb4amber and
reduce programs (Word et al., 1999) implemented in
Ambertools (D.A. Case, 2020) where used to convert the files
to an AMBER-friendly format. The all-atom force field AMBER
ff14SB (Roe & Cheatham, 2013; Turner, 2005) was universally
used. As the force field does not contain parameters for the
ligand, all ligands were parameterized using ANTECHAMBER
(J. Wang et al., 2006) to generate parameters that are con-
sistent with the General Amber Force Field (GAFF) (J. Wang
et al., 2004). The AM1-BCC method was used to assign

charges. Crystallographic waters were retained and each pro-
tein was solvated with approximately 15192 TIP3P water
molecules in a 92.6� 69.7� 95.4 Å box which extends 12 Å
beyond solute in each direction. Sodium ions were added to
neutralize the negatively-charged protein, given the positive
charge on nelfinavir and thymopentin, and additional 27
NaCl ions were added to reach a salt concentration of
100mM to resemble cellular conditions.

2.5.2. MD Simulations and analysis
MD simulations were carried out using the PMEMD.cuda
code of the AMBER Molecular Dynamics package (D.A. Case,
2020) following a standard protocol adopted of minimization,
heating, density equilibration and production. The AMBER
input files are similar to those in the supplementary informa-
tion of the previous work of Salem and Brown (Alaraby
Salem & Brown, 2015) while using 306 as the number of resi-
dues (305 protein residues in addition to the ligand) when-
ever restraints are applied. The trajectory lengths for heating,
density equilibration and production were 20 ps, 50 ps and
150 ns, respectively. Extra 100 ns of production where simu-
lated for epirubicin, as explained in the discussion. Prior to
heating, we applied two cycles of minimization to each com-
plex. We applied strong restraints on the non-solvent resi-
dues, with a force constant of 500 kcal/mol.Å2, in the first
minimization run only to relieve unfavorable hydrogen con-
tacts. Heating was employed at 300 K using the Langevin
thermostat. Density equilibration and production were con-
ducted at constant pressure (1 atm). Langevin dynamics
(Loncharich et al., 1992) were generally employed and the
Particle-Mesh Ewald method (Darden et al., 1993) was used
to treat long-range electrostatics under periodic boundary
conditions. The trajectories were analyzed using CPPTraj (Roe
& Cheatham, 2013). Plots and visual inspection of the trajec-
tories was done using XMgrace (Turner, 2005) and VMD
(Humphrey et al., 1996), respectively.

2.6. Free energy calculation

A total of 1200 snapshots were evenly sampled from the
150-ns production phase of each trajectory; that is, every
125 ps. In the case of epirubicin, the sampling was repeated
in the extra 100 ns production phase, at similar intervals. The
molecular mechanics Poisson� Boltzmann surface area (MM-
PBSA) (Homeyer & Gohlke, 2012) was used to estimate the
binding free energy, as implemented in the MMPBSA.py
script available with AMBER (Miller et al., 2012). The entropy
contribution was not calculated as the method is used to
mainly compare the ligands binding to the same protein,
rather than attempting to predict absolute affinities
(Genheden & Ryde, 2015). Parameters for internal and exter-
nal dielectric constants were set to 4 and 80, respectively.
For comparison, we also calculated free energy using the
generalized-Born surface area method (Genheden & Ryde,
2015). In general, the free energy (G) of the ligand, L, or the
protein, P, is computed according to the following equation:

G ¼ Ebind þ Eel þ EvdW þ Gpol þ Gnp � TS (1)
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where Ebind, Eel and EvdW are the bonding, electrostatic and
van der Waals terms, respectively, as in standard molecular
mechanics. The polar and non-polar contributions to solv-
ation energies are Gpol and Gnp, respectively. In MMPBSA,
Gpol is obtained by solving the PB equation, while in the
case of GBSA, the Generalized-Born model is used. T is the
absolute temperature and S is the entropy which was
excluded from our calculations as mentioned above. We
adopted the one-trajectory approach by computing the tra-
jectory for a solvated complex and then computing the dif-
ference in free energy:

DGbind ¼ GPL�GP�GLh i (2)

where GPL refers to the protein-ligand complex. This differ-
ence must lead to the cancellation of Ebind from Equation (1).

3. Results and discussion

The two recently resolved X-ray crystallographic structures of
SARS-CoV-2 Mpro complexed with N3; an irreversible sub-
strate-like inhibitor (PDB code: 6LU7, resolution 2.16 Å) (L.
Zhang et al., 2020) and X77; a reversible dipeptide inhibitor
(PDB code: 6W63, resolution 2.1 Å) (Mesecar, 2020) were
used in this study for inferring chemical information on
inhibitors’ binding to SARS-CoV-2 main protease. Overlay of
the two structures showed high structural similarity with an
average all-atom RMSD of 1.29 Å and 0.693Å for all protein
residues and binding site residues; respectively. The sub-
strate-binding site is located in a cleft formed between
domains I and III, hosting a catalytic dyad composed of
Cys145 and His41. In the peptdiomimetic inhibitor N3 the
residues P1’-P5 bind to complementary subsites S1’-S5 in the
substrate-binding pocket of SARS-CoV-2 Mpro. Moreover, as
the main protease proteins of SARS-CoV (PDB code: 1UK4)
(Yang et al., 2003) and SARS-CoV-2 (PDB code:6W63)
(Mesecar, 2020) show high structural similarity with an aver-
age all-atom RMSD of 1.26 Å and 0.698 Å for all protein resi-
dues and binding site residues; respectively. Structural
information of previously reported SARS-CoV Mpro inhibitors

was used to guide the discovery of novel SARS-CoV-2 Mpro

inhibitors in this study

3.1. Pharmacophore model

To obtain comprehensive chemical information on inhibitor
binding to SARS-CoV-2 Mpro, a structure-based pharmaco-
phore model was constructed based on the two X-ray crys-
tallographic structures of Mpro complexed with N3 (L. Zhang
et al., 2020) and X77 (Mesecar, 2020). The most favorable
energetic properties for ligand binding were determined
using the interaction potential map in MOE (MOE, 2019). The
interaction potential is a grid-based approach developed for
scanning the protein surface to identify hot spots. This
method is based on determination of the chemical nature of
the protein’s active site by calculating interaction energies
with chemical probes of different electronic properties.
Regions of favorable interactions represent hotspots and
were used as a basis to define the pharmacophore features.
The resultant pharmacophore model comprised features rep-
resenting mainly S1’- S3 subsites. The generated structure-
based model included five features, namely two hydrogen
bond acceptors (Acc), one hydrogen bond acceptor projec-
tion (Acc2), one hydrogen bond donor (Don) and a hydro-
phobic center (Figure 1(A)). Overlay of the crystallized
coordinates of the substrate-like inhibitor “N3” on the
pharmacophore model showed its peptide P1 orientation
defined by two features (Figure 1(B)), namely the hydrogen
bond interactions of the side chain of P1 with the imidazole
ring of His163 and backbone carbonyl of Phe140 represented
by F1:Acc and F2:Don; respectively. This complies with the
S1 subsite specificity to P1-Gln, similarly to other previously
reported Mpro inhibitors where anchoring the ligand to this
site appeared essential to block the enzyme’s catalytic activ-
ity (F. Wang et al., 2016; Xue et al., 2008). The hydrogen
bond acceptor projection feature (F3:Acc2) represents the
hydrogen bond interaction of P1’ residue of N3 with the
backbone amine of Gly163 in S1’ subsite. A hydrophobic fea-
ture (F4: Hyd) reflects the side chain of P2 fitting in the S2
subsite lined by side chains of His41 and Met49. The S2

Figure 1. The structure-based pharmacophore model (A) 3 D spatial arrangement and distance constraints between the chemical features of the pharmacophore
model represented by cyano (hydrogen bond acceptor, Acc), yellow (projection of hydrogen bond acceptor: Acc2), magenta (hydrogen bond donor, Don) and
green (hydrophobic, Hyd) spheres. (B) Overlay of the crystal coordinates (PDB code: 6LU7) (L. Zhang et al., 2020) of the peptide-like inhibitor; N3; on the pharmaco-
phore model.
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subsite in beta coronaviruses is mainly hydrophobic with
both aromatic and aliphatic amino acids reported binding to
this site (F. Wang et al., 2016). This was also reflected by the
high interaction potentials of the dry probe observed in this
site. The last feature is a hydrogen bond acceptor (F5: Acc)
accounting for the H-bond between the backbone carbonyl
of P3 and the backbone amine of Glu166. Retrospective
screening was conducted to evaluate the ability of the
pharmacophore model to separate active from inactive com-
pounds. To this end, a small-molecule test set was generated
for model validation. Thus, 12 peptide-like Mpro inhibitors of
diverse structures, that showed high affinity to the protease
enzyme and shared a similar binding mode were selected
and labeled as actives (Jacobs et al., 2013; Jain et al., 2004;
Shie et al., 2005; Shimamoto et al., 2015; Thanigaimalai,
Konno, Yamamoto, Koiwai, Taguchi, Takayama, Yakushiji,
Akaji, Chen, et al., 2013; Thanigaimalai, Konno, Yamamoto,
Koiwai, Taguchi, Takayama, Yakushiji, Akaji, Kiso, et al., 2013;
Turlington et al., 2013; Xue et al., 2008; H. Z. Zhang et al.,
2006; Zhu et al., 2011). In addition, 10 weak inhibitors of
Mpro enzyme were collected from literature (B�egu�e &
Bonnet-Delpon, 1991; Gelb et al., 1985; Jain et al., 2004; Shao
et al., 2008; Shie et al., 2005) and labeled as inactives along
with 144 DUD-E (Mysinger et al., 2012) generated decoys
(see Table S1 in Supporting Information). The multi-conform-
ation test set compounds were mapped to the pharmaco-
phore model. As shown in Table 1, the model could retrieve
9 out of 12 known Mpro inhibitors (sensitivity ¼ 0.75),
exclude 110 out of 154 inactives (specificity ¼ 0.71) and
showed a mapping EF of 2.35.

3.2. Molecular docking

Molecular docking simulation studies were performed using
GOLD 5.8 (Cambridge Crystallographic Data Centre,
Cambridge, UK) (Jones et al., 1995; 1997). Only one crystal
structure of SARS-CoV-2 Mpro–ligand complex was employed
for docking as the binding site did not undergo conform-
ational changes upon binding of different inhibitors and thus
the crystal structure of SARS-CoV-2 Mpro complexed with the
reversible inhibitor “X77” (PDB code: 6W63) (Mesecar, 2020)
was used. To validate the docking protocol, the cocrystallized
ligand was docked into its binding pocket of Mpro enzyme.
All the resultant poses converged to a binding mode similar
to that of the experimentally determined position of X77
with the best ranking pose having a root-mean square devi-
ation (RMSD) value of 0.52 Å (Table S2, Supporting
Information). An overlay of the docked pose and crystal
structure of X77 is shown in the Supporting Information
(Figure S1). The binding orientation of X77 is overall similar
to known covalent substrate-like inhibitors (F. Wang et al.,

2016; L. Zhang et al., 2020), where it appeared preferentially
occupying the S10-S3 subsites of SARS-CoV-2 Mpro enzyme. In
this orientation, the cyclohexyl amide occupied S3 subsite,
the tert-butyl phenyl group occupied a deep S2 subsite and
the imidazole amide and the 3-pyridyl group occupied S1’
and S1 subsites; respectively.

Docking of the test set compounds was conducted to fur-
ther assess the ability of the docking protocol to discriminate
active from inactive compounds. Goldscore showed poor
enrichment performance with an EF at 1% and 5% of the
ranked list of 0 and 1.87, respectively. The docked poses
were rescored using DSXPDB (Neudert & Klebe, 2011) which
did not show any improvement in the EF values compared
to Goldscore. Accordingly, the docked poses were assessed
using protein-ligand interaction fingerprints (PLIFs) which
were previously reported to give better results than standard
scoring functions in terms of identifying the correct binding
modes of the ligand and recovering active compounds in vir-
tual screening (VS) trials (Anighoro & Bajorath, 2016a, 2016b;
Da & Kireev, 2014). Interactions with key residues targeting
the enzyme catalytic residues (Cys145 and His 41) in addition
to Glu166 located at the center of the substrate-binding site
ensures a binding mode accessing the key enzyme subsites.
Filtering the docked poses of the test set compounds based
on these PLIFs correctly identified 9 out of 12 known Mpro

inhibitors (sensitivity ¼ 0.75), excluded 103 out of 154 inac-
tives (specificity ¼ 0.67) with a mapping EF of 2.35 (Table 1).
These metrics reflect the individual performance of PLIF fil-
tration which appeared similar to those of the pharmaco-
phore model. Cascading the filters; pharmacophore, docking
and PLIF in a multi-stage manner; could decrease the false-
positive rate. After pharmacophore virtual screening, 9 of 12
actives and 110 out of 154 inactives were correctly predicted.
Accordingly, a test set composed of 9 actives and 44 inac-
tives was selected as the initial set for docking and PLIF fil-
tration. The multi-level VS showed better enrichment than
either of the screening methods alone retrieving all 9 actives
(sensitivity ¼ 0.75), correctly excluding 34 inactives (specifi-
city ¼ 0.06) with a significant increase in the mapping EF
value of 6.55 (Table 1). The need for sequential filtration can
be explained by the large variation in the chemical space
and size of reported SARS-CoV Mpro inhibitors along with the
large size of the substrate-binding pocket of Mpro enzyme
and accordingly was used for prospective screening.

3.3. Virtual screening

Virtual screening was carried out hierarchically using the
structure-based pharmacophore model, molecular docking
along with poses selection using the predefined PLIFs and
finally, visual inspection of the binding modes of the hit
compounds. The FDA approved drug dataset comprising
2684 compounds was retrieved from Selleckchem Inc. (WA,
USA, http://www.selleckchem.com). An extensive stochastic
conformational search was conducted for all compounds
with the resultant conformers screened using the pharmaco-
phore model described earlier narrowing down the database
to 158 compounds. The hit compounds were docked into

Table 1. Performance evaluation metrics of screening methods.

Screening method TH AH TPR TNR EF

Pharmacophore filtration 53 9 0.75 0.71 2.35
PLIF filtration 60 9 0.75 0.67 2.35
Pharmacophoreþ PLIF filtration 19 9 0.75 0.99 6.55
�Total number of hits (TH), number of active hits (AH), true positive rate
(TPR), true negative rate (TNR) and enrichment factor (EF).
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the active site of SARS-CoV-2 Mpro (PDB: 6W63) (Mesecar,
2020) using GOLD (Jones et al., 1995; 1997) with filtration of
the docked poses based on the predefined PLIFs reducing
the number of hits to 53 compounds. The docked poses of
these hits were visually examined using the structural infor-
mation of the binding modes of previous SARS-CoV Mpro

inhibitors for evaluating their binding modes. Finally, 12
compounds revealed promising binding modes to SARS-CoV-
2 Mpro enzyme. The selected hits comprised molecules
approved by the FDA for one or multiple therapeutic indica-
tions as: HIV and HCV infections, antineoplastic agents and
natural compounds of multiple indications (Table S3 in the
supporting information). Six compounds were particularly
interesting because of the high resemblance between their
binding modes and those of SARS-CoV-2 Mpro crystallized
ligands; X77 and N3. With the exception of bortezomib,
molecular dynamics simulations were conducted for these
promising docking hits. (Figure 2).

3.4. Molecular dynamics and binding modes analysis

For the promising docking hits, molecular dynamics simula-
tions were conducted using the AMBER software package
(D.A. Case, 2020). In total, 6 ligands including the co-crystal
X77 ligand were studied and the stability of each MD system
was explored. Figure 3(A) showed the RMSD fluctuations of
the backbone atoms of the receptor along the MD

simulation time relative to the initial structure. In each com-
plex, it appears that the receptor reached a stable equilib-
rium after almost 25 ns. To further understand the dynamics
of the backbone atoms, the root mean square fluctuation
(RMSF) values were calculated for backbone atoms at each
time point of the trajectories. Higher RMSF values indicate
greater flexibility during the MD simulation. Low RMSF values
were observed for all protein complexes indicating their high
stabilities during the entire MD simulation with the overall
topology similar to the native fold. (Figure S3) The observed
RMSD of 3–4Å is primarily attributed to variations of residues
at the termini showing RMSF values > 5Å. As illustrated in
Figure 3(B) for the RMSD of the six ligands, the co-crystal-
lized X77 showed the best stability followed by rutin and
boceprevir with RMSDs around 2Å which is reasonable for
large ligands like SARS-CoV-2 main protease inhibitors. These
small RMSD fluctuations add confidence to the binding
modes of rutin and boceprevir proposed by GOLD docking
experiments. On the other hand, thymopentin showed the
least stability as shown by its high RMSD. Visual inspection
of the trajectory confirmed that thymopnetin completely
detached from the binding site after 50 ns and remains in
the solution. Accordingly, thymopentin was not further con-
sidered in this study. For the other 4 hits, the average struc-
ture of the collected snapshots was generated, and the MD
snapshot with the highest structural similarity with this aver-
age structure was chosen as the representative conformation.

Figure 2. Chemical structures of promising docking hits.
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The comparisons between the crystal structure and the rep-
resentative MD conformations are shown in Figure 4 for
Rutin and Boceprevir and in Figure 5 for Nelfinavir
and Epirubicin.

Below, we describe in detail the binding poses of the
promising hits from our virtual screening, based on collective
evidence from docking and molecular dynamics. H-bond ana-
lysis has been performed on the production MD trajectory
and the results are provided in Table 2. Flavonoids were pre-
viously identified as potential inhibitors of SARS-CoV Mpro

showing inhibitory activity within the micromolar range (L.
Chen et al., 2006; Yi et al., 2004). The natural flavonoid rutin
was among the identified hits maintaining almost the same

binding mode as its docked pose throughout the entire
simulation (Figure 4(A)). Its chromone ring binds mainly to
S1 and partially occupies S3 forming interactions with
Asn142 and Glu166. The rutinose moiety had one of its sac-
charides binding to S2 and forming H-bonds with Asp187
and His41, which appeared persistent in 93% and 74% of the
production MD trajectory snapshots, respectively (see Table 2
and Figure S2 in the supporting information). Finally, the
dihydroxy phenyl ring appeared highly flexible throughout
the simulation adopting orientations distinct than that
observed in the initial docked pose (Figure 4(C)).

A recent enzymatic study showed boceprevir to inhibit
SARS-CoV-2 viral replication by targeting its main protease

Figure 3. Plots of root-mean-square deviations of (A) protein main chain atoms and (B) ligand heavy atoms along the MD simulation time.

Figure 4. Structural comparison between the crystal structure and a representative MD structure of SARS-CoV-2 main protease bound to Rutin and Boceprevir. The
crystal structure is shown as light cyano cartoon with the docked ligand shown as grey sticks, while the representative MD structure is shown in green cartoon and
the ligand as magenta sticks. (A) Rutin and (B) Boceprevir. Surface representation of the substrate-binding pocket of SARS-CoV-2 Mpro and ligand� receptor inter-
actions are shown for (C) Rutin and (D) Boceprevir.
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(Ma et al., 2020). Interestingly, the binding mode of the syn-
thetic tripeptide HCV NS3/4A protease inhibitor boceprevir
mimicked that of X77; occupying the three subsites S1’-S2.
Boceprevir’s first peptide residue (P1) with its cyclobutyl side
chain occupied S1’ while its second peptide residue having a
cyclopropyl-fused prolyl ring occupied S1 subsite forming H-
bonds with the backbone of Gly143 and side chain of

Asn142, which appeared persistent in 50% and 27% of the
150-ns MD trajectory snapshots, respectively (Figure 4(D) and
Table 2). The 3-methyl-L-valyl group of P3 partially occupied
S2 while the tertiary butyl group appeared relatively flexible
throughout the simulation (Figure 4(B)).

Among the promising hits was the HIV protease inhibitor
nelfinavir. Several HIV protease inhibitors had been

Figure 5. Structural comparison between the crystal structure and a representative MD structure of SARS-CoV-2 main protease bound to Nelfinavir and Epirubicin.
The crystal structure is shown as light cyano cartoon with the docked ligand shown as grey sticks, while the representative MD structure is shown in green cartoon
and the ligand as magenta sticks. (A) Nelfinavir and (B) Epirubicin. Surface representation of the substrate-binding pocket of SARS-CoV-2 Mpro and
ligand� receptor interactions are shown for (C) Nelfinavir and (D) Epirubicin.

Table 2. H-bond analysis of the 150 ns of the MD trajectory for selected hits identified by our VS protocol. Only H-bonds that are persistent in more than 10%
of the snapshots are included. For thymopentin and epirubicin, no H-bonds were persistent more than 10%. For each H-bond, the acceptor residue and atom
name are indicated in column 1. The name of the H-atom and the electronegative atom attached to it on the donor residue are given in columns 2 and 3,
respectively. The major atoms contributing to H-bonds are mapped in Figure S2.

HB-Acceptor HB-Donor Donor
Percentage of persistence
along the MD trajectory

Average H-bond
Distance

(Å)
Average H-bond

Angle

Boceprevir
LIG_306@O8 GLY_143@H GLY_143@N 50% 2.84 154.5
LIG_306@O16 ASN_142@HD22 ASN_142@ND2 27% 2.82 158.2
HIS_164@O LIG_306@H45 LIG_306@N37 10% 2.89 149.2
Nelfinavir
GLU_166@OE2 LIG_306@H41 LIG_306@O33 50% 2.66 162.1
GLN_189@OE1 LIG_306@H17 LIG_306@N12 49% 2.86 162.0
GLU_166@OE1 LIG_306@H41 LIG_306@O33 30% 2.66 162.5
Rutin
ASP_187@O LIG_306@H13 LIG_306@O27 93% 2.71 166.0
HIS_41@ND1 LIG_306@H12 LIG_306@O26 74% 2.80 163.9
GLU_166@OE2 LIG_306@H14 LIG_306@O28 35% 2.65 164.5
GLU_166@OE1 LIG_306@H14 LIG_306@O28 31% 2.64 164.5
HIS_41@O LIG_306@H18 LIG_306@O31 27% 2.79 152.6
GLN_189@OE1 LIG_306@H8 LIG_306@O20 23% 2.76 148.9
LIG_306@O23 GLY_143@H GLY_143@N 12% 2.92 143.5
ASN_142@OD1 LIG_306@H30 LIG_306@O43 11% 2.75 161.2
Control
LIG_306@O13 GLU_166@H GLU_166@N 67% 2.87 162.6
LIG_306@O01 GLY_143@H GLY_143@N 48% 2.88 161.4
LIG_306@O01 ASN_142@HD22 ASN_142@ND2 32% 2.85 159.4
LIG_306@N18 HIS_163@HE2 HIS_163@NE2 24% 2.91 154.5
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previously reported to inhibit the replication of SARS CoV
(Jenwitheesuk & Samudrala, 2003) and have shown potential
in reducing the symptoms of the recent COVID-19 (Z. M.
Chen et al., 2020). Nelfinavir adopted a different conform-
ation throughout the simulation compared to its initial
docked pose with a single anchor part represented by its
benzoyl group fitting in S1 subsite and forming H-bonds
with Glu166 (Figure 5(A)). Analysis of the MD trajectory
reveals the formation of H-bonds with Glu166 and Gln189 in
approximately 50% of the snapshots for each amino acid. On
the other hand, the phenylsulfanyl group flipped 180�, fitting
in S3 subsite instead of S1’ in its initial docked pose. Finally,
the octahydroisoquinoline ring appeared rather flexible
adopting different orientations throughout the entire simula-
tion (Figure 5(C)).

The anthracycline antineoplastic agent valrubicin has
been recently discovered as possible SARS-CoV-2 Mpro inhibi-
tor in a computational drug repurposing study (L. Zhang
et al., 2020). Our VS protocol identified another anthracycline
antineoplastic agent epirubicin. Anthracenes have been pre-
viously reported as inhibitors of dengue virus NS2B-NS3 pro-
tease, a member of the chymotrypsin family as SARS-CoV-2
Mpro (Tomlinson & Watowich, 2011). Interestingly, MD simula-
tions of epirubicin showed it detaching from the protein and
reattaching again, adopting a more solvent–exposed binding

mode distinct than that of its initial docked pose (Figure
5(B)). The new binding mode showed epirubicin’s main tetra-
cene skeleton residing in a deep groove whose base overlap
with S2 subsite and lined by side chains of His41 and Met49
and backbone atoms of Gln189 and Thr190. The oxane ring
appeared more solvent exposed with its hydroxyl and basic
amino groups forming H-bonds with Glu47 (Figure 5(D))
which appeared in only 8% of the snapshots.

Although bortezomib was not considered in MD simula-
tions due to the inherent difficulty of deriving parameters for
its boron atom, the binding mode of its docked pose was
investigated. Interestingly, previous reports showed that bor-
onic acid compounds bind reversibly to SARS-CoV Mpro and
inhibiting its activity (Bacha et al., 2004). Moreover, the pro-
teasome inhibitor carfilzomib was recently discovered by vir-
tual screening as the top candidate among all SARS-CoV-2
Mpro inhibitor hits (L. Zhang et al., 2020). Bortezomib repre-
sents a dipeptide boronic acid analogue belonging to the
same class of anticancer agents. The docked pose of bortezo-
mib revealed its boronic acid group mimicking the backbone
carboxylic acid of P3 and forming a H-bond with Glu166. The
pyrazine ring occupies the S1’ subsite forming a H-bond with
the catalytic Cys145. The deep S2 subsite is completely occu-
pied by bortezomib’s phenyl ring forming C–H–p interactions
with His41. Finally, the isopropyl group occupied the S1 sub-
site (Figure 6).

3.5. MMPBSA calculation

The ligand binding affinity was measured using the MM-
PBSA method (Homeyer & Gohlke, 2012). Structures were
evenly sampled from the 150-ns trajectory of each com-
pound, and, in the case of epirubicin, from the extra 100-ns
trajectory. The calculated binding free energies are summar-
ized in Table 3 with its individual terms listed in table S4.
The binding affinity of all ligands was compared to that of

Figure 6. Surface representation of the substrate-binding pocket of SARS-CoV-2 Mpro (PDB code: 6W63) (Mesecar, 2020) indicating S1’ –S3 subsites. Overlay of the
docked poses of Bortezomib (magenta) and the crystallized coordinates of X77 (grey) (Mesecar, 2020).

Table 3. List of MM-PBSA binding free energies (in kcal/mol) for potential
inhibitors binding to SARS-CoV-2 main protease. The free energy is calculated
over the course of 150 ns MD simulation for all ligands except epirubicin,
which detaches and reattaches in this trajectory. The quoted free energy for
epirubicin is for the extended 100 ns, after it reattaches at a close-by site in
the active pocket.

Compound Name MM-PBSA(Kcal/mol) Std deviation
Std error
of mean

Boceprevir �13.6 4.2 0.1
Epirubicin �11.4 3.5 0.1
Nelfinavir �13.4 4.2 0.1
Rutin �14.9 4.3 0.1
X77 “control” �17.0 3.4 0.1
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the cocrystallized ligand X77. Based on the MM-PBSA values
reported in Table 3, the co-crystallized ligand X77 is
expected to have the largest binding affinity (-17.0 kcal/mol),
closely followed by Rutin (-14.9 kcal/mol), within the range of
error of the calculated standard deviation (3.4 and 4.3 kcal/
mol, respectively). Rutin is followed by Boceprevir and
Nelfinavir, with MM-PBSA values of �13.6 and �13.4 kcal/
mol, respectively. Epirubicin is expected to have the lowest
affinity (-11.4 kcal/mol). The relative binding affinities of the
hit compounds appeared consistent with their observed
stabilities throughout the MD simulations. This trend was
also observed for free energy calculated by GBSA method,
see table S5 in the supplementary information.

4. Conclusion

A sequential virtual screening protocol including pharmaco-
phore modeling, molecular docking with PLIF post-docking
filtration was developed for the SARS-CoV-2 Mpro enzyme.
Molecular dynamics simulations were performed for 5 prom-
ising hits and the cocrystallized compound followed by bind-
ing free energy calculations. Several promising known drugs
stand out as potential inhibitors of SARS-CoV-2 main prote-
ase, including rutin, boceprevir, epirubicin, nelfinavir and bor-
tezomib with binding modes mimicking those of SARS-CoV-2
Mpro cocrystallized ligands N3 and X77. Most of the discov-
ered hits belong to pharmaceutical classes that were previ-
ously reported to have inhibitory activity on several viruses
including SARS-CoV, a highly homologous virus to SARS-CoV-
2 (Bacha et al., 2004; L. Chen et al., 2006; Tomlinson &
Watowich, 2011; Yi et al., 2004). The five potential drug can-
didates discovered in this study are a valuable extension of
the recently reported SARS-CoV-2 Mpro inhibitors that have
been identified using other virtual screening protocols and
may be repurposed for COVID-19 treatment. Moreover, our
screening protocol proved to be an efficient tool for a pos-
sible repurposing of FDA approved drugs towards SARS-CoV-
2 main protease and could be further applied on large com-
pound libraries such as ZINC.
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