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Bone is one of the main metastatic sites of solid tumors like breast, lung, and prostate

cancer. Disseminated tumor cells (DTCs) and cancer stem cells (CSCs) represent the

main target to counteract bonemetastatization. These cells often localize in bonemarrow

(BM) at level of pre-metastatic niche: they can remain dormant for years or directly

grow and create bone lesion, according to the different stimulations received in BM.

The immune system in bone marrow is dampened and represents an appealing site

for DTCs/CSCs. NK cells have an important role in controlling tumor progression, but

their involvement in bone metastasis formation is an interesting and not fully investigated

issue. Indeed, whether NK cells can interfere with CSC formation, kill them at the site

of primary tumor, during circulation or in the pre-metastic niche needs to be elucidated.

This review focuses on different aspects that regulate DTC/CSC life in bone and how NK

cells potentially control bone metastasis formation.
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INTRODUCTION

Although many cancer patients benefit from more efficient treatments of primary tumors and
become long survivors, the overall probability to develop metastases is increasing, making this
aspect of the disease a key target for researchers and clinicians (1). Bone is one of the main
metastatic sites for different solid tumors including breast, lung, and prostate cancer (2). Bone
metastasis formation and evolution is strongly influenced by a complex cross talk occurring
among tumor, immune, and bone cells (3, 4). BM, besides cell precursors, contains different types
of resident or recirculating mature immune cells, including Dendritic cells (DC), macrophages,
granulocytes, myeloid derived suppressor cells (MDSCs), NK cells, and different T and B
lymphocyte subsets. Although some of these cells (i.e., macrophages, granulocytes, lymphocytes,
and NK cells) are endowed with effector functions and directly involved in pathogen elimination,
virtually all BM immune cells can produce a variety of cytokines, chemokines, or other factors
possibly influencing the local tissue homeostasis. Moreover, subtypes of bone cells, such as
osteoclasts (OCs), originate from immune progenitors and use “immune” receptor/ligand pairs
to rule their maturation and also to govern their bone degradation activity, a process significantly
involved in metastasis formation (5).

Immune cells are poorly effective in the control of metastasis formation and growth, and this is
true also for bone metastases, in spite of the consistency of the immune system in the bone niches.
The definition of immunotherapeutic approaches in themetastatic disease is nevertheless attractive,
especially considering NK cells, a subset of powerful effectors of the innate immunity endowed with

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2019.00145
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2019.00145&domain=pdf&date_stamp=2019-03-07
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:roato78@libero.it
https://doi.org/10.3389/fendo.2019.00145
https://www.frontiersin.org/articles/10.3389/fendo.2019.00145/full
http://loop.frontiersin.org/people/263612/overview
http://loop.frontiersin.org/people/87574/overview


Roato and Vitale The Interplay Between NK Cells and Bone Metastasis

anti-tumor activity. These cells have been shown to kill
pro-metastatic tumor initiating cells and, recently, also to
control metastases in animal models. On the other hand,
NK cell heterogeneity and the complexity of their functional
interactions with the local tumor microenvironment indicate
that specific studies need to be addressed to define their role in
bone metastases.

DTCS COLONIZE BONE MARROW AND
ACTIVATE THE BONE METASTATIC
VICIOUS CYCLE

In primary tumors, genetic, and epigenetic changes favor the
switch of malignant cells to less differentiated forms through a
process called epithelial-to-mesenchymal transition (EMT) (6).
Cells rising from this switch can leave the primary tumor site
becoming disseminated tumor cells (DTCs). DTCs can express
cancer stem cell (CSC) profiles and properties such as resistance
to chemotherapy and ability to home in BM for long time. Indeed,
DTCs can migrate to distant organs and establish in BM at
level of the premetastatic niches, which are induced by soluble
factors or extra-cellular vescicles released in circulation by the
primary tumor (7). The presence of DTCs in BM has clinical
relevance, since it is associated to an increased risk to develop
bone metastases (8–11).

In the BM, DTCs can also compete with hematopoietic stem
cells (HSC) (12, 13) and establish in the niche by interacting
with different elements including osteoblasts (OBs), endothelial
cells, and Extracellular Matrix (ECM). OBs constitutively express
CXCL12 and attract CXCR4-expressing tumor cells (14). Using
mouse models, it has been shown that breast, lung, and prostate
cancer cells overexpressing CXCR4 and CXCR7 increased their
ability to extravasate and colonize bone (15, 16), and CXCR4
inhibition decreased bone and lung metastases (17, 18). Integrins
and cadherins are other crucial factors for the interactions
between DTCs and niches (16, 19). In breast cancer, the vascular-
endothelial molecule-1 (VCAM-1) binds with high affinity α4β7
and α4β1 on OC precursors, leading to osteoclastogenesis, and
α4 or VCAM-1 blocking antibodies effectively inhibit bone
metastasis (20). Integrins can also interact with osteopontin
(OPN), an ECM protein overexpressed in tumors and associated
to tumor cell migration, metastases, and poor prognosis (21, 22).

Breast and prostate cancer DTCs can live in BM in a dormant
state in pre-metastatic niche for years before starting to grow
and to form metastases (5, 23). Indeed, the outgrowth of
DTCs from dormant state, depends both on factors released
by bone microenvironment, such as fibronectin, collagen I, and
periostin (24), and by physical factors such as acid pH, hypoxia,
high extracellular calcium concentration (25), which also cause
disruption of the balanced physiological bone remodeling due
to OC and OB activity (26). Remarkably, an increased OC
activity generates the physical space for tumor expansion
and induces the release from the bone matrix of molecules
that further stimulate tumor cell proliferation, creating the
vicious cycle (27, 28). Tumor cells in turn secrete PTHrP,
activated vitamin D, tumor necrosis factor (TNF), matrix

metalloproteinases (MMPs), interleukin-6 (IL-6), and other
factors, which stimulate the expression of the receptor activator
of nuclear factor NF-kB ligand (RANKL) on OBs, leading
to the final stimulation of osteoclastogenesis from local OC
precursors (3, 20).

INTERACTION BETWEEN IMMUNE
SYSTEM AND BONE FAVOR TUMOR CELL
SURVIVAL AND PROLIFERATION

A fundamental molecular link between immune system and
bone is represented by the axis comprising RANKL, its receptor
RANK, and the natural decoy receptor osteoprotegerin (OPG)
(29, 30). RANK/RANKL interaction activates osteoclastogenesis,
while OPG counteracts this effect by competing with RANK
to bind RANKL (31). OBs and BM stromal cells are the
main producers of both RANKL and OPG in physiological
conditions (32), however, B or activated T cells can influence
the RANKL/OPG ratio, end eventually osteoclastogenesis by
producing OPG or RANKL, respectively (33). Literature data
report that T cells could directly carry on a modulatory action
on OCs through production of different factors such as IL-7,
RANKL, TNFα (34–38). Circulating OC precursors from bone
metastatic patients have been shown to differentiate into mature
OCs in a T cell dependent way, in the absence of the classical OC
inducers M-CSF, and RANKL (39). On the other hand, in mouse
models, it has been shown that T cells exert a fundamental anti-
tumor effect, regardless of OC status. Indeed, PLCγ2-KO mice,
with dysfunctional OCs and impaired T-cell activation, showed
increased bone tumor growth despite protection from bone loss,
whereas Lyn-KO mice with numerous OCs and increased T-
cell responses, showed impaired tumor growth in bone despite
enhanced OC activity and osteolysis. The injection of antigen-
specific wild-type cytotoxic CD8(+) T cells in both these mouse
models normalized tumor growth in bone, suggesting their
important role in the regulation of tumor bone metastases (40). T
cells can limit tumor cell diffusion by releasing IFNγ, which also
affects osteoclastogenesis, indeed lack of IFNγ has been related to
the increase of bone metastases (41).

Tumor cells modify the surrounding microenvironment,
indeed it has been shown that BM from breast cancer patients
differed from that of healthy subjects in its cellular composition
as well as the activation status of cells from the innate immune
system (macrophages, NK cells) and from the adaptive immune
system (T cell subsets) (42). Many immature and suppressor
immune cell types are present in bone, such as T regulatory
cells, which must maintain a balanced immune-reactivity (43),
and MDSCs, which stimulate osteoclastogenesis (44). In breast
cancer, infiltrating T regulatory cells produce RANKL, promoting
OC differentiation, activity, and subsequent bone lesions (45).

MDSCs are increased in cancer patients from 2 up to
25% (46) suppressing innate and adaptive immune response,
thus sustaining tumor growth and metastatization (47).
In breast cancer, MDSCs, derived from bone metastatic
microenvironment, can differentiate into mature and functional
OCs in vitro (48).
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NK CELLS ARE ENDOWED WITH
POWERFUL ANTI-TUMOR FUNCTIONS

NK cells can kill a variety of tumor cells of different origin
and types (49–52). This wide range of reactivity is ensured
by the expression at the cell surface of several receptors
capable of activating or inhibiting the main functions of
NK cells, including the release of cytolytic granules (49, 53).
Thus, thanks to their HLA-I-specific inhibitory receptors and
a complex and heterogeneous group of activating receptors,
NK cells can sense the HLA-I expression decrease that often
characterizes tumor cells and recognize different ligands that can
be variably induced on cells undergoing tumor transformation
(Table 1). Different patterns of NK receptors are engaged
during contact with pathological or non-pathological cells,
regulating the activation, and the intensity of the cytolytic
response (49, 50, 53, 54). Most NK cells express the FcγIII-
receptor (CD16), which is a strong activator of cytotoxicity and
enables NK cells to mediate the Antibody-Dependent Cellular
Cytotoxicity (ADCC).

NK cells can attack tumor cells by releasing pro-apoptotic
factors, including TNF-α and Tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) (69, 70), or cytokines
capable of inhibiting tumor cell proliferation and promoting
the inflammatory response, such as IFN-γ. In addition, NK

cells can release chemokines (CCL3, CCL4, CCL5, and XCL1)
capable of attracting T cells, DC, and monocytes (71, 72) and
give rise to specific cross-talks promoting and regulating the
adaptive anti-tumor response (73–75). Finally, NK cells can
also amplify their recruitment at the tumor site by releasing a
chemotactic form of HMGB1 molecule upon interaction with
tumor cells (76).

In order to appropriately evaluate the role of NK cells in
the control of tumors it should be also considered that the NK
cell population is rather heterogeneous as it includes different
cell subsets, each characterized by peculiar functional capabilities
(77). In humans, the CD56brightCD16dim/neg (CD56bright)
and the CD56dim/CD16bright (CD56dim) cells represent the
two most studied NK cell types. The CD56bright NK cells
largely produce IFN-γ in response to monokines but are poorly
cytotoxic. These cells constitute 5–10% of circulating NK cells,
and, in line with their pattern of chemokine and homing
receptors (i.e., CD62L, CCR7, CXCR3, and CXCR4), represent
most LN-NK cells and an important fraction of tissue NK
cells in different organs. The CD56dim cells release IFN-γ upon
triggering of major activating receptors (NKp46, NKp30, NKp44,
and CD16) and are highly cytotoxic. They represent 90–95%
of PB NK cells and predominate in spleen, lungs, and kidney
although in different percentages. Moreover, CD56dim NK cells
express chemokine receptors (CXCR1, CX3CR1, and CXCR4)

TABLE 1 | Overview of the major NK cell receptors and Ligands involved in tumor cell recognition.

NK

Receptor

Ligand(s) Ligand expression

on tumor cells

References

Inhibitory receptors KIRs* HLA-I (HLA-A,B,C) Down-regulated in certain tumor cells (50, 54)

CD94:NKG2A HLA-E (non-classical HLA-I) Down-regulated in certain tumor cells (50, 54, 55)

LILRB1 HLA-I (HLA-A,B,C) Down-regulated in certain tumor cells (50, 54)

HLA-G (non-classical HLA-I) Up-regulated in certain tumors (55–57)

Activating receptors NKp46 HSPG Up-regulated/modified in different tumor cells (58, 59)

Complement Factor P (properdin) ? (60)

Additional still unknown ligands** (50, 61)

NKp44 HSPG Up-regulated/modified in different tumor cells (58, 59)

MLL5 isoform Ectopically expressed at the cell surface of tumor

cells of hematologic and solid tumors

(62)

PDGF-DD Soluble factor released by several tumors (induces

NKp44-dependent cytokine release)

(63)

Nidogen-1 Decoy extracellular ligand expressed by different

tumor cell lines (inhibits NKp44-dependent cytokine

release)

(64)

NKp30 HSPG Up-regulated/modified in different tumor cells (58, 59)

BAT3 Up-regulated in different tumor cells (released in

exosomes)

(65)

B7-H6 Highly expressed in different tumor cells (66)

NKG2D MICA/B, ULBP1-6 Up-regulated in tumors of epithelial and

non-epithelial origins

(67)

DNAM-1 CD155, CD112 Up-regulated in many tumor cell types (68)

*KIRs, Killer-cell immunoglobulin-like receptor; NKG2A, Natural Killer Group 2A; LILRB1, Leukocyte Immunoglobulin Like Receptor B1; NKG2D, Natural Killer Group 2 D; DNAM-1,

DNAX Accessory Molecule-1; HLA, Human Leukocyte Antigen; HSPG, Heparan Sulfate Proteoglycans; MLL5, mixed-lineage leukemia protein-5; PDGF-DD, platelet-derived growth

factor—isoform dimer DD; BAT3, human leukocyte antigen (HLA)-B-associated transcript 3; MIC, MHC class I chain-related protein; ULBP, UL16 binding proteins.

**Different tumor cell lines bind recombinant soluble NKp46 receptors and/or are killed by NK cells in a NKp46-dependent way but the putative ligand on these cells has not yet

been identified.
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that allow their possible recruitment to inflamed peripheral
tissues (77, 78). The assessment of NK cells in tissues and the
definition of their anti-tumor potential are rather complicated.
Indeed, tissues comprise both potentially cytotoxic NK cells that
recirculate from PB, but also stably resident cells expressing
specific markers of tissue retention (CD69, CD49a, and CD103)
and chemokine receptors (CCR5, CXCR6) (79–82). These latter
cells may display unique functions, possibly organ-specific, not
necessarily oriented to tumor cell killing.

ROLE OF NK CELLS IN THE CONTROL OF
SOLID TUMORS AND METASTATIC
SPREAD

Several studies using different mice models have documented
that NK cells can control tumor insurgence, growth, and
metastasis dissemination (83–86). Remarkably, the role of NK
cells in the control of tumors has also been suggested in different
human studies. In a 11-year follow-up study on more than 8,000
healthy individuals, Imai et al. initially showed that insurgence
of tumors of different types inversely correlated with the levels
of natural cytotoxic activity of peripheral blood lymphocytes
(87). More recently, different groups have found correlations
between the quantity and the quality of tumor infiltrating or PB-
NK cells and a more favorable prognosis or the lower number
of metastases at diagnosis (88). In this last decade, it has also
become evident that a plethora of mechanisms of tumor escape
can strongly reduce the efficacy of NK cells. Within the tumor
microenvironment, different immune suppressor cells (including
Tregs and MDSCs), tumor-associated fibroblasts (TAF), and
tumor cells can produce soluble factors (TGF-β, PGE2, IDO-
derived kynurenine) which inhibit expression and function of the
major activating receptors (89, 90). Similar effects on activating
receptors are induced also by soluble decoy ligands shed by
tumor cells or released as extracellular molecules (64, 89, 91, 92).
Finally, exposure to hypoxia, which often characterizes tumor
tissues, can also cause activating receptor down-regulation (93).
Remarkably, some of these suppressive mechanisms, such as
those induced by hypoxia and TAFs, appear to minimally affect
the ADCC function (94). On the other hand, hypoxia and tumor
cells can modulate the repertoire of chemokine receptors on NK
cells and favor the preferential recruitment of CD56bright cells
(poorly cytotoxic and unable to mediate ADCC) (95). The NK-
cell recruitment into neoplastic tissues may also be influenced by
the chemokine profile induced in the tumor microenvironment.
Human lung and breast tumors have been shown to express
higher CCL19 (a CD56bright cell attracting chemokine) and
lower CXCL12 compared to their normal tissue counterpart (96),
while in mice, BM with MM showed increased CXCL9 and
CXCL10, decreased CXCL12, down-modulation of CXCR3 on
NK cells, and selective reduction of KLRG1− cytotoxic NK cells
(97). Collectively, the above-described mechanisms can account
for the observation that in different tumor tissues the NK cell
infiltrate is often limited or constituted by CD56bright or altered
(poorly functional) CD56dim cells (50, 89).

Another important issue regards the so-called immune-
checkpoints. Different pairs of receptor-ligands are available

to the immune system to regulate or terminate excessive
(dangerous) responses. Some of these receptors, such as PD-
1, TIM-3, TIGIT, and SIGIRR, can be also expressed by NK
cells, especially by those associated to tumors, and control
different NK cell functions including cytotoxicity. Blocking or
overcoming these checkpoints, by specificmonoclonal antibodies
or activating cytokines can improve the NK-mediated control of
carcinogenesis or metastasis formation (98–101).

THE AMBIGUOUS ROLE OF THE NK:CSC
CROSS-TALK IN THE CONTROL OF
METASTASIS FORMATION

Whether NK cells can interfere with CSC formation, or kill CSC
at the site of primary tumor, during circulation, or in the pre-
metastatic niches represents an interesting and still incompletely
investigated issue. Several reports have indicated that NK
cells can kill tumor cells with features of CSC derived from
different tumors (glioma, melanoma, colon, prostate, and breast)
(102). Consistent with these findings, CSCs of different origins
have been shown to express or even up-regulate the ligands
for NKG2D, DNAM1, and NKp30 NK-activating receptors
and cells undergoing EMT showed up-regulated NKG2D-Ls
(88, 102). In addition, EMT induction in lung cancer cells
could promote increased NK cell-mediated metastasis-specific
immunosurveillance in RAG1−/− mice (103). On the other hand,
it has also been shown that NK cells could induce melanoma cells
to undergo EMT, upregulate the expression of stemness markers,
reduce proliferative capability, thus acquiring characteristics
reminiscent of the CSC phenotype. Moreover, EMT increased
ability of melanoma cells to suppress NK cell cytotoxicity against
tumor cells (104).

IS THERE ANY ROLE FOR NK CELLS IN
BONE METASTASES?

Although the role of NK cells in contrasting bone metastases
has been recently suggested in breast cancer preclinical models
(105), an established knowledge on this issue is still lacking.
BM is where NK cells mature and differentiate from CD34+
progenitors; therefore, it contains precursors at different stages.
Once NK cells have matured, changes in the expression of
the key receptors CXCR4 and S1P5 (down- and up-regulated,
respectively) drive their egress from the CXCL12-containing
BM and their recruitment to blood where the S1P5-ligand S1P
is abundant (106). Besides the immature NK cell precursors,
BM also contains a reservoir of mature NK cells, recirculating
from the blood, which can be mobilized upon inflammatory
stimuli (107). BM also includes a substantial population of
resident CXCR6+CD69+ NK (BMrNK) cells, which may be
poorly effective against tumor cells. Indeed, compared to
classical NK cells, BMrNK cells display lower proliferative
capacity, cytolytic granule content, DNAM1, and higher TIGIT
expression (108).

The heterogeneity of the NK cells in the BM and their still
poorly defined interaction with the metastatic niche, together
with the possible cross-talk between PB-NK and CSC/EMT cells
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add a layer of complexity to the issue of how NK cells can
influence bone metastasis formation and progression (Figure 1).
In the bone, the RANK-RANK-L axis, whose deregulation
is important in metastasis formation, also influences NK
cells. The signaling of RANK-L in leukemia cells can induce
the release of NK-suppressing factors (109), whereas, under
inflammatory conditions (knee arthritis) NK cells can stimulate
OCs through activation of RANKL pathway (110). NK cells
can either favor or inhibit generation of OCs depending on
the release of TNF-α or IFN-γ, respectively (111, 112). On
the other hand, OCs have been shown to contribute to the
induction of efficient NK cells, capable of inhibiting growth
of poorly differentiated tumors in humanized BLT mice (113).
This effect is in line with the ability of OCs to produce NK-
stimulating cytokines such as IL-12, IL-15, and IL-18. Finally,

OCs are targets of NK cells, as they express MHC class I
molecules at low levels and are killed by IL-2 treated NK
cells (114).

CONCLUDING REMARKS

Understanding the reason why and how in many patients’
metastases can overcome the surveillance of NK cells is still
poorly understood. Studies are rapidly progressing to define
how to properly activate NK cells by cytokine combinations
and unleash their potential by blocking their checkpoint
receptors. The crucial mechanisms that govern entrance and
egress of NK cells in the bone metastatic niche and modulate
the NK cell killing capability within the bone lesions are
lacking. Addressing these questions will significantly increase

FIGURE 1 | Understanding how NK cells can influence bone metastasis. Outside and inside the bone (light blue and yellow fields, respectively), different functional

interactions involving BM resident, recirculating, or PB NK cells can have contrasting effects on bone metastasis formation and tumor progression. (A) At the site of

primary tumors NK cells may favor EMT. On the other hand, NK cells can kill pro-metastatic tumor cells, such as cells that have undergone EMT (EMT cells), and cells

with features of CSC (CSC-like). (B) OCs can induce proliferation of highly cytotoxic NK cells via the release of IL12, IL15, and IL18. (C) The interaction of NK cells with

OCs gives rise to contrasting effects: NK cells can either favor or inhibit generation of OCs depending on the release of TNF-α or IFN-γ, respectively and kill OCs. (D)

The RANK/RANKL axis may play a role in the cross-talk between NK cells and bone microenvironment: the signaling of RANK-L in leukemia cells (AML) can induce

the release of NK-suppressing factors; on the other hand, RANKL-expressing NK cells provide signals for OC generation. (E) Besides recirculating PB-NK cells, BM

also contains resident poorly cytotoxic NK cells (BMrNK) which may hardly eliminate tumor cells.
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the therapeutic options for NK cells in the treatment of bone
metastatic disease.
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