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Abstract 

Background:  The novel approaches to psychiatric classification assume that disorders, contrary to what was previ-
ously thought, are not completely separate phenomena. In this regard, in addition to symptom-based criteria, distur-
bances are also considered on the basis of lower level components. With this viewpoint, identifying common bio-
chemical markers would be beneficial in adopting a comprehensive strategy for prevention, diagnosis and treatment.

Main body:  One of the problematic areas in clinical settings is the coexistence of both obsessive–compulsive disor-
der (OCD) and bipolar disorder (BD) that is challenging and difficult to manage. In this study, using a system biologic 
approach we aimed to assess the interconnectedness of OCD and BD at different levels. Gene Set Enrichment Analy-
sis (GSEA) method was used to identify the shared biological network between the two disorders. The results of the 
analysis revealed 34 common genes between the two disorders, the most important of which were CACNA1C, GRIA1, 
DRD2, NOS1, SLC18A1, HTR2A and DRD1. Dopaminergic synapse and cAMP signaling pathway as the pathways, dopa-
mine binding and dopamine neurotransmitter receptor activity as the molecular functions, dendrite and axon part as 
the cellular component and cortex and striatum as the brain regions were the most significant commonalities.

Short conclusion:  The results of this study highlight the role of multiple systems, especially the dopaminergic sys-
tem in linking OCD and BD. The results can be used to estimate the disease course, prognosis, and treatment choice, 
particularly in the cases of comorbidity. Such perspectives, going beyond symptomatic level, help to identify com-
mon endophenotypes between the disorders and provide diagnostic and therapeutic approaches based on biologi-
cal in addition to the symptomatic level.
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Introduction
Obsessive–compulsive disorder (OCD), a devastating 
neuropsychiatric disorder with a strong genetic basis, 
affects 1–3% of the general population [1]. OCD is mainly 
characterized by repetitive, intrusive thoughts, images 

and impulses called obsessions and repetitive ritualis-
tic behaviors, called compulsions [2, 3]. A great number 
of patients with OCD experience cyclical courses mani-
fested by episodes of recurrence and remission [4]. This 
sinusoid phenomenon somewhat resembles the course 
of bipolar disorder (BD), another chronic psychiatric 
situation with cyclical episodes of mania and depression. 
Studies have provided evidence that there is a high rate of 
comorbidity between the two disorders. For instance, BD 
is reported to be diagnosed in 12–23% of clinical patients 
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with OCD [5, 6]. Remarkably, D’Ambrosio et  al. have 
found that cyclothymia is the dominant temperament 
in 54% of patients with OCD [7]. On the other hand, 
21–35% of patients diagnosed with BD are reported to 
manifest OCD core symptoms [8].

Although in terms of Feinstein thesis, comorbidity is 
defined as the co-existence of diagnostic criteria of two 
or more disorders in one subject [9], the relationship 
between OCD and BD is beyond this simple definition. 
The co-occurring symptoms of the two disorders ini-
tially attracted clinicians’ attention [10, 11]. It was then 
observed that OCD and BD comorbidity is often accom-
panied by other conditions such as post-traumatic stress 
disorder (PTSD), eating disorder agoraphobia, panic dis-
order, earlier age of onset and a greater number of major 
depressive episodes [7, 10]. Besides, major psychiatric 
disorders are very debilitating, as Ghio et al. have showed 
in major depressive disorder (MDD), early diagnosis 
and treatment can significantly reduce the unfavorable 
outcomes including disability of the disorder [12]. Thus 
identifying the paths towards them are essential for early 
and timely treatment [13].

Moreover, the evidence suggests a high rate of co-
inheritance of the two disorders. For example, families of 
patients with OCD have a higher prevalence rate of BD 
than the controls [14] and BD patients with family his-
tory of mood disorders had a significantly higher lifetime 
prevalence of OCD [15]. Additionally, having OCD is 
reported to increase the risk of BD 13-fold greater than 
not having OCD [16].

Although the two disorders do not share much at the 
phenotypic and behavioral levels, common endopheno-
types have tightened the link between them. For exam-
ple, both patients with BD and OCD showed impaired 
performance in verbal episodic memory mediated by 
semantic clustering abilities [17]. Deficient response inhi-
bition and sustained attention are the other cognitive 
endophenotypes observed in both patients with OCD 
[18–20] and BD [21]. Furthermore, Benatti et al. reported 
significantly higher impulsivity levels in OCD patients 
compared to the controls [22], whereas, impulsivity is a 
well-known criterion for predicting manic episodes and 
onset of BD [23]. This moderately heritable component 
remains elevated during euthymia in BD and has been 
found among relatives of BD patients as well [15, 24, 25]. 
Adida et al. reported a trait-related impairment in deci-
sion-making in patients with BD compared to the healthy 
controls [26], while the addiction model emphasizes on 
risky decision-making behaviors in the psychopathology 
of OCD [27].

At the anatomical level, the brain regions involved in 
BD and OCD are highly overlapped. While hypo-activ-
ity in the orbitofrontal cortex (OFC) and dorsolateral 

prefrontal cortex (DLPFC) is suggested to be associated 
with manic episodes [28], parallel studies have demon-
strated hyperactivity in the mentioned regions in patients 
with OCD as well [29]. Furthermore, anterior cingulate 
cortex (ACC) and striatum are the other shared brain 
regions involved in the pathophysiology of both disorders 
[30, 31].

More recently, genome-wide association studies 
(GWASs) and a significant number of confirmative candi-
date gene association studies, have identified shared loci 
for BD and OCD [32–35]. In a recent study, O’Connell 
et al. reported common genetic etiology for schizophre-
nia (SCZ), BD, autism spectrum disorders (ASD) and 
OCD. They suggested more researches on cross-disorder 
shared components in order to obtain translatable results 
for more specified clinical applications, prognosis and 
treatment management in mental health settings [36].

Although BD and OCD are phenotypically recognized 
as two distinct disorders, studies have reported high 
comorbidity of them. Existing theories have had little 
success in explaining the causes of this comorbidity phe-
notypically and sometimes they contradict each other; 
hence, we hypothesized that this comorbidity is rooted in 
the genetic similarities between the two disorders. Based 
on our knowledge, it seems that there is no comprehen-
sive and integrative study on the shared genetic basis of 
OCD and BD yet. Therefore, the aim of the present study 
was to employ an exploratory approach to characterize 
the shared genetic basis of BD and OCD using a gene 
set-based approach following by molecular, cellular and 
pathway enrichment analyses. We assume that the OCD 
may share common genetic etiological factors and bio-
logical processes with BD.

Methods
Gene finding
In order to obtain genes significantly associated with 
OCD and BD, we searched the PubMed and Google 
Scholar databases manually, using related keywords. The 
keywords were combination of: “bipolar disorder”, “BD”, 
“manic-depressive disorder”, “bipolar”, “mania”, “obses-
sive–compulsive disorder”, “OCD”, “gene”, “association”, 
“linkage”, “meta-analysis”, “genome-wide association 
study”, “genome-wide”, “GWAS”, “exome wide” and “poly-
morphism”. The genes retrieved from human structural 
genetic studies, and the genetic database for OCD [37].

Studies that had found genes associated with OCD 
symptoms, manic phases without BD diagnosis, some 
common features in the two disorders such as sui-
cidal behavior, as well as gene expression studies were 
excluded. Association structural genetic studies were 
included regardless of age, ethnicity and gender of 
the evaluated individuals and also regardless of the 
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published year. Linkage studies were included pro-
vided that the name of the gene was mentioned in the 
intended loci and the found marker was at the maxi-
mum distance equal to 500 base pair from the men-
tioned gene. In order to prevent the repetition of genes 
with different names, the Ensembl ID of each gene 
was obtained through Ensembl genome browser 92. 
Finally, a list of 397 BD genes and 148 OCD genes were 
achieved. Fifty-eight genes were shared between the 
two disorders and were considered for further analysis. 
The final list of included genes is presented in Addi-
tional file 1.

Gene Set Enrichment Analysis
Gene Set  Enrichment  Analysis  (GSEA)  is  a  pow-
erful  method  for  interpreting the biological 
meaning of a list of genes or proteins that provide impor-
tant  insights  into  the  biological mechanisms underlying 
that gene set. This method uses the proportion-based 
statistical approaches to identify certain molecular func-
tions, cellular components or biological processes which 
are over- or under-represented within the lists of interest.

We used WebGestalt (WEB-based Gene SeT AnaLysis 
Toolkit) for the gene set enrichment analysis. WebGestalt 
supports three well-established methods for enrichment 
analysis, including Over-Representation Analysis (ORA), 
Gene Set Enrichment Analysis (GSEA), and Network 
Topology-based Analysis (NTA). It incorporates infor-
mation from different public resources and provides an 
easy way to make sense out of gene lists. In our analysis, 
we used ORA method for pathway enrichment analysis 
(based on the KEGG database [38]), and molecular func-
tions and cellular component enrichment analysis (based 
on the Gene Ontology [GO]) Consortium database: 
(http://www.geneo​ntolo​gy.org/) [39]. Moreover, Cell 
Type-Specific Expression Analysis (CSEA) tool was used 
for identifying candidate circuits and regions, by using a 
list of genes that have the most expression in their cells 
(http://genet​ics.wustl​.edu/jdlab​/csea-tool-2/).

The  resulting  data provided by enrichment analy-
sis was analyzed  and  visualized using Cytoscape 
v3.6.0. Cytoscape  is  an  open  source  software  plat-
form  for  complex molecular interaction network visu-
alization  and  data  integration. Using Network Analyzer 
toolbox for Cytoscape, a broad set of network topologi-
cal parameters (number of nodes, edges and connected 
components, betweenness centrality and closeness cen-
trality) were created. In the present diagram, the sizes of 
the nodes are based on betweenness centrality. Between-
ness centrality is a measure of centrality in a graph based 
on  shortest paths that  measures the extent to which a 
vertex lies on paths between other vertices.

Results
The reconstructed interactive network consisted of 62 
nodes and 128 edges, including 34 genes, 10 molecular 
functions, 7 pathways, 8 cellular components and 3 brain 
regions. On average, each gene was involved in 4 molecu-
lar functions, 5 pathways, 5 cellular components, and 3 
brain regions (Fig. 1).

Topological analysis of the network demonstrated that 
the majority of the nodes have the centrality between 
0 and 0.1 (Fig.  2a). Furthermore, it was found that the 
majority of the nodes have a degree of connection 
between 1 and 2 (Fig. 2b).
CACNA1C, GRIA1, DRD2, NOS1, SLC18A1, HTR2A 

and GRIK2 were the most central genes in the network, 
respectively. The other central genes in the network are 
shown in Table 1.

Among the pathways found through enrichment 
analysis, the dopaminergic synapse (Bc = 0.13604918, 
FDR = 3.86E−08), cAMP signaling pathway 
(Bc = 0.12989786, FDR = 1.19E−06) and serotonergic syn-
apse (Bc = 0.0838125, FDR = 0.000112) were the nodes with 
the highest centrality involved in both OCD and BD. The 
most central molecular functions were dopamine binding 
(Bc = 0.011851, FDR = 3.59E−10), dopamine receptor activ-
ity (Bc = 0.0047987, FDR = 9.72E−09), glutamate-gated ion 
channel (Bc = 0, FDR = 2.06E−06) and G-protein-coupled 
amine receptor (Bc = 0.00705387, FDR = 0.000142), respec-
tively. Cellular component enrichment analysis indicated 
that dendrites (Bc = 0.07980464, FDR = 0.000151) and axon 
parts (Bc = 0.03089599, FDR = 0.000215) are the main com-
ponents involved in the pathology of OCD and BD. Finally, 
it was found that cortex (Bc = 0.22937063, FDR = 0.008), 
striatum (Bc = 0.1299988, FDR = 0.008) and hippocampus 
(Bc = 0.07421981, FDR = 0.008) are the main brain regions 
whose impairments contribute to the pathophysiology of 
OCD and BD. The other pathways, molecular functions and 
cellular components are shown in Table 2.

Discussion
The results of enrichment analysis in the present study 
showed that the genes involved in glutamatergic trans-
mission (GRIK2, GRIK3, GRIN2B, and GRIA1), dopa-
minergic transmission (DRD1, DRD2, DRD3, DRD4, and 
DRD5), serotonergic transmission (SLC6A4, HTR1A, 
HTR2A, and TPH2) and GABAergic transmission 
(GABBR2, GABA, and GAD1) are the most important 
genes associated with both the disorders.

The calcium voltage-gated channel subunit alpha1 
C; CACNA1C was found as the most central shared 
gene. The L-type voltage-gated calcium channel fam-
ily include four different isoforms consisting of Cav1.1, 
Cav1.2, Cav1.3, and Cav1.4. CACNA1C codes for 
the α1C subunit of the Cav1.2 channel is involved in 

http://www.geneontology.org/
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the proper functioning of the hippocampus, amyg-
dala, and mesolimbic reward system circuits, which are 
strongly implicated in the pathophysiology of psychi-
atric disorders [40]. While the most statistically robust 
CACNA1C associations are in BD, polymorphisms in 
CACNA1C shown to be correlated with other condi-
tions such as schizophrenia, major depressive disorder 

(MDD), anxiety [41], neuroticism and obsessive–com-
pulsive thoughts [40].

The function of CACNA1C  gene predicts amygdala 
and hippocampal activity during emotional process-
ing and hippocampal activation during episodic and 
working memory recall [42, 43], actions which are sug-
gested as the main diagnostic intermediate phenotypes 
for both BD and OCD [17]. In humans, CACNA1C risk 

Fig. 1  The analyzed network of features involved in the pathogenesis of both OCD and BD. The yellow circles represent the genes, green diamonds 
the molecular functions, blue squares the cellular components, red hexagons the pathways and violet triangles represent brain regions. The larger 
the nodes, the bigger the betweenness centrality

Fig. 2  Topological characteristics of the reconstructed network. a Betweenness centrality distribution of the nodes in the network. b Node degree 
distribution in the network
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variant modulates an individual’s inclination to respond 
to reward. The mesolimbic–dopamine system, through 
the  ventral tegmental area (VTA)–nucleus accumbens 
(NAc) pathway plays a critical role in reward processing 
and possibly compulsive responses [44]. Stein and Loch-
ner have illustrated that the role of structures related 
to learning and reward include dopaminergic agonists 
in OCD [45]. Terrillion et  al. have also reported that 
decreased expression of the CACNA1C gene in the mes-
olimbic pathway reduces mania symptoms [46].

Besides, GRIA1 encodes glutamate receptor, iono-
tropic, AMPA1, which acts as an excitatory glutamate 

receptor in the central nervous system. Evidence has 
suggested that AMPA1 gene is associated with impaired 
working memory and reward processing in patients with 
OCD [47]. OCD has been conceptualized as a behavio-
ral addiction with defective processing in reward circu-
ity [48]. Compulsions act as a reward, suppressing the 
anxiety-provoking obsessions [49]. Also, studies have 
reported that GRIA1 may regulate the circadian rhythms, 
through the regulation of Clock gene, which has been 
demonstrated to be disrupted in the ventral tegmental 
area of patients with BD, particularly in manic episodes 
[50–52].

Table 1  The results of enrichment analysis for genes involved in the pathogenesis of both OCD and BD

Gene full official name HGNC symbol Betweenness 
centrality

1 Calcium voltage-gated channel subunit alpha1 C CACNA1C 0.338153

2 Glutamate ionotropic receptor AMPA-type subunit 1  GRIA1 0.1574122

3 Dopamine receptor D2 DRD2 0.1136524

4 Nitric oxide synthase 1 NOS1 0.0903783

5 Solute carrier family 18 member A1 SLC18A1 0.0661232

6 5-Hydroxytryptamine receptor 2A HTR2A 0.0660831

7 Dopamine receptor D1 DRD1 0.0500920

8 Glutamate ionotropic receptor kainate-type subunit 2 GRIK2 0.0481045

9 Dopamine receptor D5 DRD5 0.0458659

10 5-Hydroxytryptamine receptor 1A, serotonin receptor HTR1A 0.0443705

11 Glutamate ionotropic receptor NMDA-type subunit 2B GRIN2B 0.036738

12 Solute carrier family 6 member 4 SLC6A4 0.020317

13 Glutamate ionotropic receptor kainate-type subunit 3 GRIK3 0.038491

14 Dopamine receptor D3 DRD3 0.017168

15 Cannabinoid receptor 1 CNR1 0.007217

16 Adrenoceptor alpha 1A ADRA1A 0.006255

17 Brain-derived neurotrophic factor BDNF 0.005617

18 Tryptophan hydroxylase 2 TPH2 0.0045508

19 Dopamine receptor D4 DRD4 0.004232

20 Glutamate decarboxylase 1 GAD1 0.003155

21 Gamma-aminobutyric acid type A receptor alpha1 subunit  GABRA1 0.001786

22 Neurotrophic receptor tyrosine kinase 2 NTRK2 0.001023

23 Angiotensin I converting enzyme ACE 0

24 Ataxin 1 ATXN1 0

25 Cholinergic receptor nicotinic alpha 7 subunit CHRNA7 0

26 Corticotropin-releasing hormone receptor 2 CRHR2 0

27 Dopamine beta-hydroxylase DBH 0

28 Ephrin A5 EFNA5 0

29 Glutamic acid decarboxylase 2 GAD2 0

30 Glutamate ionotropic receptor NMDA-type subunit 2A GRIN2A 0

31 5-Hydroxytryptamine receptor 2C HTR2C 0

32 5-Hydroxytryptamine receptor 3A HTR3A 0

33 Olfactomedin 1 OLFM1 0

34 Tumor necrosis factor TNF 0
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DRDR2 is one of the other prominent genes in this col-
lection. The interface between obsessive–compulsive and 
bipolar disorders can be explained through the concept 
of “reward deficiency syndrome (RDS)” [53]. The reward 
deficiency hypothesis proposes that aberrant function-
ing of normal reward pathways in one individual causes 
less satisfaction with natural rewards and enhance the 
inclination to compulsory use of substances or repeti-
tive behaviors as a way to augment stimulation of the 
reward pathways [54]. Blum et al. assume that addictive, 

impulsive and compulsive disorders may have a common 
genetic basis. They point to the role of genes involved in 
the dopaminergic system in this processes, among which 
DRD2 is the most determinant gene [55, 56]. A number 
of independent meta-analyses endorsed the association 
of DRD2 polymorphisms with RDS [57, 58]. Impulsivity, 
has been known as a key intermediate phenotype in BD, 
which is present in inter-episode phases of the illness [59, 
60]. This feature has also been recently taken into consid-
eration in OCD [61, 62]. On the other hand, considering 

Table 2  The results of  enrichment analysis for  pathways, molecular functions, cellular components and  brain regions 
involved in the pathogenesis of both OCD and BD

Pathway full name KEGG ID FDR Betweenness 
centrality

1 Dopaminergic synapse hsa04728 3.86E−08 0.13604918

2 cAMP signaling pathway hsa04024 1.19E−06 0.12989786

3 Serotonergic synapse hsa04726 0.000112 0.0838125

4 Calcium signaling pathway hsa04020 0.000979 0.07812904

5 Glutamatergic synapse hsa04724 0.001158 0.04450784

6 GABAergic synapse hsa04727 0.005543 0.03118593

7 Retrograde endocannabinoid signaling hsa04723 0.00753 0.04801305

Molecular functions Gene ontology (GO) ID FDR Betweenness 
centrality

1 Dopamine binding GO:0035240 3.59E−10 0.011851

2 Dopamine neurotransmitter receptor activity, coupled via Gs GO:0001588 9.72E−09 0.0047987

3 Extracellular-glutamate-gated ion channel activity GO:0005234 2.06E−06 0

4 G-protein-coupled amine receptor activity GO:0008227 0.000142 0.00705387

5 Amino acid binding GO:0016597 0.000211 0.02687112

6 Kainate-selective glutamate receptor activity GO:0015277 0.001517 0

7 Monoamine transmembrane transporter activity GO:0008504 0.004829 0.00237254

8 Serotonin binding GO:0051378 0.004829 5.53E−04

9 Ammonium transmembrane transporter activity GO:0008519 0.028746 0.00237254

10 Serotonin receptor activity GO:0099589 0.028746 5.53E−04

Cellular components Gene ontology (GO) ID FDR Betweenness 
centrality

1 Dendrite GO:0030425 0.000151 0.07980464

2 Axon part GO:0033267 0.000215 0.03089599

3 Postsynaptic density GO:0014069 0.000243 0.05051219

4 Ionotropic glutamate receptor complex GO:0008328 0.001148 0.0055914

5 Membrane raft GO:0045121 0.001158 0.05504978

6 Cation channel complex GO:0034703 0.003335 0.02751275

7 Perikaryon GO:0043204 0.01023 0.00847745

8 Synaptic vesicle GO:0008021 0.013692 0.01103456

Brain regions FDR Betweenness 
centrality

1 Cortex 0.008 0.22937063

2 Striatum 0.008 0.1299988

3 Hippocampus 0.008 0.07421981
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the frequent evidences about the risk of impulsivity in 
suicidal behaviors [63, 64], the presence of impulsivity 
might consider as a key predictor of suicidal attempts in 
both OCD and BD. Moreover, DRD2 is associated with 
learning the motor sequences [65] and the motor com-
ponents of several psychiatric disorders such as motor 
defects related to the first episode of psychosis [66].

In the present analysis, dopaminergic synapse as the 
most significant pathway and dopamine binding and 
dopamine neurotransmitter receptor activity, as two of 
the most significant molecular functions have been dis-
covered. These findings point out to the major role of the 
dopaminergic system in both OCD and BD. Due to the 
wide-ranging and diverse functions assumed for dopa-
mine, part of these functions supposed to be responsible 
for dysregulation in structures underlying symptoms of 
both OCD and BD. These symptoms are contradictory 
at the level of semiotics and phenotypes. The dopamin-
ergic system and the neurotransmitter dopamine (DA) 
are responsible for many basic functions such as moti-
vational and emotional behaviors, control of involun-
tary movements and neurosecretion associated with the 
biological clock and homeostatic sleep–wake regulation 
in humans [67]. The DA system also has been known to 
be impaired in mechanisms involved in motor inhibition 
[68] and cognitive functions in OCD [69] and BD [70]. 
Midbrain dopaminergic neurons in the mesocorticolim-
bic system regulate working memory, attention, decision-
making and reward-associated behaviors. Bodea et  al. 
reported that dopamine imbalances in the mesocorti-
colimbic pathway have been implicated in drug abuse, 
depression, attention deficit hyperactivity and schizo-
phrenia disorders [71].

Suhara et  al. reported that the dopamine-binding 
potentials in the frontal cortex of the patients with BD 
were significantly lower than normal controls. Also, 
Denys et  al. demonstrated that the reduced binding 
potential of the dopamine D receptor, especially the D2 
type receptor, is directly involved in the pathophysiology 
of OCD [72].

Reduced serotonergic activity in the forebrain regions 
contributes to the development of OCD [73] and in the 
depression phase of BD [74]. Defective inhibition of 
GABAergic system in the prefrontal cortex has been also 
shown in both BD [75] and OCD [76].

Further analysis showed that cAMP signaling path-
way is the most central pathway associated with the two 
disorders. It has been shown that the baseline receptor-
mediated level of cAMP in plasma and cerebrospinal 
fluid is altered in various mood states, including BD and 
major depression [77]. Perez et  al. reported the altered 
cAMP-dependent kinase activity in platelets of patients 
with OCD [78].

Moreover, in his well-known hypothesis, Marazziti 
suggests that OCD is caused by a decreased activity of 
protein kinase type A (PKA), in the cAMP signaling 
pathway [79]. In line with Marazziti, Tardito et al. argued 
that the cAMP-stimulated PKA activity is considerably 
increased in BD patients compared with healthy controls 
[80] and cAMP-responsive element-binding (CREB)-1 
gene (CREB1) is demonstrated to be associated with the 
risk of BD and obsessive behaviors [81, 82].

On the other hand, transduction of the signal through 
metabotropic glutamate receptors [83], dopamine recep-
tors [84], and 5-HT1, 4, 5, 6, and 7 receptors [85] are 
mainly based on the cAMP-mediated cascades. There-
fore, the defect in this signal processing system can also 
affect signal transduction through these receptors, as 
defects in the glutamatergic, serotonergic, GABAergic 
and dopaminergic neurotransmission systems in both 
OCD and BD have been identified [33, 86–88].

Cellular component enrichment analysis revealed that 
the cellular components involved in receiving the sig-
nals, namely, dendrites, were the most important cellular 
components associated with OCD and BD. In this regard, 
Rosoklija et al. have indicated the structural abnormalities 
of dendrites in major mood disorders [89] and Konopaske 
et al. have found that spine density is significantly reduced 
in the dorsolateral prefrontal cortex of BD subjects [90].

Finally, our analysis showed that the striatum is the 
most important brain region associated with obsessive–
compulsive and bipolar disorders. Bipolar patients have 
been reported to show abnormal task-related activity in 
the striatum [91] and substantial shape alterations in the 
anterior and ventral striatum [92]. On the other hand, 
impaired working memory [93], abnormal condition-
ing [94], and decreased probabilistic learning [95] are all 
known as striatum-dependent valuable endophenotypes 
for BD. Differences in volumes of the caudate nucleus 
and the putamen between OCD patients and healthy 
controls have been also reported??? [96]. Moreover, func-
tional imaging studies indicated the altered activities in 
the striatum of OCD patients, both during resting-state 
and during expression of symptoms [97].

Regarding clinical implications, studies of this kind 
may help in solving several issues clinicians usually 
face. If such gene-based infrastructured network is con-
firmed by future studies, it can be a determining factor 
in identifying individuals at risk among the siblings of the 
proband or predicting the risk of developing the disorder 
in the next generation. On the other hand, prognosis and 
disease prevention, a focus area for the mental health-
care systems, can be considered. In clinical settings, 
it is observed that some types of OCD patients tend to 
develop psychotic or manic symptoms. According to the 
results, those patients with defects in the most important 
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identified components may be more susceptible to 
develop symptoms of the other serious illnesses, such 
as BD. Furthermore, finding more specific and effective 
drug therapies is the other implication of such findings. 
For example, in an OCD patient with disturbances in the 
above network, prescribing mood stabilizers, antipsy-
chotics or other medications which target the identified 
genes, pathways or molecular functions in addition to 
SSRIs, may also be recommended prior to the appearance 
of mania symptoms at the phenotype level.

Conclusions
Our analysis indicated CACNA1C, dopamine receptor 
binding activity, cAMP signaling pathway, dendrite and 
striatum as the most central gene, molecular function, 
pathway, cellular component and brain region, respec-
tively, associated with both OCD and BD. Significantly all 
these elements are interconnected; in the striatal region, 
calcium receptor in dendrites may be affected by cAMP-
mediated signaling pathways and affect the dopamine 
receptors, and this network may be the main impaired 
infrastructure associated with OCD and BD, although 
confirmation of this hypothesis requires comprehensive 
and integrated experimental studies in the future. More-
over, considering the functions of the most important 
genes, pathways, and molecular functions described in 
this study, it seems that several major functions includ-
ing the reward processing, motor and cognitive functions 
such as memory can be pointed out as the most inter-
mediate phenotypes shared between the two disorders. 
The results of the present study suggest that OCD–BD 
comorbidity caused by common genes and may occur 
with exposure to certain environmental factors. Accord-
ingly, it can be assumed that the set of genes involved in 
the comorbidity of the disorder is different from the set 
of genes which are involved in the occurrence of each 
disorder alone. This finding should be further considered 
and taken into account during diagnoses and pharmaco-
therapy of the disorders. For example, in cases of comor-
bidity, it may be useful to prescribe drugs that are not the 
first line of treatment for either disorder when they occur 
alone. These findings might also be helpful in estimating 
the course of any disorder. Further studies could focus on 
explaining a more precise model of pathogenesis and the 
role of each component in developing co-occurrence.
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